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Abstract	
We	assembled	the	sequences	from	9,795	RNA	sequencing	experiments,	collected	from	31	
human	tissues	and	hundreds	of	subjects	as	part	of	the	GTEx	project,	to	create	a	new,	
comprehensive	catalog	of	human	genes	and	transcripts.	The	new	human	gene	database	
contains	43,162	genes,	of	which	21,306	are	protein-coding	and	21,856	are	noncoding,	and	
a	total	of	323,824	transcripts,	for	an	average	of	7.5	transcripts	per	gene.	Our	expanded	
gene	list	includes	4,998	novel	genes	(1,178	coding	and	3,819	noncoding)	and	97,511	novel	
splice	variants	of	protein-coding	genes	as	compared	to	the	most	recent	human	gene	
catalogs.	We	detected	over	30	million	additional	transcripts	at	more	than	650,000	sites,	
nearly	all	of	which	are	likely	to	be	nonfunctional,	revealing	a	heretofore	unappreciated	
amount	of	transcriptional	noise	in	human	cells.		
	
Introduction	
Scientists	have	been	attempting	to	estimate	the	number	of	human	genes	for	more	than	50	
years,	dating	back	to	1964	1.	In	the	decade	preceding	the	initial	publication	of	the	human	
genome,	multiple	estimates	were	made	based	on	sequencing	of	short	messenger	RNA	
fragments,	and	most	of	these	estimates	fell	in	the	range	of	50,000–100,000	genes	2-5.	When	
the	human	genome	was	published	in	2001,	the	estimates	of	the	gene	count	were	
dramatically	lower,	with	one	paper	reporting	30,000-40,000	genes	6	and	the	other	26,588	
plus	~12,000	genes	with	"weak	supporting	evidence"	7.		As	the	genome	was	gradually	
made	more	complete	and	the	annotation	improved,	the	number	continued	to	fall;	when	the	
first	major	genome	update	was	published	in	2004,	the	estimated	gene	count	was	revised	to	
20,000–25,000	8.	Later	efforts	suggested	that	the	true	number	of	protein-coding	genes	was	
even	smaller:	a	2007	comparative	genomics	analysis	suggested	20,500	9,	and	a	proteomics-
based	study	in	2014	estimated	19,000	10.	
	
One	striking	feature	of	most	attempts	to	catalog	all	human	genes	is	their	lack	of	precision.	
Most	estimates	have	only	1-2	significant	digits,	indicating	major	uncertainty	about	the	
exact	number.	As	we	reported	in	2010,	the	estimates	of	the	human	gene	count	at	that	time	
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averaged	~22,500	genes	11.	As	of	late	2017,	one	of	the	most	reliable	catalogs	of	human	
genes,	the	curated	reference	set	from	NCBI’s	RefSeq	database	12,	contained	20,054	distinct	
protein-coding	genes,	and	another	widely	used	human	gene	catalog,	Gencode	13,	contained	
19,817.	The	international	CCDS	database,	an	ongoing	effort	to	identify	all	human	and	
mouse	genes	14,	listed	18,894	human	protein-coding	genes	in	March	2018	(release	20).		
	
The	human	gene	list	has	a	tremendous	impact	on	biomedical	research.	A	huge	and	still-
growing	number	of	genetic	studies	depend	on	this	list,	for	example:	

• Exome	sequencing	projects	use	exon	capture	kits	that	target	most	“known”	exons.	
Any	exons	that	are	not	listed	in	standard	human	annotation	are	ignored.	

• Genome-wide	association	studies	(GWAS)	attempt	to	link	genetic	variants	to	nearby	
genes,	relying	on	standard	catalogs	of	human	genes.	

• Many	software	packages	that	analyze	RNA	sequencing	(RNA-seq)	experiments,	
which	measure	gene	expression,	rely	on	a	database	of	known	genes	and	cannot	
measure	genes	or	splice	variants	unless	they	are	included	in	the	database.	

• Efforts	to	identify	cancer-causing	mutations	usually	focus	on	mutations	that	involve	
known	genes,	ignoring	mutations	that	occur	in	other	regions.	

These	and	other	examples	encompass	thousands	of	experiments	and	an	enormous	
investment	of	time	and	effort.	The	creation	of	a	more	complete,	accurate	human	gene	
catalog	will	have	an	impact	on	many	of	these	studies.	For	example,	exome	sequencing	
studies	targeting	Mendelian	diseases,	which	should	be	the	easiest	diseases	to	solve,	have	
reported	diagnostic	success	in	only	about	25%	of	cases	15,16,	perhaps	because	many	exons	
and	genes	are	excluded	from	exome	capture	kits.	A	better	gene	list	may	also	help	to	explain	
the	genetic	causes	of	the	many	complex	diseases	that	have	thus	far	remained	largely	
unexplained,	despite	hundreds	of	large	GWAS	and	other	experiments.	
	
As	part	of	the	creation	of	a	human	gene	list,	we	must	first	define	what	is	meant	by	the	term	
"gene."	During	the	Human	Genome	Project,	most	efforts	to	estimate	and	annotate	genes	
focused	on	protein-coding	genes;	i.e.,	regions	of	the	genome	that	are	transcribed	into	RNA	
and	then	translated	into	proteins.	At	the	time,	most	scientists	assumed	that	non-coding	
genes	represented	only	a	very	small	portion	of	the	functional	elements	of	the	human	
genome,	and	that	most	RNA	genes	(e.g.,	transfer	RNAs	and	ribosomal	RNA	genes)	were	
already	known.	A	few	years	after	the	initial	publication	of	the	human	genome,	though,	
scientists	began	to	uncover	a	large	and	previously-unappreciated	complement	of	long	
noncoding	RNA	genes,	lncRNAs	17,18,	which	quickly	grew	to	include	thousands	of	novel	
genes.	These	genes	have	a	wide	range	of	functions	that	are	just	as	vital	to	human	biology	as	
many	protein-coding	genes	19,	and	any	comprehensive	list	of	human	genes	should	include	
them.	
	
Thus	for	the	purposes	of	our	study,	genes	will	include	any	interval	along	the	chromosomal	
DNA	that	is	transcribed	and	then	translated	into	a	functional	protein,	or	that	is	transcribed	
into	a	functional	RNA	molecule.	By	“functional”	we	mean	to	include	any	gene	that	appears	
to	perform	a	biological	function,	even	one	that	might	not	be	essential.		We	recognize	that	
the	proper	determination	of	function	can	be	a	lengthy,	complex	process,	and	that	at	present	
the	function	of	many	human	genes	is	unknown	or	only	partially	understood.	Our	definition	
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intentionally	excludes	pseudogenes,	which	are	gene-like	sequences	that	may	arise	through	
DNA	duplication	events	or	through	reverse	transcription	of	processed	mRNA	transcripts.	
Following	previous	conventions	11,	when	multiple	proteins	or	RNA	genes	are	produced	
from	the	same	region	through	alternative	splicing	or	alternative	transcription	initiation,	we	
will	count	these	variants	as	part	of	a	single	gene.	Our	total	gene	count,	therefore,	
corresponds	to	the	total	number	of	distinct	chromosomal	intervals,	or	loci,	that	encode	
either	proteins	or	noncoding	RNAs;	in	addition	we	report	the	total	number	of	gene	
variants,	which	includes	all	alternative	transcripts	expressed	at	each	locus.	
	
