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Abstract 
Determining the composition of bacterial communities beyond the level of a genus 
or species is challenging because of the considerable overlap between genomes 
representing close relatives. Here, we present the mSWEEP method for identifying 
and estimating the relative abundances of bacterial lineages from plate sweeps of 
enrichment cultures. mSWEEP leverages biologically grouped sequence assembly 
databases, applying probabilistic modelling, and provides controls for false 
positive results. Using sequencing data from major pathogens, we demonstrate 
significant improvements in lineage quantification and detection accuracy. Our 
method facilitates investigating cultures comprising mixtures of bacteria, and 
opens up a new field of plate sweep metagenomics. 

Background 
High-throughput sequencing technologies have enabled researchers to study 
bacterial populations in unprecedented detail using whole-genome sequencing 
(WGS) of pure individual bacterial colonies. Sequencing of individual isolates has 
provided insights into antimicrobial resistance and the complex ecology of the 
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spread of antimicrobial resistant variants globally. The application of community 
profiling metagenomics, in which the 16S rRNA gene is sequenced from complex 
multi-species samples, can provide information about the composition and 
dynamics of highly diverse bacterial populations. However, the resolution of this 
approach is limited because assignment beyond the level of genus/species to 
individual variant is generally not possible due to insufficient nucleotide variation 
[1]. Whole-genome shotgun metagenomics delivers a much higher resolution than 
16S rRNA sequencing [2] but widespread application is hindered by the cost 
associated with sequencing a sample to a sufficient depth to capture the diverse set 
of organisms that may be present in the sample [3]. 

Current methods for identifying bacteria from sequencing data usually focus on 
analysing predetermined single nucleotide variants (SNVs) and/or marker genes to 
capture the variation contained in a mixed colony [4-6], or on analysing isolated 
colonies. Many potential applications require an analysis of data from mixed 
colonies where methods developed for pure colonies are insufficient. Furthermore, 
whilst the SNV-based approach has been successful in studies of the history of the 
human population, focusing solely on SNVs inadequately captures the greater 
variability and different modalities of variation in bacterial genomes. Conversely, 
solely gene-based approaches can capture some of this while potentially losing 
finer detail. Therefore, we aimed to strike a balance between these two approaches 
by making use of a complete genome reference database. 

Here, we have developed the mSWEEP method, which is designed to make efficient 
use of large collections of reference genomes that are available for numerous 
important human pathogens and other culturable bacterial species. mSWEEP 
combines clustering of the reference genomes into biologically relevant groups, 
fast pseudoalignment of reads to the references, fast and accurate probabilistic 
inference of the cluster abundances, and a method for controlling false positive 
detections. 

Although applicable to any scenario where reference genomes for the sequenced 
bacteria are available, mSWEEP specifically enables a new kind of high-resolution 
analysis in plate sweep metagenomics, where a mixture of colonies is harvested 
from an enrichment culture by sweeping the whole plate in contrast to isolating a 
single colony. Plate sweep experiments fall between whole-genome sequencing of 
single colonies and culture-independent metagenomics by analysing the entire 
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complexity of a community from a specific growth medium. As illustrated in our 
experiments, this setting is ideal for analysing samples representing populations of 
pathogenic bacteria, where the infecting species of primary interest have generally 
been previously encountered and sequenced frequently. By leveraging on existing 
high-resolution genomic pictures of pathogen populations, mSWEEP provides 
means to address a range of novel biological questions related to within-host 
variation, transmission, and the effect of ecological factors on the microbial 
diversity present in samples. 

Results 
Lineage identification 

Abundance estimation with mSWEEP is performed in two phases: reference 
preparation, performed once for a given reference collection, and analysis of 
samples (Figure 1). Reference preparation consists of defining a reference sequence 
database and grouping the sequences according to biological criteria such as 
sequence types (ST), clonal complexes (CC), or by using a clustering algorithm for 
bacterial genomes. Grouping related reference sequences is essential in enabling 
identification of the taxonomic origin of each read [7] and enables abundance 
estimation when the sequencing reads originate from a sequence having no exact 
match in the reference database but which is represented by sequences from 
closely related organisms within the same group (typically bacterial lineage). 
Consequently, accuracy of the abundance estimates provided by mSWEEP is reliant 
on an extensive reference database and a biologically meaningful grouping. 

We constructed detection thresholds for the groups during the reference preparation 
from the reads used to assemble the reference sequences (Figure 1). We randomly 
chose one reference sequence at a time, removing it from the reference set, 
resampling the reads from the removed sequence, estimating abundances from the 
resampled reads, and repeating the process for all groups within the reference set. 
The detection threshold for a given group was determined by examining 
abundance estimates obtained when the group is not the true source and setting 
the threshold at the maximum false abundance estimate. This approach provides a 
statistical confidence score for estimates exceeding the detection thresholds, 
corresponding to the level of error deemed acceptable in abundance estimation 
from the resampled reads. 
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Figure 1 Flowchart of the mSWEEP pipeline describing a typical workflow for relative 
abundance estimation. The input part refers to the input data, reference preparation to 
the operations that need to be performed once per set of reference sequences, and 
analysis contains the steps run for every sample.  

