
git • master @ biorxiv-2.0.0-0::7875291-2018-09-01 (2018-09-04 01:33Z) • safrank

Evolutionary design of regulatory control. I. A robust control theory

analysis of tradeoffs

Steven A. Frank
∗

The evolutionary design of regulatory control balances various tradeoffs in performance. Fast reaction
to environmental change tends to favor plastic responsiveness at the expense of greater sensitivity to
perturbations that degrade homeostatic control. Greater homeostatic stability against unpredictable
disturbances tends to reduce performance in tracking environmental change. This article applies the
classic principles of engineering control theory to the evolutionary design of regulatory systems. The
engineering theory clarifies the conceptual aspects of evolutionary tradeoffs and provides analytic
methods for developing specific predictions. On the conceptual side, this article clarifies the meanings
of integral control, feedback, and design, concepts that have been discussed in a confusing way within
the biological literature. On the analytic side, this article presents extensive methods and examples
to study error-correcting feedback, which is perhaps the single greatest principle of design in both
human-engineered and naturally designed systems. The broad framework and associated software
code provide a comprehensive how-to guide for making models that focus on functional aspects of
regulatory control and for making comparative predictions about regulatory design in response to
various kinds of environmental challenge. The second article in this series analyzes how alternative
regulatory designs influence the relative levels of genetic variability, stochasticity of trait expression,
and heritability of disease.
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Introduction

Regulatory control adjusts the expression of labile

characters. The study of labile characters has de-

veloped along two separate lines. Molecular sys-

tems biology and physiology emphasize the bio-

chemical mechanisms and immediate response of

observable systems. Evolutionary biology analyzes

how phenotypically labile or plastic characters influ-

ence variability in populations and ultimate repro-

ductive function, causing change in the design of or-

ganisms.

Studies rarely combine the details of regulatory

control architecture with the evolutionary analysis of

variability and change in populations. In this article,

I work toward building the theoretical foundation for

integrating regulatory control and evolutionary per-

spectives (Koonin & Wolf, 2006; Soyer, 2012).

In the mechanistic literature, studies in systems bi-

ology, physiology, and behavior consider how regula-

tory control systems respond to changes in the envi-

ronment. These disciplines have rich theories about

adjustable phenotypes (Mazur, 2006; Alon, 2007a;

Keener & Sneyd, 2009; Ingalls, 2013).

In the evolutionary literature, studies focus on the

association between characters and reproductive fit-

ness, the correlation between characters, the pro-

cesses that influence genetic and phenotypic vari-

ation in populations, the evolutionary dynamics of

genes and characters, and the consequences of labil-

ity or plasticity for the evolutionary origins of new

characters and new species (Pigliucci, 2001; DeWitt &

Scheiner, 2004; West-Eberhard, 2005).

Lande (2014) emphasized that most evolutionary

theories of plasticity focus on how characters are set

during a brief critical period of development. Few

theoretical studies have analyzed the evolution of la-

bile characters that adjust continuously throughout

an organism’s lifetime (Mangel & Clark, 1988; McNa-

mara & Houston, 1996; Frank, 2002; Fischer et al.,

2014). How can we broaden the insights of evolution-

ary analysis to include the rich array of labile charac-

ters at the molecular, physiological, and behavioral

level?

As a first step, I will use the general approach of

engineering control theory to describe the universal

features of regulatory control architecture (Iglesias &

Ingalls, 2009). Control theory allows us to relate par-

ticular design aspects of regulatory control to evo-

lutionary problems. For example, error-correcting

feedback is a general design property common to

many regulatory control systems. How can we relate

error-correcting feedback to evolutionary aspects of

design tradeoffs between different components of

performance? What are the consequences of those

tradeoffs for genetic variability and stochasticity in

phenotypic expression?

In this series of articles, I combine the methods

and insights of engineering control theory with the

evolutionary analysis of labile characters. This first

article introduces the methods and analyzes funda-

mental design tradeoffs for labile characters. The

second article in this series studies the consequences

of alternative control architectures for genetic vari-

ability, phenotypic stochasticity in trait expression,

and the heritability of disease (Frank, 2018b). Fur-

ther articles develop the interplay between control

architecture and evolutionary dynamics.

Overview

This article analyzes evolutionary design tradeoffs

for regulatory control systems. To develop basic

concepts, I focus on two design goals. First, how

do organisms track changing environmental signals

with plastic, responsive regulatory control? Second,

how do organisms maintain a homeostatic setpoint

in spite of environmental perturbations?

Those two goals typically trade off, because faster

responsiveness often improves environmental track-

ing but degrades homeostatic maintenance. The

tradeoff between plastic responsiveness and home-

ostatic maintenance depends on additional perfor-

mance tradeoffs, which I develop throughout this ar-

ticle.

I emphasize the analytic methods by which one

can model the various tradeoffs and make predic-

tions about organismal design. I also discuss how

one should think about the fundamental concepts of

regulatory design.