Results	
The	basis	for	our	human	gene	catalog	is	a	new	analysis	of	a	large,	comprehensive	survey	of	
gene	expression	in	human	tissues,	the	genotype-tissue	expression	(GTEx)	study,	which	
included	samples	from	dozens	of	tissues	collected	from	hundreds	of	individuals	20.		All	of	
these	samples	were	subjected	to	deep	RNA-sequencing,	with	tens	of	millions	of	sequences	
("reads")	captured	from	each	sample,	in	an	effort	to	measure	gene	expression	levels	across	
a	broad	range	of	human	cell	types.	This	exceptionally	large	set	of	transcript	data–just	under	
900	billion	reads–provided	an	opportunity	to	construct	a	new,	comprehensive	set	of	
human	genes	and	transcripts.	We	accomplished	this	by	assembling	all	of	the	samples,	
merging	the	results,	and	applying	a	series	of	computational	filters	to	remove	transcripts	
with	insufficient	evidence.	
	
During	the	Human	Genome	Project,	the	gold	standard	for	identifying	a	gene	was	evidence	
that	it	was	transcribed	into	messenger	RNA.	This	was	the	basis	for	the	first	large-scale	
effort	to	capture	and	catalog	human	genes	21	and	for	many	subsequent	efforts.	However,	
over	time	it	has	become	clear	that	the	mere	fact	that	a	region	of	the	genome	is	transcribed	
is	insufficient	to	prove	that	it	has	a	function,	especially	in	light	of	evidence	that	random	
mutations	can	easily	create	transcriptional	start	sites	22.	A	second,	arguably	more	powerful	
piece	of	evidence	that	a	sequence	is	a	gene	is	evolutionary	conservation:	if	a	protein	
sequence	has	been	conserved	in	other	species,	this	provides	strong	evidence	that	the	
sequence	provides	a	useful	function;	i.e.,	that	it	is	a	gene.	A	third	line	of	evidence	is	
reproducibility:	if	we	observe	a	transcript	in	multiple	samples	from	multiple	individuals,	
then	it	is	less	likely	be	the	result	of	random	transcription.		We	used	each	of	these	lines	of	
evidence	in	constructing	the	new	gene	catalog.	
	
Novel	genes	and	transcripts	
We	assembled	all	9,795	RNA-seq	samples	from	the	GTEx	collection	(see	Methods)	and	
removed	all	transcripts	that	overlapped	with	known	protein-coding	genes,	noncoding	
genes,	or	pseudogenes	from	RefSeq	12	or	Gencode	13.	This	process	generated	5,081,171	
novel	transcripts	at	668,018	loci,	where	"novel"	means	that	the	transcripts	did	not	overlap	
any	annotated	genes	in	the	RefSeq	or	Gencode	databases.		We	then	used	a	variety	of	
criteria,	described	below,	to	eliminate	transcripts	due	to	"noise"	23;	i.e.,	transcripts	
produced	by	low-level	transcriptional	activity	that	appears	to	have	no	functional	utility.		
This	noise	is	so	ubiquitous	that	some	computational	methods	for	analyzing	RNA-seq	
experiments	automatically	impose	a	threshold	below	which	they	will	not	report	a	
transcript,	even	if	reads	are	present	24,25.	We	also	eliminated	novel	transcripts	with	no	
introns,	which	we	assumed	to	be	either	noise	or	pseudogenes,	unless	they	had	high-

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 28, 2018. ; https://doi.org/10.1101/332825doi: bioRxiv preprint 

https://doi.org/10.1101/332825
http://creativecommons.org/licenses/by/4.0/


expression	levels	and	contained	a	potential	protein-coding	gene,	as	detailed	below.	Out	of	
the	5,081,171	novel	transcripts,	only	139,289	(2.7%)	in	41,979	(6.3%)	distinct	loci	had	at	
least	one	intron.	
	
Protein-coding	genes	
To	identify	novel	protein-coding	genes,	we	eliminated	transcripts	based	on	a	series	of	
relatively	strict	criteria	designed	to	remove	noise,	pseudogenes,	and	alignment	artifacts.	
For	each	transcript,	we	used	blastx	26	to	search	all	open	reading	frames	against	all	
mammalian	proteins	in	GenBank	and	in	UniProtKB/Swiss-Prot	to	determine	whether	any	
were	conserved	in	other	species	or	elsewhere	in	the	human	genome.	We	imposed	the	
following	criteria	before	determining	that	any	transcript	encodes	a	protein: 

• The	transcript	must	contain	at	least	one	intron	and	it	must	have	expression	level	
TPM>1	in	at	least	one	tissue,	or	alternatively	it	may	be	a	single-exon	transcript	with	
expression	level	at	least	as	high	as	the	outliers	for	known	transcripts,	defined	as	
TPM>13.87	(see	Supplementary	Materials).	

• The	transcript	must	not	be	contained	in	another	transcript,	unless	it	is	expressed	in	
more	samples	than	all	transcripts	that	contain	it.	

• The	length	of	the	open	reading	frame	(ORF)	must	be	at	least	60	amino	acids.		
• The	ORF	cannot	overlap	known	LINE	or	LTR	repeat	elements,	or	overlap	ribosomal	

RNA	genes.	
• The	BLAST	e-value	of	the	best	protein	alignment	must	be	10-15	or	smaller.	
• If	the	predicted	protein	matches	another	protein,	the	length	of	the	ORF	must	be	at	

least	75%	of	the	length	of	the	matching	protein	(in	order	to	eliminate	pseudogenes,	
which	tend	to	be	truncated).	

• If	predicted	transcripts	are	in	conflicting	loci	(i.e.	overlapping	transcripts	on	
opposite	strands)	we	only	keep	those	that	align	to	proteins	with	known	functions.	

	
After	applying	these	filters,	we	were	left	with	1,178	novel	protein-coding	genes	that	
included	1,335	protein-coding		transcripts	(Supplementary	Files	S1	and	S2).	601	of	the	
novel	protein-coding	genes	(654	transcripts)	had	their	best	match	to	non-human	proteins	
in	either	GenBank	or	UniProtKB/Swiss-Prot.	All	but	3	genes	had	alignments	to	mammalian	
proteins	in	GenBank,	while	580	also	had	protein	hits	to	UniProtKB/Swiss-Prot.	(The	
UniProtKB/Swiss-Prot	database	is	manually	annotated	and	thus	higher	quality	but	less	
complete	than	GenBank	27.)	Combining	the	1,178	new	genes	with	the	20,054	from	RefSeq	
yielded	a	total	of	21,232	protein-coding	genes.		
	
We	also	considered	using	stricter	criteria:	if	we	strengthen	our	first	criterion	in	the	list	
above	and	require	that	a	novel	multi-exon	protein	occurs	in	at	least	10	samples	(rather	
than	one	sample)	with	an	average	TPM>1,	the	number	of	novel	protein	coding	genes	
remained	after	our	initial	filters	above	would	be	reduced	from	1,178	to	469.	We	retained	
the	709	novel	genes	that	failed	this	stricter	test,	but	labeled	them	as	low-confidence	in	the	
CHESS	database.		
	