The first phase of analysis is pseudoaligning [8] sequencing reads to the reference 
sequences. Pseudoalignment produces binary compatibility vectors indicating which 
reference sequences a read pseudoaligns to. Based on the pseudoalignment count 
to each reference group, we defined the likelihood of a read originating from each 
of the groups. We assumed that 1) if multiple groups have the same total number 
of reference sequences, the group with a higher fraction of pseudoalignments is 
the more likely source for the read, and 2) the likelihood of the read to originate 
from a group is not dependant on the number of reference sequences in the group. 
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Basing the likelihood on the pseudoalignment compatibility vectors defines an 
extension of a probabilistic model that has previously been applied in RNA-
sequencing [9, 10] and to bacterial data [7]. The extended model utilizes multiple 
reference sequences from each group as opposed to the previous attempts that rely 
on selecting a single, best-representative sequence from each of the groups [7]. 
Our model obtained the relative abundances of the reference groups by considering 
the generating process for a sample as a pooling of sequencing reads originating 
from the reference groups according to some unknown proportions, corresponding 
to a statistical mixture model. We fit the model and inferred the mixing 
proportions using variational inference [10]. 

Assigning single-colony isolates to lineage 

We compared the performance of mSWEEP against two existing methods capable 
of either strain or lineage identification: metakallisto [11] and BIB [7]. The main 
differences between the methods are that metakallisto attempts to identify 
individual strains based on all available sequences, BIB uses grouped reference 
sequences with a single representative sequence from each group to assign 
abundances to the groups, and mSWEEP identifies the presence of groups by using 
grouped reference sequences with all the available sequence as representatives. 

As the reference data, we used bacterial sequence assemblies from four studies [12-
15] augmented by single representative sequences from 27 species; a total of 3815 
reference sequences. We grouped the sequences in either clonal complexes, 
lineages identified with the BAPS clustering algorithm [16], or on the species-level. 
We removed 504 sequences from all groups represented by more than one 
sequence to create a dataset where the true group is known but the true sequence 
is not available to the method pipeline (Table 1). In addition to the test data 
described in Table 1, we referred to a study sequencing 61 K. pneumoniae isolates 
from Thailand [17] to assess the accuracy of all methods when the reference 
sequences and the test samples were not obtained from the same source. 
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Table 1 Reference data used to perform the analyses and to evaluate the performance 
of mSWEEP, metakallisto, and BIB. Clonal complexes are defined as either single-locus 
variants from the central sequence type (Campylobacter jejuni, Campylobacter coli) or 
double-locus variants (Klebsiella pneumoniae and Escherichia coli). The Staphylococcus 
epidermidis lineages were identified in the original study with the BAPS clustering 
algorithm. 

Grouping Species  Sequences Test sequences Groups Test 
groups 

Clonal 
complex 
 
 
 

Campylobacter coli 120 27 1 1 
Campylobacter jejuni 462 73 13 11 
Escherichia coli 1509 188 132 54 
Klebsiella pneumoniae 1351 129 79 39 

Species 
 
 
 

Klebsiella 
quasipneumoniae 

9 3 1 1 

Klebsiella variicola 12 3 1 1 
Staphylococcus aureus 181  1  

Lineage Staphylococcus 
epidermidis 

143 81 3 3 

Species 
 

Multiple species with 
single sequences 

28  28  

 total 3815 504 259 110 

mSWEEP significantly outperformed BIB and metakallisto in cases measuring 
accuracy of abundance estimates in the true group (Figure 2; p < 10-9, in all 
comparisons, Wilcoxon signed-rank test; median error in all estimates for 
mSWEEP was 0.00003, for BIB 0.23, and for metakallisto 0.54). When measured by 
highest estimates in the incorrect groups, mSWEEP outperformed the other two 
methods in all cases except the S. epidermidis 11-group clustering and the K. 
pneumoniae out-of-reference samples (Figure 2; p < 0.0012, Wilcoxon signed-rank 
test; median error in all estimates for mSWEEP was 0.000002, for BIB 0.05, and for 
metakallisto 0.01). In these two latter cases, mSWEEP and metakallisto performed 
similarly (Figure 2; p > 0.10 when testing for the difference in accuracy in either 
direction, Wilcoxon signed-rank test). Since metakallisto attempts to identify 
strains rather than lineages, the observed behaviour is likely a result of the 
majority of the abundance estimates being spread across strains belonging to the 
true lineage. 

We additionally compared mSWEEP and BIB by measuring accuracy in 
classification based on assigning the samples to the lineage with the highest  
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abundance estimate. With this criterion, both methods correctly identified the true 
clonal complex in all 100 C. jejuni and C. coli isolates, and in all 81 S. epidermidis 
isolates when using the 3-cluster grouping. In the 11-cluster S. epidermidis 
grouping, mSWEEP correctly identified the true lineage in 78 and BIB in 80 
samples. In the 188 E. coli and 129 K. pneumoniae isolates, mSWEEP identified the 
lineage correctly in 187 and 126 samples, while BIB correctly identified 184 and 
117. The K. pneumoniae and E. coli isolates that were misidentified by mSWEEP 
likely contain a sequence type that is missing from the reference, or are mixtures of 
K. pneumoniae and E. coli lineages (Supplementary Figures 1a and 1b). Out of the 
last 61 out-of-reference K. pneumoniae samples, mSWEEP identified the true origin 
in all 61 isolates and BIB in 53. 