Initially, I focus on functional design aspects of

control, such as error-correcting feedback, rather

than on mechanistic aspects, such as how particular

molecules change in expression. Ultimately, the the-

ory must merge functional and mechanistic perspec-
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tives in particular applications. However, an evolu-

tionary foundation must begin with the basic fram-

ing of function.

On the functional side, error-correcting feedback

is perhaps the single greatest design principle in

both human-engineered and naturally evolved con-

trol systems. Yet, the biological literature on error-

correcting feedback control presents various and

sometimes conflicting meanings of feedback. To clar-

ify the meaning of feedback, one has to have a clear

notion of the meaning of design in biological sys-

tems.

By developing those broad analytic and conceptual

topics, this article presents a how-to guide for mak-

ing and interpreting evolutionary models of regula-

tory control in biology.

The first section begins with a simple model for

tracking a changing environmental signal. The sec-

ond section introduces the methods of engineering

control theory. That theory provides the most pow-

erful tools for analyzing and interpreting regulatory

control with respect to design goals, such as tracking

and homeostasis.

The third section presents some alternative mech-

anisms by which a biological system could control a

process to achieve a design goal. One typically begins

with some intrinsic dynamical process, such as a bio-

chemical reaction, and then considers how an organ-

ism modulates those given dynamics to improve per-

formance. Control designs include integrating devi-

ations from target dynamics, feeding back error into

the system so it can self-correct, and using filters to

reject unwanted inputs.

The fourth section clarifies key concepts of control

that are often discussed in a confused way within the

biological literature. Those concepts include integral

control, feedback, and design.

The fifth and sixth sections summarize major de-

sign tradeoffs and present performance measures

that can be used to model those tradeoffs. I empha-

size the tradeoffs among the plastic responsiveness

of environmental tracking, the homeostatic rejection

of perturbations, system stability, and the costs of

controls that modulate dynamics.

I also consider how the various performance goals

may trade off with robustness, which is the reduced

sensitivity to random perturbations and other uncer-

tainties. Another key tradeoff concerns performance

in relation to different frequencies of inputs. Bet-

ter performance to slowly changing inputs may trade

off against poorer performance with respect to more

rapidly changing inputs.

The seventh section analyzes the dynamics of an

intrinsic biological process, such as a biochemical re-

action. Study of an intrinsic process in the absence

of modulating control sets the stage for the eighth

section, which provides a detailed analysis of how

error-correcting feedback control can modulate the

intrinsic process and improve performance.

The analysis of performance leads to explicit mod-

els of the various design goals and tradeoffs of con-

trol systems. I develop optimization methods and

present several analytical and numerical examples.

The ninth through twelfth sections emphasize par-

ticular design tradeoffs. Each section presents ana-

lytic methods and numerical examples. The tradeoffs

with performance include the costs of control, the

balance between plastic responsiveness and homeo-

static maintenance, the costs and benefits of error

feedback versus simpler direct control architectures,

and the consequences of improving system stability

subject to the cost of reduced performance.

The final section discusses extensions and conclu-

sions. The supplemental files provide all of the soft-

ware code in Wolfram Mathematica and C++ used

to develop the analysis, numerical examples, and

graphics. That code includes details of the methods

and analysis. The code also forms the basis for devel-

oping novel research projects on regulatory control.

Environmental signal tracking

Lande’s (2014) simple exponential model for environ-

mental tracking provides a good way to link the cur-

rent evolutionary literature of phenotypic plasticity

to the concepts and methods of engineering control

theory.

Following Lande, suppose that the labile compo-

nent of phenotype tracks the environment by the

simple differential equation

ẋ + ax = u, (1)

in which the overdot denotes differentiation with re-

spect to time, t, the term x(t) is the phenotypic

deviation from the initial condition, x(0) = 0, and
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phenotypic deviations are driven by the environmen-

tal input signal, u(t). I use notation that provides

a natural connection to control theory. The rela-

tion to Lande’s notation is x(t) ≡ ξt , a ≡ λ, and

u(t) ≡ λφ(εt).
By standard analysis, the phenotypic deviation

from the initial baseline at time t is

x(t) =
∫ t

0
e−aτu(t − τ)dτ. (2)

This process describes how the phenotypic devia-

tion, x, arises from the sequence of environmental

input signals, u(τ), and the intrinsic rate of decay

for phenotypic deviations, a.

If we know the dynamics of the environmental sig-

nal, u(τ), we can use the integral solution to cal-

culate x(t). However, such calculations can be te-

dious and often provide little insight. For example,

we might ask, in general, how an increase in the

rate of tracking adjustment, a, influences the ben-

efit of closely tracking the environment versus the

cost of responding too strongly to noisy signals or

over-adjusting to sudden environmental shifts.