Figure	1	illustrates	one	of	the	novel	genes,	CHS.7402,	discovered	by	this	process.	This	four-
exon	gene	occurs	on	chromosome	10	and	spans	the	range	122,657,410–122,679,509,	
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approximately	14	Kb	downstream	from	the	nearest	known	gene,	DMBT1.	It	is	highly	
conserved	in	multiple	other	species,	with	the	closest	homologs	in	macaques	(94%	identical	
over	the	full	length	of	the	protein,	BLAST	e-value	1e-38),	followed	by	marmoset,	capuchin,	
ass,	Przewalski's	horse,	rhinoceros,	wild	boar,	and	others	(Figure	1).	
	
Interestingly,	we	found	no	homologous	proteins	annotated	in	primates	much	more	closely	
related	to	humans	such	as	chimpanzee,	gorilla,	and	orangutan.	We	searched	the	transcript	
sequence	of	CHS.7402	against	the	DNA	of	chimpanzee	(Pan	troglodytes)	and	found	that	the	
sequence	matches	nearly	perfectly,	at	97%	identity	over	its	entire	length,	and	that	
chimpanzee	also	has	four	exons.	Thus	the	gene	is	clearly	present,	though	un-annotated,	in	
Pan	troglodytes.	This	illustrates	a	broader	problem	with	gene	annotation:	when	annotation	
is	created	for	a	new	genome,	which	is	typically	done	through	a	highly	automated	process,	
previously	annotated	genes	from	other	species	provide	critical	evidence	to	support	the	new	
annotation.	Thus	if	a	gene	is	missing	from	the	human	annotation,	it	may	be	omitted	from	
the	annotation	of	other	species,	especially	close	human	relatives.	Multiple	sequence	
alignments	for	additional	novel	CHESS	proteins	are	shown	in	Suppl.	Figures	S6-S11.	
	

We	then	evaluated	the	15,779	lncRNA	genes	in	RefSeq	to	determine	if	any	of	these	might	
instead	be	protein-coding	genes.	From	all	RefSeq	lncRNAs,	we	selected	those	containing	an	
ORF	at	least	180	bp	(60	amino	acids)	long	and	searched	these	against the	mammalian	

 
Figure	1.	One	of	1,587	new	protein-coding	genes	(CHS.7402)	discovered	in	this	study.	This	4-exon	
gene	occurs	on	the	forward	strand	of	chromosome	10	at	the	coordinates	shown.	The	exon	lengths	
are	134,	30,	136,	and	663	bp	(left	to	right),	with	the	narrower	rectangles	indicating	the	5'	and	3'	
UTR	regions.	The	intron	lengths	(not	shown	to	scale)	are	18098,	1086,	and	1956	bp.	The	sequence	
alignment	at	the	bottom	shows,	top	to	bottom,	the	protein	sequences	from	CHS.7402,	long-tailed	
macaque,	rhesus	macaque,	marmoset,	white-faced	capuchin,	ass,	Przewalski's	horse,	white	
rhinoceros,	and	wild	boar.	The	full-length	human	protein	sequence	is	shown.	
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                      1
Novel_Chr10_protein   MRLSRAFAWPLLCSIATTVKAPFATAPSDCGGHYTDEYGRIFNYAGPKTECVWIIELNPGEIVTVAIPDLK--GFACGKEYVEVLDGPPGSESLDRICKAFSTFYYSSSNIITIKYSREPSHPPTFFEIYYFVDAWSTH
long-tailed_macaque   MRLSRAFAWSLLCSIATIVTAPFATAPSDCGGHYTDEYGRIFNYVGPKTECVWIIELNPGDIVVVAIPELK--GFVCGKEYVEVLDGPPGSESLGRICEAFSTFYHSSSNIITIKYSREPSHPPTFFEIYYFVDAWSTH
rhesus_macaque        MRLSRAFAWSLLCSIVKVADFYFFPAPSDCGGHYTDEYGRIFNYVGPKTECVWIIELNPGDIVVVAIPELKPRGFVCGKEYVEVLDGPPGSESLGRICEAFSTFYHSSSNIITIKYSREPSHPPTFFEIYYFVDAWS--
marmoset              MRLARAFAWALLCSTATTVTAPYATAPSDCGGHYTDDYGKIINYIGPKTECVWVIEYNPGEIPMVAIQDLK--ELTCGKEYVEVLDGPPGSESLARICRGLTNFYRSSSNIITIKYSREPSHPPSFFEIYYFIDIWAPK
white-faced_capuchin  MRLSRAFAWALLCTTATTVTAPYATAPSDCGGHYTDDYGRIINYVGPKTECVWVIEYEPGEIPMVAIQDLS--KLTCGKEYVEVLDGPPGSKSLARICRDLTTFYRSSSNIITIKYSREPSHPPSFFEIYYFIDVWAPK
ass                   FQLFTSF-FCLDLFSAALVSTAQNKGYSGCGGLLTDLSGRISNYIGPKTVCVWTIQMTPGLDVAMAIPGLN---LTCLKEYVEIQDGPPGSASYGKICEGLGLTFRSSSNILTVKYTRKPDHPASSFDVYYYGEPQSSR
Przewalski's_horse    MRLSSTFTWALLFSTAALGSPAQYKGYSGCGGLLTDLSGRISNYIGPKTVCVWTIQMTPGLDVAMAIPGLN---LTCLKEYVEIQDGPPGSASYGKICEGLGLTFRSSSNILTVKYTRKPDHPASSFDVYYYGEPEGSR
white_rhinoceros      -MVKVNLAGKILSSQAELMDTP---AYSDCGGLLTEHLGKISNYVGPKTVCVWTIQENPGLHVALVIPALN---LTCNKEYLEIQDGPPGSESYGKICEGLVLTFHSSSNIMTIKYTRKSDHSASPFDVYYYADSKDDT
wild_boar             MKLGSAILWALLLSTATLVSGAWNRRSRSCGGVLRDPPGKIFNSDGPQKDCVWTIKVKPHFHVVLAIPPLN---LSCGKEYVELLDGPPGSEIIGKICGGISLVFRSSSNIATIKYLRTSGQRASPFHIYYYADPEGPL
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protein	database.	After	excluding	read-through	transcripts,	we	found	2,762	potential	
protein	sequences	that	matched	a	mammalian	protein	with	an	E-value	of	10-15	or	less,	and	
were	at	least	75%	as	long	as	the	best	matching	protein,	using	the	same	criteria	as	used	
above	for	novel	protein-coding	genes.			
	
Because	this	step	was	intended	only	to	recover	mis-annotated	lncRNAs	that	are	likely	to	be	
proteins,	we	retained	only	those	genes	for	which	the	best-matching	protein	had	a	named	
function;	i.e.,	we	excluded	any	lncRNA	whose	best	hit	was	to	a	protein	annotated	as	
hypothetical,	unknown,	or	uncharacterized	(see	Methods).	After	removing	hits	to	proteins	
that	had	no	associated	function,	we	were	able	to	rescue	53	genes	containing	85	transcripts	
that	passed	all	our	criteria	for	protein-coding	regions.	Adding	these	53	new	protein-coding	
genes	to	our	total,	the	number	of	protein-coding	genes	in	the	human	gene	catalog	increased	
to	21,285.			
	