The least accurate estimates for all methods (measured by the true positives and 
highest true negatives) were obtained for the 81 S. epidermidis isolates when using 
the second level of the hierarchical BAPS clustering with 11 groups (Figure 2), 
where none of the three methods reached the level of accuracy observed in the 

Figure 2 Error of abundance estimates in single-colony isolates (lower is better). 
True positives represent the relative abundance estimates in the true lineage (mSWEEP 
and BIB) or the highest estimate for strains of the lineage (metakallisto). Highest true 
negatives contain the highest estimate in an incorrect lineage (mSWEEP and BIB) or the 
highest estimate for a strain from an incorrect lineage (metakallisto). The absolute error 
is deviation from an abundance of one (True positives) or zero (Highest true negatives). 
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other cases. These inaccuracies are explained by the comparably small reference 
for the S. epidermidis population (Table 1), which does not exhibit a clear cluster 
structure (Supplementary Figure 2a) beyond the coarsest BAPS clustering into 
three groups. The lack of structure causes the abundance estimates to spread 
across the new groups defined within each of the three top-level clusters 
(Supplementary Figure 1c). 

We further examined the grouping of the reference sequences by producing t-SNE 
plots of 31-mer distances between the reference sequences including the test 
isolates (Figure 3, Supplementary Figures 2a-c). The C. jejuni and C. coli, E. coli, and 
K. pneumoniae references conform to the clonal complex grouping while the S. 
epidermidis population only conforms to the coarsest 3-group BAPS clustering. The 
t-SNE plots correctly place the assemblies into the true groups but the method 
does not preserve the distances between the points or the clusters [18] and is 
unsuited to analysing mixed isolate data. 

Processing the 504 single-colony isolates with mSWEEP took an average of 23 
minutes and 50 seconds per sample, metakallisto an average of 24 minutes and 42 
seconds, and BIB an average of 143 minutes and 46 seconds per sample using the 
same reference data. mSWEEP used a maximum of 79.5Gb RAM (maximum of 
24.6Gb counting only the abundance estimation step), metakallisto 108.1Gb, and 

Figure 3 C. jejuni and C. coli reference 
31-mer embedding. t-SNE embedding 
of the 31-mer distances between the 
reference isolates shows that the 
reference population conforms relatively 
well to the clonal complex grouping. The 
test cases, indicated by circles, are all 
correctly identified by mSWEEP and t-
SNE also places them within or near the 
true source group. 
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BIB 31.5Gb. Resource usage was obtained by running each sample separately with 
eight processor cores against the full test reference of 3311 sequences in 259 
groups (mSWEEP and metakallisto) or a representative sequence from each group 
(BIB). Both mSWEEP and metakallisto could be sped up by running the 
pseudoalignment in kallisto's batch mode (processing multiple samples 
simultaneously), reducing the need to write and read from the hard disk at the cost 
of increased memory usage. 

Quantifying synthetic mixtures of single-colony reads 

We investigated the performance of mSWEEP in quantifying samples containing 
multiple lineages of bacteria from the same species by synthetically mixing reads 
from the single-colony samples. Each mixture sample was set to contain a total of 
one million reads from three single-colony samples from three lineages, with 
randomly assigned proportions from the set (0.20, 0.30, 0.50). We used a balanced 
incomplete block design to ensure that all lineages appear in at least 13 mixture 
samples, and each single-colony isolate appears at least once, producing 161 C. 
jejuni and C. coli, 477 E. coli, 584 K. pneumoniae, and 100 S. epidermidis synthetic 
mixture samples in total. 

Compared to abundance estimates from the single-colony samples, estimates 
obtained from the synthetic mixture samples show that the presence of sequencing 
reads from multiple lineages in a synthetic mixture results in an error distribution 
resembling the one observed in the single-colony samples (Figure 4, 
Supplementary Figure 3). Estimates from the synthetic S. epidermidis mixture 
samples using the 11-group split produce an error distribution that differs from the 
single-colony error distribution more than that observed with the other groupings. 
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Comparing the empirical distributions of the errors from the synthetic mixtures 
and the single-colony isolates (Supplementary Figures 3 and 4) shows that for 
estimates exceeding a threshold of 0.016, the accuracy of estimates from the 
mixture samples stochastically dominates the accuracy observed in the single-
colony samples, except in the S. epidermidis 11-cluster case where stochastic 
dominance is observed only above a threshold of 0.17. Stochastic dominance 
establishes a partial ordering between two random variables and, in this case, 
implies that estimates from the mixture samples are more accurate (in a 
probabilistic sense) than estimates from the single-colony samples when the 
estimates are large enough. In the S. epidermidis 11-cluster case we do not 
establish the mixture estimates as more accurate since the distribution 
(Supplementary Figure 3) and the observed threshold differ considerably from the 
other cases. 