Control theory analysis

The classic control theory approach to the analysis of

dynamics provides much easier calculations of sys-

tem response and much deeper insight into general

aspects of tradeoffs in the design of responsive sys-

tems. In addition, control theory analysis encourages

a more explicit description for the mechanistic basis

of biological regulatory systems. With an explicit de-

scription of regulatory control, one can connect the

specific design tradeoffs for phenotypes to the un-

derlying consequences for genetic variability and the

stochastic aspects of phenotypic expression.

This section briefly reviews two key aspects of clas-

sic control theory. I follow my recent tutorial exposi-

tion (Frank, 2018a). Additional details can be found

in standard texts of control theory (e.g., Åström &

Murray, 2008; Ogata, 2009; Dorf & Bishop, 2016). The

following sections apply these control theory analyt-

ical methods to evolutionary aspects of phenotypic

plasticity, emphasizing the key tradeoffs that influ-

ence design. Throughout this article, the references

in this paragraph can be used to follow up on techni-

cal aspects of signal processing and control theory.

Transfer functions

Transfer functions are a particularly important tool

in control theory analysis. Here, I list some of the

basic notation and how one can use transfer func-

tions to analyze dynamics. Good introductions can

be found in most textbooks on control theory (e.g.,

Åström & Murray, 2008; Ogata, 2009; Dorf & Bishop,

2016). My tutorial provides many basic examples and

discusses limitations and potential remedies (Frank,

2018a).

We can transform the temporal dynamics of any

linear time-invariant differential equation in the time

variable t into an expression in the complex Laplace

variable s. For example, given the differential equa-

tion in the time variable t as

ẍ + a1ẋ + a2x = u̇+ bu (3)

with y ≡ x (see below), we can write the dynamics

equivalently with functions of the complex Laplace

variable s as

P(s) = Y(s)
U(s)

= s + b
s2 + a1s + a2

. (4)

The numerator expresses a polynomial in s derived

from the coefficients of u in eqn 3. Similarly, the de-

nominator expresses a polynomial in s derived from

the coefficients in x from the left side of eqn 3. The

eigenvalues for the process, P , are the roots of s for

the polynomial in the denominator.

From eqn 4 and the matching picture in Fig. 1a,

we may write Y(s) = U(s)P(s). In words, the out-

put signal, Y(s), is the input signal, U(s), multiplied

by the transformation of the input signal by the pro-

cess, P(s). Because P(s) multiplies the signal, we

may think of P(s) as the signal gain or amplification,

which is the ratio of output to input, Y/U .

Following the conventions of control theory, the

system output Y expresses a transformation of the

internal system state, X. In our initial examples,

the output is equivalent to the internal system state,

y(t) ≡ x(t), and thus Y(s) ≡ X(s).
The simple multiplication of the signal by a pro-

cess means that we can easily cascade multiple input-

output processes. For example, Fig. 1b shows a sys-

tem with extended input processing. The cascade be-

gins with an initial reference input, r , which is trans-

formed into the command input, u, by a preprocess-

ing controller, C , and then finally into the output, y ,
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Figure 1: Mechanistic descriptions of control. (a) The input-output flow in eqn 4. The input, U(s), is itself a transfer

function. However, for convenience in diagramming, lower case letters are typically used along pathways to denote inputs

and outputs. For example, in (a), u can be used in place of U(s). In (b), only lower case letters are used for inputs and

outputs. Panel (b) illustrates the input-output flow of eqn 5. These diagrams represent open loop pathways, because

there is no closed loop feedback pathway that sends a downstream output back as an input to an earlier step. (c) A basic

closed loop process and control flow with negative feedback. The circle between r and e denotes addition of the inputs

to produce the output. In this figure, e = r −y , is the error between the environmental reference input, r , and the system

output, y . From Frank (2018a).

by the intrinsic process, P . The input-output calcu-

lation for the entire cascade follows easily by noting

that C(s) = U(s)/R(s), yielding

Y(s) = R(s)C(s)P(s) = R(s)U(s)
R(s)

Y(s)
U(s)

. (5)

These functions of s are called transfer functions.

The transfer function in eqn 4 includes the expo-

nential tracking model in eqn 1 as a special case. We

can write that transfer function for eqn 1 as

P(s) = 1
s + a.

We can always multiply P by any constant to change

the output by that constant value. So we may choose

to multiply P by a and write the exponential tracking

model as

P(s) = a
s + a. (6)

This modified form has the benefit that as s → 0, the

gain of the process, P , goes to a normalized value of

one. This normalized expression of P is the classic

form of the basic low-pass filter, as described in the

next section.

Frequency domain

In a standard temporal analysis, we might begin with

a description of dynamics, such as eqn 1, and ask

how the system state x(t) changes with various fluc-

tuating inputs, u(t). In control theory language, how

do fluctuations in the input signal u influence the

output signal, x?