Finally,	we	considered	genes	from	the	curated	Gencode	database	13	(releases	25	and	27)	
that	were	annotated	as	“known”	protein-coding	genes	but	were	missing	from	RefSeq.	Based	
on	proteins	that	remained	in	release	27	of	Gencode	(see	Supplementary	File	S3),	we	found	
26	more	protein-coding	genes,	for	a	total	of	21,311.	Finally	we	substracted	five	genes	that	
are	present	in	RefSeq	but	that	appear	to	be	false	(discussed	below),	to	yield	21,306	protein-
coding	genes	(Table	1).	
	
Table	1.	The	number	of	human	genes	and	transcripts	in	the	RefSeq	database	and	
in	the	new	CHESS	(Comprehensive	Human	Expressed	SequenceS)	database	built	
from	9,795	RNA-seq	experiments.	ncRNA:	noncoding	RNA;	lncRNA:	long	
noncoding	RNA	gene;	miscRNA:	miscellaneous	RNA.	
Type	of	gene	 Number	in	RefSeq	 Number	in	CHESS	
Protein-coding	genes	 20,054	 21,306	
ncRNA	genes	 	 	

- lncRNA		 14,788	 18,484	
- antisense	 23	 2,144	
- miscRNA	 1,217	 1,228	

Total	gene	counts	 36,082	 43,162	
	

Protein	coding	transcripts	 127,718	 267,476	
ncRNA	transcripts	 	 	

- lncRNA	 28,015	 49,307	
- antisense	 28	 2,694	
- miscRNA	 2,005	 4,347	

Total	transcripts	 157,766	 323,824	
	
Validation	using	differential	expression	
As	an	additional	line	of	evidence	that	the	novel	protein-coding	genes	in	CHESS	function	as	
genes,	we	re-analyzed	the	9,795	GTEx	experiments	to	test	whether	any	of	the	novel	genes	
were	differentially	expressed	(DE).	If	a	gene	was	expressed	at	significantly	different	levels–
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i.e.,	the	transcription	level	of	the	gene	differed	between	two	conditions–then	this	finding	
would	support	(although	not	prove)	the	hypothesis	that	the	gene	is	genuine.	
	
We	conducted	two	types	of	tests.	First	we	selected	all	tissues	for	which	the	GTEx	data	
include	both	male	and	female	samples	(21	tissues),	and	computed	which	genes	were	
differentially	expressed	between	males	and	females	(see	Methods).	A	total	of	207	novel	
CHESS	protein-coding	genes	were	differentially	expressed	between	the	sexes	(Figure	2	
and	Supplementary	File	S4),	and	consistent	with	previously	reported	results	28,	breast	
tissue	showed	far	more	DE	genes	than	any	other	tissue.	
	
Second,	we	evaluated	all	genes	to	determine	how	many	were	up-regulated	in	at	least	one	
tissue	(see	Methods),	and	found	that	998	(84%)	of	the	novel	protein-coding	genes	were	up-
regulated	(Figure	3	and	Suppl.	File	S5).	By	comparison,	89%	of	the	RefSeq	proteins	were	
up-regulated	in	at	least	one	tissue.	Testis	contained	the	largest	number	(554)	of	novel	up-
regulated	genes,	with	132	of	these	genes	overlapping	retroposons	(shown	in	Suppl.	Table	
S5).	While	these	overlaps	might	suggest	that	they	are	pseudogenes,	many	retroposed	genes	
have	been	previously	reported	as	functional,	particularly	those	that	exhibit	testis-biased	
expression	29.	
	
Validation	using	mass	spectrometry	
One	further	possible	line	of	evidence	that	a	locus	encodes	a	protein	is	direct	evidence	that	
the	sequence	is	translated.	Publications	of	two	draft	human	proteomes	have	recently	
provided	protein	evidence	for	the	majority	of	previously-annotated	protein-coding	genes,	
in	addition	to	some	previously	unknown	proteins	30	31.	These	studies	and	others	32,33	
suggest	that	current	reference	annotation	has	not	yet	fully	captured	the	protein-coding	
potential	of	the	genome.	To	validate	the	coding	potential	of	novel	loci	identified	in	this	
study,	we	searched	the	unmatched	spectra	from	30	human	tissue/cell	types	(see	Methods)	
against	the	novel	predicted	ORFs	described	in	this	study.	Peptides	identified	in	this	search	
that	were	either	identical	to	annotated	proteins	or	mapped	with	a	single	mismatch	were	
discarded.	We	manually	examined	the	MS/MS	spectra	and	discarded	those	with	poor	
quality.	We	then	created	synthetic	peptides	corresponding	to	those	that	supported	novel	
ORFs,	and	compared	the	MS/MS	spectra	from	synthetic	peptides	to	experimental	spectra.		
	
Based	on	this	analysis	pipeline,	we	identified	peptides	that	confirmed	four	of	the	novel	
protein	coding	genes	in	the	CHESS	set.	One	example	is	CHS.57705,	a	transcript	that	encodes	
a	191	amino	acid	protein	that	has	no	similarity	to	known	proteins	but	is	conserved	in	other	
primates	(Figure	4a).	This	protein	contains	two	transmembrane	domains	as	predicted	by	
SMART	34.	Another	transcript,	CHS.24083	encodes	a	protein	of	161	amino	acids	without	
any	predicted	domains	or	similarity	to	known	proteins	(Figure	4b),	although	it	too	is	
conserved	in	primates.	Suppl.	Table	S6	shows	all	four	novel	ORFs	identified	with	peptide	
evidence	from	proteomics	data	analysis.	Suppl.	Figure	S12	shows	the	two	additional	cases	
where	the	mass	spectra	from	synthetic	peptides	validated	the	experimental	spectra	as	well	
as	two	cases	(neither	of	which	passed	all	the	filters	required	to	be	a	CHESS	gene)	that	were	
not	validated.	We	note	that	the	abundance	of	these	novel	transcripts	was	very	low	and	the	
ORFs	are	relatively	short,	both	of	which	may	explain	the	small	number	of	identified	
peptides.	
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Previously	annotated	proteins	not	observed	in	GTEx	
We	analyzed	the	entire	set	of	protein-coding	genes	in	RefSeq	to	determine	how	many	of	
them	lacked	support	from	any	of	the	9,795	GTEx	samples.	We	considered	a	gene	to	be	
supported	if	any	GTEx	transcript	matched	any	of	the	gene's	exons;	we	did	not	require	
support	for	the	precise	exon-intron	structure.		Out	of	all	20,054	RefSeq	genes,	just	ten	were	
not	expressed	in	any	of	our	samples	(Table	2).	We	examined	each	of	these	ten	genes	
further,	and	determined	that	five	of	them	are	likely	to	be	errors	in	RefSeq,	as	we	explain	
below.	We	deleted	these	five	genes	and	their	(five)	transcripts	from	the	CHESS	gene	set.	
	