The results indicate that above this relatively low background noise level of 0.016, 
quantifying mixture samples is not expected to produce more false positive results 
than would be obtained from single-colony samples. This justifies simplifying the 
problem of determining the detection thresholds accompanying mSWEEP, which 
provide a threshold for reliable detection of the reference groups in mixture 
samples, to determining the thresholds based on the single-colony isolates. Due to 
the requirement that the abundance estimates must be large enough for this 
assumption to hold, we incorporate the threshold observed in comparing the 

Figure 4 False positives in single-
colony samples versus synthetic 
mixtures. Abundance estimates from 
synthetic mixtures of three lineages do 
not result in higher number of false 
positive estimates when compared to 
estimates from the single-colony 
samples, as measured by the largest 
estimate for a lineage that does not 
contribute any sequencing reads. The 
only exception is the S. epidermidis 11-
cluster case which is not accurately 
identified in neither the synthetic 
mixtures nor the single-colony samples. 
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estimates into the detection thresholds by using it as the minimum threshold 
regardless of the results from the resampling procedure. 

Results from plate sweeps 

We applied the mSWEEP pipeline to three datasets containing multiple lineages of 
the same species: 116 samples from C. coli and C. jejuni, 96 paired samples from E. 
coli, and 179 samples from K. pneumoniae. The E. coli samples were obtained from 
MacConkey plate sweeps from a cohort study of 48 Vietnamese children during a 
diarrhoeal episode (48 samples), and when healthy (48 samples), purposefully 
expecting multiple lineages in each sweep. Conversely, the C. coli/C. jejuni and K. 
pneumoniae datasets were presumed pure cultures but flagged during downstream 
analysis as mixed. In all three experiments, we applied the detection threshold 
procedure (described in more detail in the Methods section) to filter the resulting 
abundance estimates. We used two thresholds, corresponding to confidence scores 
of 0.99 and 0.90, from now on referred to as filtering by 0.99 or 0.90 confidence 
thresholds. 

Population structure of commensal Escherichia coli from Vietnamese 

children 

The most abundant sequence type complex identified in over half the samples 
(diarrhoeal and control samples) was CC10 (Figure 5, Supplementary Table 1). 
Notably, 95% of the samples (46/48 Diarrheal and 45/48 Healthy) harboured 
multiple antimicrobial resistance genes (identified using the ARIBA software [19]) 
that belonged to three or more classes of drugs (Supplementary Figure 5), which we 
defined as multi-drug resistance [20] (MDR. One sample was found to contain the 
plasmid associated resistance gene MCR-1, which confers resistance to colistin, a 
last line antimicrobial drug [21]. We found no significant difference in the 
antimicrobial resistance gene profile between the healthy and diarrhoeal samples 
(Two tailed, Fisher's exact test p=0.5). Supplementary Table 2 details how many 
samples harboured antimicrobial resistance genes in each antimicrobial drug class; 
the full antimicrobial resistance gene data can be found in Supplementary Table 3. 
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Figure 5 Difference in Escherichia coli 
clonal complex (CC) and sequence type 
(ST) lineage abundances during and 
after diarrhoea. The plot displays the 
differences in unfiltered relative abundance 
estimates before and after treatment in 20 
most common (defined by the sum of 
relative abundances; blue denotes 
increase, red decrease) E. coli reference 
lineages or other species across all 47 
paired samples represented in the 
columns. 

 

We additionally examined differences between the community composition in the 
healthy and diarrhoeal samples based on both the distribution of the relative 
abundance estimates (alpha diversity), and changes in the identified strains (beta 
diversity). The alpha diversity, measured by Shannon entropy (Supplementary 
Figure 6), showed no significant differences between the two paired samples (p > 
0.90, Wilcoxon signed-rank test; median Shannon entropy in diarrhoeal samples 
was 0.60, and in healthy samples 0.59). However, we found significant shifts in 
lineage composition (see Figure 5) when comparing the beta diversity, measured by 
Bray-Curtis dissimilarity, between the two samples (p < 0.005, multivariate-
ANOVA). Tests were performed on relative abundance estimates filtered by both 
0.99 and 0.90 confidence thresholds. 

Co-occurrence patterns in Campylobacter lineages 

The network diagram (Figure 6a) shows ST-clonal complex (CC) (nodes) of the 
isolate genomes with the thickness of edges representing the number of times that 
isolates from these CCs are found together in a single plate sweep sample, and the 
size of the node the total number of observations. The overall amount of co-
occurrence between CCs (Figure 6b) provides basic information about the 
frequency that CCs are found together in natural populations. C. jejuni CCs 45, 661, 
607, 353, 48, and C. coli CC828 are all found in samples with 4 or more other CCs 
and there is evidence that isolates from some CC’s cohabit with other species 
including Campylobacter lari and Bacillus subtilis. While the sample set in this study  
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was deliberately selected to include mixed isolate samples, quantifying the co-
occurrence of species and lineages can provide information about different 
ecologies or lineage interactions, particularly when CCs are known to have varied 
sources, such as different hosts. 