A linear time-invariant system transforms a sine

wave input into a sine wave output at the same fre-

quency, but with altered magnitude and phase. Con-

sider the response of the system in eqn 1, with as-

sociated transfer function eqn 6, to sine wave inputs

of frequency, ω. The left column of panels in Fig. 2

illustrates the fluctuating output in response to the

green sine wave input. The blue (slow) and gold (fast)

responses correspond to parameter values in eqn 6

of a = 1 and a = 10.

Both the slow and fast transfer functions pass low

frequency inputs into nearly unchanged outputs. At

higher frequencies, they filter the inputs to produce

greatly reduced magnitude, phase-shifted outputs.

The transfer function form of eqn 6 is therefore
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Figure 2: Response of the low pass filter in eqn 6. The blue (slow) and gold (fast) responses correspond to parameter

values in eqn 6 of a = 1 and a = 10. (a-c) Temporal dynamics in response to input u(t) (green curve) as sine waves

with varying frequencies, ω. (d) Response of eqn 6 to unit step input, u(t) = 0 for t < 0 and u(t) = 1 for t ≥ 0. (e)

The output-input gain ratio for the transfer function in eqn 6 as a function of input frequency. This Bode plot shows the

gain on a scale of 20 log10(gain). A log gain value of zero corresponds to a gain of one, log(1) = 0, which means that the

output magnitude equals the input magnitude. (f) The phase shift of the output vs input sine waves as function of the

input frequency,ω. This Bode phase plot shows the angular phase shift in degrees. Original figure and additional details

in Frank (2018a).

called a low pass filter, passing low frequencies and

blocking high frequencies. The two filters in this ex-

ample differ in the frequencies at which they switch

from passing low frequency inputs to blocking high

frequency inputs.

The Bode gain plot in Fig. 2e provides a particu-

larly important summary of a dynamical system’s re-

sponse to fluctuating inputs. The gain is the ratio

of the output magnitude to the input magnitude, the

amount by which the transfer function amplifies its

input. The Bode plot shows a transfer function’s gain

at various input frequencies.

Mechanisms of phenotypic response

The simple exponential tracking model in eqn 1 can

be related to different underlying mechanisms that

control phenotypic response to the environment.

This section describes three alternative mechanistic

systems of control. The alternative mechanisms have

different evolutionary consequences. The alterna-

tives also highlight fundamental principles that ap-

ply broadly to regulatory control systems in biology.

The following sections analyze these three different

mechanistic interpretations.
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Figure 3: An exponential process response, P , with the output signal modified by postprocessing. The black components

are intrinsic aspects that cannot be modified. The gold components are the affine transformation of the intrinsic process

output, x, to yield the final output, y = α + βx. The variables α and β of the affine transformation can be genetically

variable and modified by evolutionary processes. This description of an exponential system with genetically variable

affine postprocessing matches Lande’s (2014) model.

Uncontrolled process

The exponential response to the environment may

be an intrinsic aspect of the organism. Figure 3 illus-

trates an intrinsic exponential process, P . In control

theory, P typically signifies an unmodifiable “plant”

process.

Within the scope of our biological analysis, we con-

sider the intrinsic process to be constrained and not

subject directly to change. Any modification of the

organism’s response must arise by preprocessing the

input signal that comes into P or postprocessing the

output signal produced by P .

Figure 3 illustrates Lande’s (2014) model, in which

the black components show the environmental in-

put, u, and the intrinsic exponential organismal re-

sponse, x. The gold postprocessing yields the final

response, y = α + βx, in which the postprocessing

can be modified by natural selection through the ge-

netically variable traits α and β.

In this case, the component of phenotypic lability

subject to natural selection is the affine transforma-

tion of the intrinsic response x, into the final or-

ganismal response, y . Affine transformation simply

means a constant shift and stretch, here a shift by α
and a stretch (or shrink) by β.

An intrinsic exponential response may arise by a

relatively simple process. If the rate of increase in

the response depends on the input, ẋ = u, and the

response degrades at a rate proportional to the cur-

rent response level, ẋ = −ax, then we obtain the ba-

sic differential equation for the exponential response

ẋ + ax = u, as given in eqn 1. For example, x may

be a molecule produced at a rate influenced by an

incoming signal, u, and degraded at a constant rate,

a. Such stimulus-triggered production and intrinsic

degradation describe the most basic biochemical sys-

tem response.

Integral control and feedback

Suppose an organism’s intrinsic “plant” response to

input simply mimics the input level. For example, or-

ganismal surface temperature may closely track the

ambient temperature. Figure 4a illustrates an intrin-

sic “plant” with P = 1, a simple pass-through process

in which the output y = uP is equal to the input u.

Such instantaneous tracking of the environment

has the benefit of quick adjustment to external

change. But rapid adjustment can also be costly.