Table	2.	Protein-coding	genes	from	RefSeq	that	were	not	expressed	in	any	of	the	9,795	
RNA-seq	samples	from	GTeX.		
NCBI	Gene	ID	 Gene	name	 Location	 Product	
101927562	 LOC101927562	 chr11	

1554607–1556457	
uncharacterized	

101929097	 LOC101929097	 chr19	
2511219–2513571	

uncharacterized	

107987231	 LOC107987231	 Chr16	
29973622–29974648	

uncharacterized	

101928589	 LOC101928589	 chrX		
110175773-110177788	

uncharacterized	

728072	 CT47A5	 chrX	
120963026-120966446	

cancer/testis	antigen	
family	47	member	A5	

728049	 CT47A8	 chrX	
120948422-120951842	

cancer/testis	antigen	
family	47	member	A8	

728042	 CT47A9	 chrX	
120943561-120946981	

cancer/testis	antigen	
family	47	member	A9	

245927	 DEFB113	 chr6	
49968677-49969625	

defensin	beta	113	

51206	 GP6	 Chr19	
55013705–55038264	

glycoprotein	VI	
platelet	

102723822	 LOC102723822	
(GTPBP4/NGB)	

Unplaced	
KI270752.1	
8198–27137	

nucleolar	GTP-
binding	protein	1-
like	

	
The	first	four	genes	in	Table	3–101927562,	101929097,	107987231,	and	101928589–were	
predicted	by	computational	pipelines	at	least	ten	years	ago.	All	loci	are	entirely	contained	
in	the	5'	UTRs	of	other	well-characterized	protein-coding	genes.	GenBank	records	indicate	
that	the	original	computational	predictions	were	based	on	EST	evidence	and	on	the	
presence	of	open	reading	frames,	but	no	other	evidence	supports	them.	Their	position	in	
UTR	regions	explains	the	transcript	(EST)	evidence,	but	there	is	no	reason	to	believe	these	
are	distinct	protein	coding	genes,	and	we	did	not	include	them	in	CHESS.	
	
The	next	three	genes	in	Table	3,	CT47A5,	CT47A8,	and	CT47A9,	are	genes	that	are	normally	
expressed	in	germ	cells,	and	reactivated	and	expressed	in	some	tumors	35.	Thus	it	was	not	
surprising	that	these	genes	were	not	expressed	in	the	GTEx	samples,	which	did	not	include	
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either	of	these	tissue	types.	Genes	DEFB113	and	GP6	both	appear	to	be	genuine.	Both	have	
multiple	hits	to	other	proteins,	have	known	functions,	and	have	strong	experimental	
evidence	supporting	them.	It	is	not	clear	why	they	were	not	present	in	the	GTEx	
experiments,	but	it	is	possible	they	have	highly	tissue-specific	expression.	
	
Gene	102723822,	the	final	entry	in	Table	3,	is	by	far	the	most	intriguing	of	the	missing	
RefSeq	proteins.	This	is	a	14-exon	gene	with	a	well-characterized	product	(protein	
accession	XP_006725006),	with	numerous	orthologous	proteins	in	other	species.	The	
protein	resides	on	an	unplaced	scaffold	(KI270752)	in	the	current	human	reference	
genome,	GRCh38.	
	
What	is	surprising	about	this	protein	is	that	its	best	alignments	are,	in	order	of	their	
similarity,	Chinese	hamster	(Cricetulus	griseus),	golden	hamster	(Mesocricetus	auratus),	
deer	mouse	(Peromyscus	maniculatus),	Gairdner's	shrewmouse	(Mus	pahari),	and	other	
rodents.	It	is	98%	identical	to	the	closest	rodent	protein,	but	only	95%	identical	to	the	most	
similar	human	protein,	GTPBP4/NGB	on	Chr	10	(HGNC:21535).	It	would	be	extraordinary	
for	a	human	protein	to	have	multiple	hits	to	rodents	that	are	all	closer	than	any	match	to	
primates.	Thus	from	evolutionary	evidence,	this	protein	is	clearly	a	rodent	protein,	not	a	
human	one.	
	
The	KI270752	scaffold	is	27,745	bp	long,	and	gene	102723822	spans	almost	all	of	it,	from	
position	8198	to	27,137.	Upon	investigation,	we	discovered	that	this	scaffold	is	100%	
identical	to,	and	clearly	derived	from,	a	cosmid	deposited	in	GenBank	in	1998,	cosmid	1F1	
(accession	AF065393).	We	attempted	to	align	the	scaffold	to	an	alternate	human	assembly,	
CHM1_1.1	(GCA_000306695.2),	which	was	built	from	whole-genome	sequencing	of	a	
haploid	cell	line	derived	from	a	human	hydatidiform	mole,	and	the	scaffold	does	not	match	
any	sequence	in	that	assembly.	
	
Given	that	K1270752	does	not	align	to	any	other	part	of	the	current	human	reference	
genome,	that	it	does	not	align	to	an	alternative	human	assembly,	and	that	it	contains	what	
appears	to	be	a	rodent	protein,	we	concluded	that	this	unplaced	scaffold	represents	
contamination	in	the	current	human	assembly.	Thus	neither	the	scaffold	nor	the	gene	are	
human.	
	
We	also	looked	at	protein-coding	genes	that	were	present	in	Gencode	but	not	RefSeq.	In	
Gencode	release	25,	we	found	76	genes	that	were	not	in	RefSeq	of	which	34	were	not	
expressed	in	the	GTEx	experiments	(Supplementary	File	S6).	However,	in	Gencode	release	
27,	all	but	two	of	these	34	protein-coding	genes	were	either	deleted	(27)	or	changed	to	
noncoding	(5),	leaving	just	two	genes	(AP000351.1	and	USP17L23)	that	were	unique	to	
Gencode	but	not	expressed	in	the	GTEx	data.	Both	of	these	genes	are	included	in	the	CHESS	
catalog.	
	
Non-coding	genes	
StringTie	assembled	a	total	of	30,467,424	transcripts,	of	which	a	majority	(19,014,285,	
62%)	had	only	a	single	exon	(Supplementary	Table	S1).	1,563,544	transcripts	matched	
RefSeq	or	Gencode	entries,	including	209,261	perfect	matches	and	1,354,283	partial	
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matches.	We	retained	all	RefSeq	and	Gencode	transcripts	as	well	as	other	transcripts	for	
which	we	found	protein-coding	evidence,	as	described	above.		We	then	applied	a	series	of	
filters	to	remove	“noisy"	transcripts	from	the	remaining	ones,	as	follows:	

1. We	required	each	transcript	to	be	assembled	in	at	least	10	samples,	with	an	average	
TPM≥1,	or	alternatively	to	have	expression	level	as	high	as	the	outliers	for	known	
transcripts,	defined	as	TPM>13.87	(see	Supplementary	Materials).	