There is some preliminary evidence that common clinical lineages CC45 and CC21 
are rarely found together in a single sample (plate sweep) while other lineages, 
such as the chicken associated CC353, are frequently isolated from samples 
containing multiple strains. From an evolutionary perspective, it is unlikely that 
closely related strains can stably occupy identical niches because competition 
would be expected to lead one to prevail. The results demonstrate co-occurrence of 
strains within individual host animals and multi-strain infections in humans and 
provide information about the complex ecology of co-occurring interacting species 
that leads to the observed community structure in a given sample. 

Figure 6 C. jejuni and C. coli clonal complex (CC) coexistence in 116 samples. The 
coexistence network in panel a was constructed from relative abundance estimates 
filtered by detection thresholds constructed using a confidence score of either 0.90 
(dashed edges) or 0.99 (solid edges). An edge between two groups represents 
coexistence in at least two samples with the chosen threshold. Edge size is proportional 
to the number of times the joined nodes were observed together, and node size to the 
total times the group was detected. Panel b visualizes the unfiltered relative abundance 
estimates in the same reference groups (rows) as in panel a, across 116 samples 
(columns). 
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Multi-drug resistant Klebsiella pneumoniae coexist with other lineages 

The coexistence network (Figure 7) and the sample-lineage heatmap 
(Supplementary Figure 7) for the 179 human clinical samples of K. pneumoniae 
demonstrates common co-occurrence of K. pneumoniae with a wide variety of E. 
coli lineages, as well as occasional co-occurrence with Acinetobacter baumanii and 
other species. Both E. coli and A. baumanii grow on the media used for culture of K. 
pneumoniae. Clonal complexes of K. pneumoniae centred on sequence types 
associated with high levels of multi-drug resistance (e.g. ST258, ST147 and ST101) 
were frequently observed co-existing with a variety of other K. pneumoniae lineages 
as well as with each other, and with other important Gram-negative pathogens. 
Developing a deeper understanding of these community structures and 
interactions will be critical for monitoring horizontal transfer of antimicrobial 
resistance genes between taxa. 

Figure 7 K. pneumoniae lineage coexistence in 179 mixture samples. The 
coexistence network was constructed from relative abundance estimates remaining 
after filtering by the detection thresholds. Visible edges denote coexistence in at least 
three samples. Dashed edges represent coexistence when using detection thresholds 
corresponding to the 0.90 confidence score, and solid edges using the 0.99 detection 
threshold. Node sizes are proportional to the number of times the lineage was 
observed; edge sizes to the number of times coexistence was established. 
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Discussion 

Metagenomics using high-throughput sequencing has become a common approach 
when investigating the bacterial composition of different environments or changes 
introduced by intervention, such as in the human gut microbiome. In most 
epidemiological applications, the relevant target organisms are culturable using 
established media which offers a clear advantage to obtaining high sequencing 
depths in a cost-effective manner. We developed the mSWEEP pipeline to enable 
high-resolution inference of the lineages present in plate sweeps of enrichment 
cultures. mSWEEP can be used to infer the detailed population structure of a single 
species, or the diverse populations of bacteria typically encountered in clinical and 
public health settings where standard culturing media is routinely used to isolate 
epidemiologically relevant organisms. This pipeline also estimates the relative 
abundance of lineages and reliability cut-offs. mSWEEP was designed to have a 
minimal execution time using the latest advances in RNA-seq analysis and its 
maximum memory footprint is determined by the pseudoalignment algorithm. We 
demonstrated significant improvements in accuracy over the previous state-of-
the-art method in our experiments. 

mSWEEP provides considerable power for improving our understanding of 
infection by recovering a true representation of bacteria in a complex sample. For 
example, genotyping studies have shown that C. jejuni and C. coli colonizing the 
primary host (birds and mammals) form clusters of related isolates that are host-
associated [22], which can be used to identify the reservoir for human infection 
[23]. However, multiple organisms can be isolated from the same sources [24, 25]. 
The co-occurrence of different organisms could be a snapshot in time of a wider 
process of lineage succession [26] in which the resident microbiota might resist 
new colonizations or be displaced by recently acquired bacteria [27, 28]. Further, 
we suggest we may be able to infer complex interactions between organisms that 
occupy different microniches [29] and are not in direct competition [30, 31] by 
analysing their co-occurrence. Therefore, this approach provides a means to 
investigate the nature of polymicrobial infections to improve our understanding of 
the spread of a specific organism between hosts and transmission to humans in 
addition to enabling characterization of physical and temporal variation in the 
distribution of lineages among multi-strain samples. 
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Because of limitations in the initial culture and DNA isolation processes, we can 
only infer relative (not absolute) abundances. However, this is not a significant 
limitation as the absolute abundances of target organisms are also subject to large 
biological and technical variation. Memory requirements for large reference 
collections or simultaneous analysis of multiple samples necessitate a dedicated 
computer cluster to run the analysis pipeline, but even for very large reference 
collections the resource usage is still at the level available at most bioinformatics 
centres. Alternatively, the reference sequences can be modified to include only the 
directly relevant species, which makes the method widely applicable to biologists. 
As with any method intended to identify sequence variation, the target species 
need to be relatively well known to allow building of sufficiently informative 
reference databases. Similarly, to allow for sensible and easily interpretable 
inferences, the biological clustering of the reference database should be based on 
well-established biological entities, such as multi-locus sequence types (STs) or 
clonal complexes (CCs) which are frequently employed as labels of lineages. As a 
by-product, mSWEEP can also be used to estimate the quality of the reference 
collection and to discard contaminated or mis-identified genomes. 