Short-term rapid external fluctuations may simply be

noise in the input, such as fluctuations in light in-

tensity that cause rapid shifts in the local surface

temperature. Organisms often benefit by ignoring

very rapid, noisy fluctuations, and tracking slower

changing, more reliable signals of the external envi-

ronment.

In addition, the intrinsic pass-through process may

have stochastic error, δ, with an associated plant,

P = 1 + δ. Ideally, the organism could correct for

such intrinsic fluctuations and potential unknown in-

ternal biases.

How can an organism track the slower, more reli-

able external signals, reject the noisy external fluctu-

ations, and adjust to any biases or fluctuations in the
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Figure 4: Feedback loop with an integral controller. (a) The black box is fixed as an intrinsic process, the gold components

can be adjusted by evolutionary or other design processes. (b) The entire feedback loop can be collapsed into a single

transfer function and associated box, G, which is the exponential process. The denominator of G represents the feedback

loop component, which is a designed feature, and so is entirely in gold.

internal pass-through plant process?

Figure 4a shows how an organism can modulate its

response through two genetically modifiable compo-

nents, shown in gold.

First, the signal coming into the intrinsic plant may

be altered by a controller, C . In control theory, the

controller can be modified by design to alter the in-

put signal, u, passed into the intrinsic plant process.

Here, we assume “design” means evolutionary pro-

cesses, such as natural selection, subject to the con-

straint that the controller can only take on forms that

can be realized by the organism’s physiology and ge-

netics.

Second, the organism’s final output response, y =
x, is fed back into the system as an additional input.

By feeding back the output and subtracting that feed-

back from the external environmental signal, now la-

beled as r for the external reference, the actual value

that enters the first preprocessing controller step is

e = r −y . That value is the error difference between

the external environmental reference signal and the

actual output by the system.

Error feedback is perhaps the single most pow-

erful mechanism of system design in both human-

engineered and naturally evolved systems. By feed-

ing the error into the system as its primary input,

the system can always correct any perturbations and

misspecifications by moving to reduce the error. If

the error is positive, the system moves to increase

the output. If the error is negative, the system moves

to reduce the output. With error-correcting feedback,

a sloppy, poorly specified system can still perform

well.

Now consider the first modifiable component, the

controller. To transform the error input, e, into the

control command, u, the organism could potentially

use any process that can be realized physiologically

and genetically. Here, in order to develop the alter-

native interpretations of the fundamental exponen-

tial model, I confine the controller to be the trans-

fer function, C(s) = a/s, with modifiable parame-

ter, a. The transfer function 1/s is a pure integrator,

because it corresponds to the differential equation

ẋ = e for input e and internal state, x. Thus, the

value of the internal state is the integral of the error

input, x(t) =
∫ t
0 e(τ)dτ . The a term in the numera-

tor of C = a/s multiplies the integral output of C by

the constant value, a.
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Figure 5: The exponential process as a preprocessor, F , that filters the environmental reference signal before entering a

postprocessing feedback loop. (a) Here, F is assumed to be a fixed aspect of the organism, such as an unmodifiable sensor

of the environment. In other cases, we may consider F as a modifiable designed filter of system input. The postprocessing

feedback loop includes an unmodifiable intrinsic plant process, P , and a modifiable controller and feedback process. (b)

We can collapse the post-processing feedback loop into a single transfer function and associated box, G. We may interpret

G as a non-feedback description of a dynamical process or as a feedback loop. Our interpretation depends on whether

we consider the tendency to attract toward the reference input as an intrinsic unmodifiable aspect of the dynamics or as

a modifiable feedback feature designed to move the system toward the reference value at a particular rate.

Another compelling benefit of transfer functions

is that we can easily calculate the total system re-

sponse of a feedback loop. If we write all signals and

internal processes as transfer functions, with Y as

the transfer function for the output signal, y , and E
as the transfer function for the error signal, e, then

the direct line of signal processing between the in-

put and the output without feedback yields an out-

put Y = CPE, because transfer functions multiply

along a signal line. Noting that E = R−Y and substi-

tuting that expression into the previous input-output

expression, we obtain

Y = CP
1+ CP R = GR. (7)

The complete feedback loop system, G, that takes

input R and yields output Y is

G = CP
1+ CP =

L
1+ L (8)

in which L = CP is often called the open loop com-

ponent of the system—the open part of the system

without the feedback that closes the loop. In this

case, we have C = a/s and P = 1, thus G = a/(s +a)
is our basic exponential process in eqn 6. In general,

the transfer functions C and P can describe any lin-

ear time-invariant system.

Low-pass preprocessing filter

An organism may perceive the environment through

a sensor, which transforms the environmental input

signal. In Fig. 5, the sensor or preprocessing filter, F ,

transforms the input, r , by our standard exponential

process. The filtered signal, f , then enters the organ-

ismal system, where it may be further processed by

the system, G. I show G as a feedback loop in this

example.