2. We	filtered	out	all	single-exon	noncoding	transcripts.	
3. We	removed	all	transcripts	that	overlapped	known	LINE	elements,	LTR	repeat	

elements,	or	ribosomal	RNA	genes.	
4. To	avoid	including	pre-mRNA	transcripts,	we	removed	all	transcripts	that	had	

retained	introns,	based	on	RefSeq	and	Gencode	intron	annotations.	
5. To	eliminate	pseudogenes,	we	filtered	out	any	novel	transcript	that	had	at	least	98%	

identity	to	a	known	transcript	over	90%	of	its	length.		
6. We	removed	all	transcripts	that	overlapped	exons	of	annotated	transcripts	on	the	

opposite	strand,	as	well	as	transcripts	that	overlapped	multiple	known	genes.	
7. To	reduce	transcript	assembly	false	positives,	we	retained	only	the	ten	most	

abundant	novel	transcripts	at	any	given	locus.	
8. We	discarded	transcripts	in	loci	corresponding	to	known	processed	pseudogenes	or	

that	overlapped	immunoglobulin	or	T-cell	receptor	segments.	
	
After	applying	all	the	filters	above,	and	including	the	novel	protein	coding	transcripts	
described	above,	we	were	left	with	116,737	transcripts	that	did	not	match	any	RefSeq	or	
Gencode	transcripts.	Of	these,	97,511	represent	isoforms	(splice	variants)	of	protein-
coding	genes,	increasing	the	total	number	of	protein-coding	transcripts	from	127,718	(in	
RefSeq)	to	267,476,	or	12.5	isoforms	per	protein-coding	gene	(Tables	1	and	3).	23,189	of	
the	novel	transcripts	are	also	present	in	the	FANTOM	database,	which	used	Cap	Analysis	of	
Gene	Expression	(CAGE),	to	create	a	large	atlas	of	human	genes	with	high-confidence	5′	
ends	36.		

	
The	number	of	novel	lncRNA	gene	loci	remaining	after	these	filtering	steps	was	3,819,	of	
which	1,546	were	antisense	transcripts	37,	which	are	contained	within	introns	of	other	
genes.	Roughly	half	of	the	novel	non-coding	RNA	genes	(1,945)	were	previously	also	found	

Table	3.	Genes	and	transcripts	in	that	are	novel	in	CHESS	as	compared	to	RefSeq	and	
Gencode.	The	columns	labelled	‘Annotated	in	FANTOM’	show	the	subset	of	novel	CHESS	
genes	and	transcripts	that	are	also	found	in	the	FANTOM	gene	catalog.	
Gene	biotype	 Genes	 Transcripts	

RefSeq	
and	

Gencode	

Novel	
in	

CHESS	

Annotated	
in	FANTOM	

RefSeq	
and	

Gencode	

Novel	
in	

CHESS	

Annotated	
in	FANTOM	

Protein	
coding	

20,128	 1,178	 98	 169,965	 97,511	 23,189	

LncRNA	 16,212	 2,272	 1,352	 34,216	 15,090	 5,770	
Antisense	 598	 1,546	 494	 643	 2,051	 606	
MiscRNA	 1,227	 1	 1	 2,284	 2,063	 476	
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by	the	FANTOM	consortium	36.	LncRNA	genes	have	an	average	of	~2.6	isoforms	in	our	
catalog,	although	this	number	could	increase	if	additional	evidence	emerges	in	the	future.	
	
Table	1	shows	the	number	of	the	genes	and	transcripts,	respectively,	in	protein-coding	or	
long	non-coding	genes	on	the	GRCh38	human	reference	sequence.	Supplementary	Table	S3	
shows	many	of	the	other	types	of	non-coding	genes	(in	addition	to	lncRNAs)	that	are	
annotated	in	RefSeq.	Table	3	shows	the	number	of	genes	and	transcripts	novel	to	CHESS;	
i.e.,	missing	in	both	RefSeq	and	Gencode.		
	
Transcriptional	noise	
Perhaps	the	most	striking	result	of	this	study	is	the	vast	number	of	transcripts	that	appear	
to	have	no	function	at	all.	Across	all	data	sets	and	all	tissue	types,	we	observed	over	30	
million	distinct	transcripts	in	approximately	700,000	distinct	genomic	locations,	of	which	
only	about	40,000	(5%)	appear	to	represent	functional	gene	loci.	As	others	have	argued22,	
the	mere	fact	that	a	sequence	is	transcribed	is	insufficient	evidence	to	conclude	that	it	is	a	
gene,	despite	the	fact	that	early	genomics	studies	made	precisely	that	assumption.	It	
appears	instead	that	95%	of	the	transcribed	locations	in	the	human	genome	are	merely	
transcriptional	noise,	explained	by	the	nonspecific	binding	of	RNA	polymerase	to	random	
or	very	weak	binding	sites	in	the	genome.	This	observation	is	consistent	with	efforts	to	
identify	sequence	motifs	that	signal	the	initiation	of	transcription,	which	have	largely	failed	
because	no	highly	conserved	sequences	exist.	
	
Similarly,	the	vast	majority	of	the	transcript	variants	themselves	also	appear	nonfunctional.	
Although	this	study	greatly	increases	the	number	of	isoforms	of	known	genes,	the	323,824	
transcripts	reported	here	represent	just	1.1%	of	the	30,467,424	distinct	transcripts	
observed	across	all	9,795	data	sets.	This	suggests	that	the	splicing	machinery	too,	like	RNA	
polymerase,	is	highly	nonspecific	in	its	actions,	in	agreement	with	previous	studies	that	
found	that	the	vast	majority	of	observed	splice	variants	correspond	to	errors	38.	The	splice	
sites	themselves	are	much	better	conserved	than	any	transcription	initiation	site,	but	the	
cellular	machinery	for	cutting	and	pasting	the	exons	together	appears	to	be	inefficient,	
producing	many	variations	that	are	simply	non-functional,	with	low	abundance	isoforms	
being	especially	likely	to	be	the	result	of	errors	39.	It	is	possible	that	our	criteria	for	
excluding	a	transcript	were	too	strict,	but	even	so	it	seems	unlikely	that	a	large	proportion	
of	the	transcripts	we	rejected	are	essential	for	the	cell.		
	
Note	that	functional	transcripts	occur	at	much	higher	abundances	than	non-functional	
ones,	as	shown	in	Figures	S2-S5.	If	we	add	up	the	expression	levels	of	all	the	functional	
transcripts	and	compare	that	to	the	total	expression	of	non-functional	transcripts,	we	find	
that	68%	of	the	transcriptional	activity	is	devoted	to	producing	functional	transcripts,	
while	32%	is	apparently	spent	(and	presumably	wasted)	on	nonfunctional	ones.	Thus	
although	the	sheer	amount	of	variation	is	very	large,	about	two-thirds	of	the	RNA	
molecules	in	the	cell	are	functional.		
	
Discussion	
The	new	human	gene	catalog	described	here,	CHESS,	contains	a	comprehensive	set	of	genes	
based	on	nearly	10,000	RNA	sequencing	experiments.	As	such,	it	provides	a	reference	with	
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substantially	greater	experimental	support	than	previous	human	gene	catalogs.	Although	it	
represents	only	a	modest	increase	in	the	number	of	protein-coding	genes	(1178,	or	5.5%	
out	of	21,306	total),	it	more	than	doubles	the	number	of	splice	variants	and	other	isoforms	
of	these	genes,	to	267,476.	This	more-comprehensive	catalog	of	genes	and	splice	variants	
should	provide	a	better	foundation	for	RNA-seq	experiments,	exome	sequencing	
experiments,	genome-wide	association	studies,	and	many	other	studies	that	rely	on	human	
gene	annotation	as	the	basis	for	their	analysis.	
	