Strain identification from metagenomic data has been recently suggested by the 
StrainPhlAn method [32]. mSWEEP, and similar methods, are complementary to 
StrainPhlAn as these methods analyse similar data but from different directions. 
mSWEEP assigns strains present in the sample to biologically established 
genetically separated lineages and estimates the relative abundance of these, 
whereas StrainPhlAn infers SNPs and phylogenetic relations within the whole 
sample. Given the flexibility and generality of the mSWEEP approach, we 
anticipate this method will pave the way for numerous novel applications of plate 
sweep metagenomics in many fields of microbiology. 

Conclusions 
mSWEEP represents a novel means to quantify the composition of bacterial 
communities beyond the resolution offered by bacterial identification methods 
based on 16S ribosomal RNA gene sequencing or whole-genome shotgun 
metagenomics. We have demonstrated significant improvements in accuracy over 
similar methods, and novel co-existence analyses using plate sweeps of 
enrichment cultures of the human pathogens Campylobacter jejuni, Campylobacter 
coli, Escherichia coli, Klebsiella pneumoniae and Staphylococcus epidermidis. We 
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expect that mSWEEP will find use in similar studies of bacterial pathogens, where 
high-resolution inference is required, ample reference collections for the species of 
interest are available, and the plate sweep metagenomic approach can be applied 
in-depth at a fraction of the current cost of single-colony sequencing. 

Methods 
Reference construction 

The reference sequences (Table 1, Supplementary Table 4) are the genomic 
assemblies of a number of strains or species that represent the organisms of 
interest in a sample. We used a collection of assemblies from four studies [12-15] 
augmented with the genomes of a representative strain from 27 species that were 
identified in the real mixture data by MetaPhlAn [33]. 

Grouping the reference sequences 

We used the multilocus sequence types of the C. coli, C. jejuni, E. coli and K. 
pneumoniae reference sequences to group them into clonal complexes defined by 
the allelic profile of a central sequence type, and all other sequence types that vary 
in at most a single MLST locus (C. coli and C. jejuni) or in at most two loci (E. coli 
and K. pneumoniae). The K. pneumoniae reference contained sequences belonging 
to K. variicola, K. quasipneumoniae, and K. quasivariicola which we assigned to three 
groups defined by the three species. We similarly treated the 181 S. aureus 
contained in the S. epidermidis study as a single group, and split the 143 S. 
epidermidis sequences using the first and second levels of the hierarchical 
clustering produced by the hierBAPS [16] software (version 6.0). The complete 
grouping is provided in Supplementary Table 4. 

Pseudoalignment 

We used kallisto [8] (version 0.45) with default settings to perform 
pseudoalignment. Pseudoalignment produces binary compatibility vectors which 
indicate whether the read pseudoaligns to a reference sequence or not. In our 
model, we sum the pseudoalignment counts within each reference group and thus 
consider the observations of the reads rn = (rn, 1,...,rn, K), n = 1,...,N as containing only 
the information about the number of pseudoalignments rn,k within each of the K 
groups. 
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Abundance estimation model 

We assume that the reads rn are conditionally independent given the mixing 
proportions of the groups 𝜃 = (𝜃$, … , 𝜃'), and augment the model with the latent 
indicator variables 𝐼 = 𝐼$, … , 𝐼* which denote the true source group of each read. 
The joint distribution of the collection of reads	𝑅 = 𝑟$, … , 𝑟*, the indicator variables 
𝐼 = 𝐼$, … , 𝐼* for the source group, and the mixing proportions of the groups 𝜃 =
(𝜃$, … , 𝜃') is defined as 

𝑝(𝑅, 𝐼, 𝜃) = 𝑝(𝜃)/	/	𝑝(𝑟0	|	𝐼0 = 𝑘)	𝑝(𝐼0 = 𝑘	|	𝜃)
'

341

*

041

.	

( 1 ) 

The formulation in Equation (1) corresponds to a mixture model with observations 
rn, categorically distributed latent variables 𝐼0, event probability parameters 𝜃,and 
the likelihood 𝑝(𝑟0	|	𝐼0 = 𝑘)	of	observing	the	full	pseudoalignment	count	vector	𝑟0	
given	that	the	group	𝑘	is	the	true	source.	