The feedback loop in Fig. 5a contains the standard

components: a intrinsic process, P , that cannot be

modified, a modifiable controller, C , and an optional

feedback loop that is included among the modifiable

components of the system. This postprocessing sys-

tem may include an integral component in the con-

troller of the feedback loop.
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Interpretation of integral control

and feedback

Integral control and feedback are key concepts in

control theory. Those key concepts are sometimes

misunderstood when analyzing systems designed by

natural biological processes. Consider, for example,

a system in which the production rate of some en-

tity is proportional to the input, and the production

rate is balanced by a matching degradation rate. The

dynamics follow the simple exponential process of

eqn 1, with transfer function in eqn 6.

Should we interpret that exponential process as

a designed system with integral control and error-

correcting feedback or as a simple unitary compo-

nent with an exponential response? That broad ques-

tion raises three specific questions.

What is integral control?

An intuitive understanding of integral control can be

obtained from eqn 7 and 8. If the input reference

signal, R, is a constant, then the system can match

its output to the input and reduce the error to zero

only if G = 1. For G → 1, we must have L → ∞. In

practice, we must have a very high amplification of

the input signal by the open loop, L.

The higher the open loop gain, the more strongly

a feedback system drives the error toward zero. We

can describe that role of high open loop gain in a

feedback system directly by expressing the error, E =
R − Y , from eqn 7 and 8 as

E = 1
1+ L. (9)

This equation expresses one of the great principles

of design. High open-loop amplification of a signal

drives the error to zero in a feedback loop. Power-

ful error-correcting feedback compensates for many

kinds of perturbations, uncertainties, and sloppy

components that perform poorly. Nonlinearities can

often be thought of as uncertainties in linear system

dynamics. Thus, an error-correcting feedback sys-

tem designed as if it were linear often performs well

if the actual dynamics follow particular kinds of non-

linearity (Vinnicombe, 2001; Frank, 2018a).

How do we obtain a very high gain for the open

loop, L, when the input signal is constant? If L has

an integrator component, 1/s, then s → 0 implies

L → ∞. A temporally constant reference input as-

sociates with a zero frequency input, which corre-

sponds to s = 0 in a standard analysis of sine wave

inputs. Thus, L must have an integral component in

order for the system to achieve a perfect match to a

constant input signal.

The recent systems biology literature on respon-

sive biochemical processes has elevated integral con-

trol to an almost mythical status by which biologi-

cal systems achieve a perfect matching response to

transient environmental inputs, often called “perfect

adaptation” (Yi et al., 2000). Although true, one must

understand three key points.

First, feedback is a powerful error-correcting de-

sign feature that typically requires high gain.

Second, to achieve high gain at low input fre-

quency, L must increase for small s values, which

correspond to low frequency inputs. A pure integra-

tor 1/s goes to infinity at zero frequency. In practice,

high gain at low frequency is sufficient.

Third, integral control simply means that, for some

component of the system, the production rate of a

molecule or other physical entity is proportional to

the input signal. That production is typically bal-

anced by a degradation process. Proportional pro-

duction and balancing degradation arise often in

biochemical systems and form the most basic type

of feedback loop, creating exponential components.

Thus, integral control and “perfect adaptation” are

not mystical achievements, but instead are common

outcomes of basic feedback dynamics.

What is feedback?

A process that balances production and degradation

may be thought of as a feedback system. However, a

process that produces heat and passively dissipates

that heat would not typically be thought of as a feed-

back process to regulate heat. When should we con-

sider balancing forces as feedback (Fig. 4a), and when

should we consider the same dynamics as a unitary

component of system dynamics (Fig. 4b)?

Recent systems biology analyses of phenotypically

responsive biochemical interactions add further con-

fusion to the meaning of feedback. For example, the

classification of molecular network motifs and con-

trol architecture sometimes use feedback to describe
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a system in which the concentration of one molecule

influences the dynamics of a second molecule, and

the concentration of the second molecule in turn in-

fluences the dynamics of the first molecule. That

notion of feedback emphasizes the mutual influence

between physical entities (Alon, 2007a,b).

Control theory emphasizes an alternative, abstract

notion of feedback, in which system dynamics can

be interpreted as in Fig. 4a. In that abstract inter-

pretation, there is some reasonable way in which to

describe the system as subtracting the output from

the external input and then feeding that error differ-

ence as the input into the system.

The confusion in the systems biology literature

is particularly strong, because that subject empha-

sizes both the abstract control theory analysis of

systems and the incompatible interpretation of feed-

back as mutual influence between physical entities

(Alon, 2007a). Until one realizes the distinction be-

tween the alternative interpretations of feedback, the

literature can be difficult to understand. However,

it is worthwhile to sort things out, because systems

biology has developed the most comprehensive con-

ceptual and mechanistic analyses of phenotypically

responsive systems. A clear notion of design helps.

What is a designed system?

When should we describe a balance between produc-

tion and degradation by the special design concepts

of integral control and feedback?