Given	the	history	of	changes	in	our	knowledge	of	human	genes	and	transcripts,	it	seems	
highly	likely	that	this	new	database	will	change	further	in	the	future.	In	particular,	many	of	
the	more	than	18,000	noncoding	RNA	genes	have	less	evidential	support	than	the	protein-
coding	component	of	the	genome,	and	this	number	may	decline	over	time	just	as	the	
human	gene	count	declined	from	2001	to	the	present.	The	CHESS	database	of	genes	and	
transcripts,	which	is	freely	available	at	http://ccb.jhu.edu/chess,	will	be	updated	over	time	
as	new	evidence	emerges.	
	
The	overall	picture	that	emerges	from	this	analysis	is	that	the	cell	is	a	relatively	inefficient	
machine,	transcribing	more	DNA	into	RNA	than	it	needs.	Ever	since	the	discovery	of	introns	
40,41,	we	have	known	that	genomes	contain	large	regions	that	appear	to	have	no	function.	
Based	on	the	results	described	here,	it	appears	that	nearly	99%	of	the	transcriptional	
variety	produced	in	human	cells	has	no	apparent	function,	although	most	of	these	variants	
appear	at	such	low	levels	that	they	cumulatively	account	for	only	32%	of	transcriptional	
volume.		
	
Methods	
The	initial	GTEx	data	release	contained	1641	RNA-seq	samples	20,42,	and	a	subsequent	
publication	described	a	much	larger	set	of	8555	samples	collected	from	40	body	sites	43.	
Our	data	represents	a	later	GTEx	data	release	with	9,795	samples	across	31	tissue	types	
and	54	body	sites,	summarized	in	Supplementary	Table	S2.	The	GTEx	data	used	for	the	
analyses	described	in	this	study	were	obtained	from	dbGaP	accession	number	
phs000424.v6.p1	in	May	of	2016.	
	
Alignment	and	assembly.	In	total,	the	9,795	RNA-seq	samples	contain	899,960,113,026	
reads	(449,980,056,513	pairs),	an	average	of	91.9	million	reads	(46M	pairs)	per	sample.	
The	RNA-seq	assembly	process,	illustrated	in	Figure	5,	requires	multiple	steps	of	
alignment,	assembly,	and	quantification	44	for	each	of	the	samples.	We	aligned	each	sample	
to	release	GRCh38.p8	of	the	human	genome	using	HISAT2	45	with	default	parameters,	
providing	it	with	the	RefSeq	annotation.	We	then	assembled	the	alignments	using	StringTie	
46	again	providing	the	RefSeq	annotation.	Both	HISAT2	and	StringTie	use	annotation	as	a	
guide	when	provided,	but	both	programs	find	novel	splice	sites	(HISAT)	and	novel	
transcripts	(StringTie)	whenever	necessitated	by	the	data.	The	RefSeq	annotation	provided	
here	contained	20,054	protein-coding	genes,	15,779	long	noncoding	RNA	(lncRNA)	genes,	
16,131	pseudogenes,	and	629	tRNA	genes,	as	well	as	a	few	other	specialized	categories	of	
annotation	(Supplementary	Table	S3).	
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Timings.	Alignment	of	reads	with	HISAT2	was	the	most	computationally	intensive	step	in	
the	process.	On	average,	88.3%	of	reads	aligned	successfully	across	all	9,795	samples.	The	
alignment	steps	included	uncompressing	the	original	SRA	files,	aligning	them	to	the	
genome	with	HISAT2	(using	8	CPUs	in	parallel),	and	compressing	the	output	to	produce	
BAM	files.	These	steps	took	an	average	of	43	minutes	per	file	(sample),	using	a	32-core	
server	with	a	2.13	GHz	Intel	Xeon	E7	for	benchmarking.	Following	alignment,	the	aligned	
reads	were	sorted	and	converted	to	the	compact	CRAM	format.	This	process	took	an	
average	of	17	minute	per	sample	using	8	threads.	Assembly	and	quantification	with	
StringTie	took	an	average	of	24	minutes	per	sample	using	4	threads.	Thus	the	total	average	
time	to	process	on	sample,	with	much	of	the	time	limited	by	I/O	speed	for	the	very	large	
files	involved,	was	84	minutes.	Processing	all	9,795	samples	required	about	13,700	hours	
(571	days);	by	dividing	the	computation	across	many	processors	this	was	reduced	to	about	
30	days	total	elapsed	time.	Note	that	attempts	to	parallize	this	process	further	would	
require	distributing	the	files	across	many	independent	storage	units;	otherwise	contention	
for	file	access	would	make	parallel	processing	ineffective.	
	
After	the	initial	assembly	steps,	many	transcripts	were	fragmented	(i.e.,	not	full-length)	due	
to	low	coverage	in	particular	samples.	To	correct	this	problem,	we	compared	all	transcripts	
and	transcript	fragments	across	all	samples,	and	merged	any	transcripts	that	were	
contained	or	overlapped	with	others.	For	this	merging	step,	we	first	used	the	program	
gffcompare	(ccb.jhu.edu/software/stringtie/gff.shtml)	to	merge	all	GTF	(Gene	Transfer	
Format)	files	from	the	original	samples	on	a	tissue-by-tissue	basis.	Following	this	step,	
which	produced	a	single	GTF	file	for	each	of	the	31	tissues,	we	merged	the	31	files	together	
to	produce	a	single,	consistent	set	of	transcripts	that	accounted	for	all	samples.	
	
We	computed	expression	levels	using	both	TPM	(transcripts	per	million	reads)	and	FPKM	
(fragments	per	kilobase	of	exon	per	million	reads).	The	Supplementary	Materials	file	
contains	detailed	statistics	on	expression	levels	for	all	genes	in	RefSeq,	including	
distributions	used	to	calculate	outliers	for	protein	coding	and	lncRNA	genes	(Figures	S1–
S5.	For	consistency,	we	used	TPM	values	as	thresholds	for	all	filtering	steps.	
	
We	identified	the	longest	open	reading	frames	(ORFs)	in	transcripts	with	gffread	
(github.com/gpertea/gffread).	We	ran	BLAST	searches	of	all	ORFs	against	the	Swiss-Prot	
section	of	UniProt	(release	2017_09)	and	the	nr	database,	a	comprehensive,	non-redundant	
protein	database	downloaded	from	NCBI	in	February	2017.	The	mammalian	protein	
database	used	in	some	searches	was	a	subset	of	nr.	When	considering	lncRNA	matches	to	
proteins	from	this	database,	we	considered	a	protein	to	have	unknown	function	if	its	name	
included	any	of	the	following	keywords:	hypothetical,	unnamed	protein	product,	
uncharacterized	protein,	unknown,	pseudogene,	LOC,	PRO,	orf,	or	open	reading	frame.	We	
also	excluded	proteins	whose	only	annotation	was	a	name	with	the	prefix	hCG,	which	are	
computational	predictions	based	only	on	de	novo	gene	finding	programs	and/or	EST	
evidence	reported	in	one	of	the	original	human	genome	papers	7.	The	multiple	alignment	
shown	in	Figure	1	was	produced	with	SeaView	v4.6.2	47.	
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Comparisons	to	known	annotation	databases.	We	used	gffcompare	to	compare	assembled	
transcripts	to	the	RefSeq	and	GENCODE	databases.	We	downloaded	the	FANTOM	
transcripts	defined	as	‘robust’	from	
fantom.gsc.riken.jp/5/suppl/Hon_et_al_2016/data/assembly/lv3_robust/	and	used	the		
UCSC's	liftOver	program	with	the	default	parameters	to	remap	them	from	GRCh37	to	
GRCh38.	We	checked	all	~30	million	StringTie-assembled	transcripts	against	these	
remapped	FANTOM	transcripts	using	the	trmap	program	(github.com/gpertea/trmap),	a	
specialized	version	of	gffcompare,	optimized	for	streaming	a	large	set	of	transcripts	
against	another	set,	for	the	purpose	of	reporting	and	classifying	overlaps	between	them.	
Because	the	FANTOM	transcripts	had	experimental	data	to	support	their	5’	ends,	we	
adjusted	the	ends	of	the	CHESS	transcripts	when	they	otherwise	matched	the	full	length	of	
a	FANTOM	transcript.	
	