Likelihood 

The likelihood 𝑝(𝑟0	|	𝐼0 = 𝑘) needs to be defined carefully in order to satisfy the 
goals of invariance to group identity and size, and monotonicity with increasing 
pseudoalignment counts within a group. Given the vector rn, whose components 
rn,k denote the pseudoalignment count in group k,	we define the likelihood 
𝑝(𝑟0	|	𝐼0 = 𝑘) of observing the whole vector rn assuming that k is the true group in 
three parts 

𝑝(𝑟0	|	𝐼0 = 𝑘) = 0.01,	when	𝑟0,3 = 0, and 

( 2 ) 

 𝑝(𝑟0	|	𝐼0 = 𝑘) = 0.99,	when	#𝑘	 = 1	and	𝑟0,3 > 0,	or 

( 3 ) 
 𝑝(𝑟0	|	𝐼0 = 𝑘) = 	 8(9:,;,3)

<(9:)
	0.99,	when	#𝑘	 > 1	and	𝑟0,3 > 0, 

( 4 )	

with 

𝑓(𝑟0,3, 𝑘) ∝ ? #39:,;@
A(B;C9:,;,#3D9:,;C	E;)

A(B;	C#3,E;)
,	and		
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𝑍(𝑟0) = //	
𝛼3 	+ 	𝑟0,3 	+ 	(𝑗	 − 	1)

𝛼3 	+ 	𝛽3 	+ 	2#𝑘	 + 	(𝑗	 − 	1)

#3

N	4	$

,
'

3	4	1

	

( 5 ) 

where 𝐵(𝑎, 𝑏) is the beta function and #𝑘 is the number of reference sequences in 
the group 𝑘. The denominator 𝑍(𝑟0)	in Equations (4) and (5) arises from deriving 
the normalizing constant for normalizing 𝑓(𝑟0,3, 𝑘) over	rn. The derivation follows 
from using the identity 𝐵(𝑎	 + 	1, 𝑏) 	= 𝐵(𝑎, 𝑏) R

R	C	S
		to express each 𝑓(𝑟0,3, 𝑘), 𝑘	 =

	{1, . . . , 𝐾 ∶ #𝑘	 > 	1}	as a product of the probability mass function of a beta-binomial 

distribution with parameters (𝛼3 	+ #𝑘, 𝛽3), and the term ∏ B;	C	9:;	C	(N	D	1)
B;	C	E;	C	2#3	C	(N	D	1)

#3
N	4	1  

which leads to the form	𝑓(𝑟0,3, 𝑘)	has in Equation (5). Then,	𝑍(𝑟0) is obtained by 
considering normalizing over the full vector		
𝑓(𝑟0) 	= 	 (	𝑓(𝑟0,1, 1), . . . , 𝑓(𝑟0,3, 𝑘), . . . , 𝑓(𝑟0,', 𝐾)),	where 𝑘	 = 	 {1, . . . , 𝐾 ∶ #𝑘	 > 	1}.	

The formulation of 𝑓(𝑟0,3, 𝑘) in	Equations (4) and (5) intuitively arises when the 
probability mass function of a beta-binomial random variable with 

hyperparameters (𝛼3, 𝛽3) is multiplied by the factor A(B;,E;)
A(B;C#3,E;)

. This factor is the 

inverse of the value of the probability mass function when the observed value is 
equal to the total number of groups #𝑘, meaning in our context a read which is 
compatible with all reference sequences in a group. Formulating the likelihood in 
this manner (Equations 4 and 5) causes groups where all sequences in the group 
are compatible with the read to have equal likelihoods. Compared to a model 
assuming independence between the groups, this formulation reduces the effect of 
the likelihoods being flattened in groups with large numbers of assigned reference 
sequences when compared to small groups, which is necessary to compare groups 
that differ greatly in size. 

Reads with identical pseudoalignment count vectors rn have the same likelihood 
and can be assigned into equivalence classes defined by the count of compatible 
sequences in each group. This enables a computational optimization where the 
likelihoods need only be calculated for the observed equivalence classes and then 
multiplied by the total number of times each equivalence class was observed. 

Model hyperparameters 

Instead of using the parametrization (𝛼3, 𝛽3)	in Equation (5), we use a 
reparameterization where 
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𝜋3 = 	
𝛼3

𝛼3 +	𝛽3
, 𝜙3 =

1
𝛼3 +	𝛽3

.	

( 6 ) 

The first parameter 𝜋3 corresponds to the mean of the beta distribution that has 
been compounded with a binomial distribution to obtain the beta-binomial 
component in Equation 6, and the second parameter 𝜙3 represents a measure of 
variation in the success probability of each observation [34]. 

We constrain the mean success rate 𝜋3	to 𝜋3 ∈ 	 (0.5, 1),	which	produces beta-
binomial distributions with an increasing probability mass function [35] in the 
number of compatible sequences 𝑟0,3, which leads to the definition in Equation 5 
having the same property. Increasing probability mass functions fulfill our 
requirement for the likelihood that of two equally sized groups with different 
number of compatible reference sequences, the one with more compatible 
sequences is always a better candidate for being the true source. The values of the 
parameters (𝜋3, 𝜙3) are set to 𝜋3 = 0.65, 𝜙3D1 = 1 −	𝜋3 + 0.01|𝑘|D1 to robustly 
capture the variance in the alignment count distributions. 