In general, a modifiable component that has been

tuned to achieve some goal forms part of a designed

system. The goal may be a target that has been set

within a human-engineering context. Or the goal may

be the consequence of natural biological processes

that shape phenotypes as if they were designed to

achieve particular functions favored by natural se-

lection.

George Williams (1966) clarified the biological in-

terpretation of design. In Williams’ view, if a fish

jumps out of the water and then returns to the water

by gravity, we would not consider the path of return

a designed feature. Gravity is a sufficient explana-

tion. By contrast, if the fish uses its modified fins as

sails to slow the rate of return, then the use of fins

as sails is a designed feature to achieve the goal of

altering the path of return to the water.

What about a simple biochemical system of pro-

duction and degradation that acts as an exponential

process? If the production rate has been modified

to achieve high amplification in response to low fre-

quency input signals, then that integral control as-

pect may be thought of as a designed feature. By

contrast, an intrinsic reaction that passively changes

its production in response to changing ambient tem-

perature may be thought of as an inevitable physical

consequence of the input energy.

With regard to feedback, degradation rates can

be modified by reactions that specifically destroy a

molecule or by changes in molecular structure that

alter the rate of degradation. If the degradation rate

has been modified to balance production and track

some target setpoint of molecular abundance, then

degradation acts as a designed feedback mechanism.

By contrast, an intrinsic decay rate may be thought

of as an inevitable physical process rather than as a

feedback design.

Design tradeoffs

I focus on the tradeoffs faced by evolutionary pro-

cesses in the design of organisms. This section lists

some of the key biological tradeoffs, expressed in

terms of the methods and insights of engineering

control theory.

Designed systems typically have multiple goals.

For example, an organism gains by adjusting to envi-

ronmental changes. It also gains by homeostatically

holding its internal state in response to noisy envi-

ronmental fluctuations.

Often, there may be tradeoffs between alterna-

tive goals. The more rapidly an organism changes

its state to track environmental changes, the more

susceptible it may be to environmental fluctuations

that disrupt the organism’s internal homeostasis. In

other words, there may be a tradeoff between the

phenotypic plasticity of environmental tracking and

homeostatic regulation.

Other tradeoffs arise. The rate of system adjust-

ment to external environmental changes may influ-

ence the tendency of the system to become unsta-

ble. Instability of a critical system may lead to death.

The costs of building and running additional control

structures must be balanced against the added bene-

11

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 3, 2018. ; https://doi.org/10.1101/332999doi: bioRxiv preprint 

https://doi.org/10.1101/332999
http://creativecommons.org/licenses/by/4.0/


git • master @ biorxiv-2.0.0-0::7875291-2018-09-01 (2018-09-04 01:33Z) • safrank

fits provided by those extra controls.

To summarize, four common design goals often

tradeoff against each other: environmental tracking,

homeostatic regulation, stability, and the costs of

control. We may add robustness as a fifth design

goal, in which robustness means reduced sensitivity

to random perturbations and other uncertainties.

Measures of performance

To analyze design with respect to tradeoffs, we must

have measures of performance. In biology, one usu-

ally uses various measures of reproductive success

or fitness as the ultimate measure of performance.

Analysis of phenotypic plasticity requires explicit as-

sumptions about how tracking, regulation, stability,

and costs translate into the ultimate measure of re-

productive performance.

I use the classic quadratic measure of performance

from control theory (Anderson & Moore, 1989).

Tracking considers how far the actual system output,

or phenotype, is from the optimum. The usual per-

formance measure sums up the Euclidean distances

between the optimum and the actual output at each

point in time as the squared errors, e = (r − y)2,

between the target reference signal, r(t), and the

system output, y(t). Summing over all infinitesimal

time intervals from an initial time t = 0 to a final

time T yields the quadratic measure

J =
∫ T

0
e2dt.

Optimal performance minimizes the total error, J ,

subject to any processes that constrain the system.

Homeostatic regulation concerns deviations from

a constant target value. We can, without loss of gen-

erality, take the target to be r(t) ≡ 0. Thus, the per-

formance metric for homeostatic regulation is J , in

which e2 becomes y2, the squared deviation of the

phenotype from the constant setpoint.

Tradeoffs often arise between tracking and home-

ostatic regulation. The more rapidly a system can

track changes in the target reference signal, r(t), the

more strongly a system tends to deviate from a con-

stant homeostatic setpoint in response to random

perturbations. Put another way, a beneficial response

to a true change in the environmental input signal

can also lead to a detrimental response to a false,

noisy fluctuation in environmental or other inputs.