Differential	expression	between	sexes.	We	used	Salmon	48	to	generate	quantification	
estimates	of	the	complete	set	of	CHESS	transcripts	assembled	from	the	GTEx	data.	The	
advantages	to	using	Salmon	over	other	transcript	quantification	programs	include	speed,	
compatibility	with	downstream	analysis	tools,	and	the	ability	to	retain	multi-mapped	reads.	
Salmon	relies	on	the	use	of	an	index	built	from	transcript	sequences	to	quasi-map	RNA-seq	
reads	in	the	quantification	step.	To	obtain	these	sequences,	we	used	gffread	
(http://ccb.jhu.edu/software/stringtie/gff.shtml)	to	extract	them	from	the	CHESS	GFF	file.	
The	index	built	from	the	resulting	multi-fasta	file	and	the	raw	sequencing	reads	were	then	
used	to	generate	CHESS	transcript	abundance	estimates	for	each	GTEx	sample.		
	
We	used	the	tximport	package	49	to	import	the	Salmon	output	and	generate	separate	gene-
level	count	matrices	for	each	tissue	that	contained	both	male	and	female	samples.	To	
account	for	the	widely	varying	number	of	samples	per	tissue,	we	chose	a	random	subset	of	
samples	from	tissues	with	large	numbers	of	samples.		
	
We	then	used	the	resulting	count	matrices	as	input	to	DESeq2	50		to	conduct	differential	
expression	analysis	within	each	of	the	31	tissues	independently,	comparing	male	to	female	
samples.	We	used	the	False	Discovery	Rate	(FDR)	computed	from	DESeq2’s	
implementation	of	the	Benjamini-Hochberg	adjustment.	The	set	of	differentially	expressed	
genes	with	FDR	<	0.05	was	then	filtered	to	identify	the	protein-coding	genes	that	were	
novel	in	CHESS.		
	
From	the	results	of	the	31	DESeq2	experiments,	we	created	a	single	list	of	genes	
differentially	expressed	in	at	least	one	tissue.	For	breast	tissue	we	counted	all	genes	with	a	
FDR	<	0.05.	For	each	additional	tissue,	we	only	included	genes	with	an	FDR	<	0.002	to	
correct	for	multiple	comparisons	across	tissues.	An	FDR	threshold	of	0.002	for	each	gene	in	
each	tissue	results	in	an	FDR	of	~0.05	for	each	gene	across	all	tissues.	The	major	
differences	between	male	and	female	breast	tissue	lead	us	to	expect	a	large	number	of	
differentially	expressed	genes.		
	
Tissue-specific	differential	expression.	We	started	by	randomly	selecting	20	samples	from	
each	of	the	31	tissues.	In	cases	where	the	given	tissue	had	fewer	than	20	samples,	we	
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selected	all	samples.	Using	tximport,	we	then	created	one	gene-level	count	matrix	for	these	
591	samples.	With	this	count	matrix,	we	ran	DESeq2	to	test	for	differential	expression	
between	tissues	while	controlling	for	the	effect	of	sex.	Using	the	‘contrast’	argument	of	the	
results	function	in	DESeq2,	we	made	31	different	comparisons	to	find	genes	up-regulated	
in	each	tissue.	Each	comparison	contrasted	the	gene	expression	in	the	tissue	of	interest	to	
the	average	expression	across	all	other	tissues.	For	each	tissue,	we	considered	up-regulated	
genes	with	an	FDR	<	0.05	significant	and	then	filtered	this	list	to	report	only	novel,	protein	
coding	genes.	To	create	a	list	of	all	novel	genes	up-regulated	in	at	least	one	tissue,	we	
reduced	the	FDR	threshold	to	0.0015	to	correct	for	the	31	comparisons.	An	FDR	threshold	
of	0.0015	for	each	gene	in	each	tissue	results	in	a	(conservative)	FDR	of	~0.05	for	each	
gene	across	all	tissues.	
	
Mass	spectrometry.	Unmatched	MS/MS	spectra	from	a	previous	study	30	were	searched	
against	translated	products	of	predicted	CHESS	ORFs	using	the	SEQUEST	search	engine	on	
Proteome	Discoverer	2.1	software	platform	(Thermo	Fisher	Scientific).	
Carbamidomethylation	of	cysteine	and	oxidation	of	methionine	were	specified	as	fixed	and	
variable	modifications.	Mass	tolerance	limits	were	set	to	10	ppm	and	0.02	Da	for	precursor	
and	fragment	ions,	respectively.	A	target-decoy	database	approach	was	employed	to	filter	
the	identified	peptides	at	a	1%	false	discovery	rate.	Peptide	sequences	that	corresponded	
to	novel	genes	were	synthesized	(JPT	Peptide	Technologies,	Berlin,	Germany),	analyzed	on	
an	Orbitrap	Fusion	Lumos	Tribrid	mass	spectrometer	(Thermo	Fisher)	and	compared	
against	the	experimental	spectra.	Putative	translational	products	of	novel	ORFs	were	
aligned	using	BLAST	against	the	NCBI	‘nr’	protein	database	and	domain	prediction	was	
carried	out	using	SMART	34.	Multiple	sequence	alignment	of	protein	sequences	was	
performed	using	Clustal	Omega	51.	
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Figure	2.	Protein-coding	genes	that	were	differentially	expressed	between	males	and	females,	for	each	of	
the	GTEx	tissues	that	had	both	male	and	female	samples.	All	tissues	except	kidney	had	at	least	10	samples	
for	each	sex;	kidney	had	9	female	and	29	male.	
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Figure	3.	Novel	protein-coding	genes	in	CHESS	that	were	up-regulated	in	the	31	tissues.	
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Figure	4.	Multiple	sequence	alignments	of	novel	CHESS	protein	coding	genes	CHS.57705	(A)	
and	CHS.24083	(B),	each	compared	to	5	other	primates,	with	annotated	MS/MS	spectra	
validating	the	identified	peptides	as	shown	on	the	right.	
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Figure	5.	Summary	of	computational	pipeline	used	to	
align	and	assemble	all	9,795	RNA-seq	samples.	
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