Inference 

We perform inference over the mixing proportions 𝜃 of the different groups using 
fast collapsed variational inference [36]. The method collapses the mixing 
proportions 𝜃and uses natural gradients to optimise an approximation to the 
posterior distribution over the indicator variables 𝐼0, assuming the distribution 
factorises over 𝜃 and 𝐼0. The same variational Bayesian method was also used in 
BitSeqVB [10] to obtain transcript expression levels and has been applied to 
estimate mixing proportions in bacterial sequencing data in BIB [7] using a 
different likelihood. The prior distribution on the mixing proportions 𝜃 is set to 
Dirichlet(𝛼,… , 𝛼) with 𝛼 = 1. The same prior was also used by BIB. Since reads 
originating from the same equivalence class have the same likelihood, variational 
inference will yield identical posterior inferences for them. This allows us to 
perform the inference on the smaller number of equivalence classes rather than all 
reads, leading to faster inference.  

Detection thresholds 

Detection thresholds define a means to quantify reliable identification of the 
reference groups through constructing a minimum relative abundance threshold 
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on the groups. Abundance estimates that fall under the threshold are considered 
unreliable and set to zero. To obtain the detection thresholds (Figure 1), we 
generate 100 samples from each reference group within a species by resampling 
one million sequencing reads, roughly matching the number of reads in our study 
samples, from the reads used to assemble the reference sequences. Only one 
reference sequence is used in each new sample. Reads included in the new samples 
are sampled with replacement with each read having the same probability of being 
included. Reference sequences used for resampling were chosen at random such 
that the number of reference sequences from each group corresponds to the square 
root of the total size of the group. Each group is represented at least once, except 
for groups which contain only one reference sequence where we apply the 
maximum detection threshold observed for other groups of the same species. 
Similarly, species that are represented in the reference by a single group were not 
resampled from, and the detection threshold was instead fixed at 0.05. After 
resampling from the reference sequences, the new samples are put through 
pseudoalignment and mSWEEP abundance estimation without including the 
reference sequences used in resampling as pseudoalignment targets. 

In defining the detection thresholds, the relative abundance estimates obtained 
from the resampled sequencing reads are represented by 𝜃\0,],N, where 𝑛	 = 	1, . . . , 𝑁 
(in our examples we chose 𝑁	 = 100) indicates the new samples resampled from 
the reference group 𝑖	 = 	1, . . . , 𝐾. The third index 𝑗	 = 	1, . . . , 𝐾 denotes the reference 
group that the abundance estimate was obtained for. We first define source-
specific thresholds 𝑞],N that give a threshold on the reference groups 𝑗 assuming 
that the true group 𝑖 in the sample is known. The source-specific threshold 𝑞],N on 
group 𝑗 ≠ 𝑖 is defined by ordering the relative abundance estimates for the cluster 
𝑗, 𝜃\0,],N, in an ascending order in 𝑛, and determining the cutoff point 𝑞],N where 
𝑚,𝑚	 ∈ 	 {1, . . . , 𝑁}, relative abundance estimates fall below the cutoff. Using the 
source-specific thresholds 𝑞],N, we define the detection threshold 𝑞] on group 𝑖 as 
𝑞] 	= 	𝑚𝑎𝑥{𝑚𝑎𝑥{𝑗:	𝑞],N}, 𝜖},	where	𝜖 is the constant minimum threshold for a specific 

grouping of the sequences within a species that is observed when comparing the 
empirical cumulative distribution functions in Supplementary Figure 4. We 
recommend that 𝜖 be determined for new species by a synthetic mixing procedure 
similar to what was used to compare the accuracy of mixture estimates to their 
single-colony counterparts in Figure 4. 
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Based on the selected value of 𝑚, we define a statistical confidence score for the 
abundance estimates exceeding the detection threshold 𝑞] as 

1 − (*	D	h)	C	1
*	C	1

= h
*C1

,	

( 7 ) 

which corresponds roughly to the fraction of resampled samples that exceed the 
threshold corresponding to the value of m. Using a value of m closer to the number 
of samples in constructing the detection thresholds result in stricter thresholds 
and thus more confidence in the abundance estimates exceeding the threshold. 
Results reported in our experiments include thresholds constructed with 𝑚 = 100 
and 𝑚 = 90, corresponding to confidence scores (Equation 7) of approximately 
0.99 and 0.90, respectively. 

E. coli plate sweeps from Vietnamese children  

In Ho Chi Minh City, 750 children were recruited into a diarrhoeal cohort study and 
followed for 2 years. Stool samples were collected at routine sampling points and 
when the children had an episode of diarrhoea. All stool samples were cultured to 
identify pathogens and onto MacConkey plates to isolate E. coli and other 
Enterobacteriaceae. The MacConkey plates were scraped and stored in 20% glycerol 
at -80°C. The frozen plate sweeps from 48 diarrhoea episodes, paired with 48 
asymptomatic samples (96 in total), were revived on MacConkey media; plates 
were scraped and total genomic DNA was extracted using the Wizard genomic DNA 
purification kit (Promega, USA). The extracted DNA was sequenced using the 
Illumina HiSeq platform using the method described elsewhere [37]. Antimicrobial 
resistance genes were detected using the ARIBA software [19]. The raw sequence 
data data can be found in the ENA under the accession numbers detailed in table 
Supplementary Table 5. 
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