Typically, we also wish to consider the costs of

control. For example, driving a system toward its

optimum value often requires energy and other in-

vestments. The greater the energy expended per unit

time, the faster the system can drive its output to-

ward its optimum. However, performance must also

consider minimizing the costs of energy expended

and other investments in control. Thus, the classic

performance measure of control is typically written

as

J =
∫ T

0

(
e2 + ρũ2

)
dt, (10)

in which ũ(t) is a function of the magnitude of the

signal, u(t), that the system uses to control its dy-

namics, as in Fig. 1c, and
∫
ũ2dt is proportional to

the total signal power. I use ũ = u−r , the difference

between the control signal, u, and the input refer-

ence signal, r . This choice sets the cost for control

to zero when the controller simply outputs the un-

changed reference signal.

The parameter ρ weights the relative importance

of the tracking error and the cost of control. This

performance metric, J , balances the tradeoff be-

tween minimizing the tracking error and minimizing

the cost of control.

Stability sets an additional dimension of perfor-

mance. For example, suppose we minimize J to

obtain an optimally controlled system with respect

to the tradeoff between tracking error and control

costs. Our optimal system may be prone to insta-

bility in response to small perturbations. Instability

often leads to complete system failure.

To obtain a better control design, we often must

impose a stability constraint on the minimization

of performance, J . For example, we may require

that the system remain stable to particular kinds and

magnitudes of perturbations. Such a constraint is of-

ten called a stability margin of safety, or simply a sta-

bility margin. Because instability is often disastrous,

robust engineering design methods and natural bio-

logical design processes tend optimize performance

subject to constraints on the stability margin.

Specifying a stability margin is technically more

challenging than writing a simple performance met-

ric (Vinnicombe, 2001; Frank, 2018a). I provide some

examples in later sections.
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We may also consider the robustness of various

performance measures in relation to particular kinds

of uncertainty. Greater robustness reduces the sen-

sitivity of performance to uncertainty. However, re-

duced sensitivity may come with the cost of reduced

maximum performance with respect to the target en-

vironment for which the design is tuned.

Intrinsic plant process

I will illustrate the main design tradeoffs by a vari-

ety of examples. Each example typically begins with

an intrinsic plant process that describes some fixed

biochemical reaction or organismal input-output re-

sponse. Given an intrinsic process, we may then con-

sider how natural biological processes design regu-

latory control systems to modulate the intrinsic dy-

namics.

Before turning to the design problems, it is useful

to have a clear sense of a simple set of generic intrin-

sic processes that can be used to build various initial

examples. I focus on a basic second-order differen-

tial equation that is a reduced form of eqn 3, as

ẍ +αẋ + x = u, (11)

with associated transfer function

P = 1
s2 +αs + 1

. (12)

For α ≥ 2, we can factor the denominator so that

P =
(

1
s + a1

)(
1

s + a2

)
,

in which a1 + a2 = α and a1a2 = 1. The factored

expression shows that we can think of this system as

the pair of cascading exponential processes shown

Fig. 6a, because a cascade is described by the product

of the transfer functions for each component. Alge-

braically, we can express the cascade by rewriting the

second-order differential equation as a pair of first-

order equations

ẋ1 = −a1x1 +u (13a)

ẋ2 = −a2x2 + x1, (13b)

with system output y = x2. A cascade of exponential

processes must be very common, because an expo-

nential response arises from the most basic chemical

process of production balanced by degradation.

Alternatively, for any real value of α, including

α ≥ 2, we can rewrite the second-order differential

equation as a pair of first-order equations

ẋ1 = −αx1 − x2 +u (14a)

ẋ2 = x1, (14b)

with system output y = x2. These first-order equa-

tions yield a simple graphical representation of a

process that follows the dynamics of the second-

order system, as shown in Fig. 6b. The figure shows

that this system can be described by a process with a

negative feedback loop between two components, x1

and x2. Note that “feedback” in this sense describes

a mechanistic interaction between two physical enti-

ties rather than the logical notion of “feedback” in a

designed error-correcting control system.

When α = u = 0, the system is a pure oscillator

that follows a sine wave. For 0 < α < 2 and u = 0,

the system follows damped oscillations toward the

equilibrium at zero, because the degradation of x1 at

rate −α causes a steady decline in the amplitude of

the oscillations about the equilibrium.

Costs and benefits of error feedback

The examples in the prior section for the dynamics

of x1 and x2 represent the intrinsic plant process, P .

Figure 6 shows u → P , the control signal u as the

input to the intrinsic process, P .

How can a system alter the dynamics of P in or-

der to improve performance with respect to partic-

ular design goals? This section compares two basic

approaches.

First, the system can modulate the control input

signal, u, by modifying the dynamics of a controller

process, C , as in Fig. 1b. In that system, the external

environmental reference signal, r , enters as the sys-

tem input into the controller, C , which outputs the

control signal u that becomes the input into the in-

trinsic system process, P , which produces the final

system output, y . That pathway is an open loop, be-

cause the system output, y , is not fed back as input

to close the loop.

In the second approach to altering system dynam-

ics, the output y is subtracted from the reference

signal, r , and the resulting error e = r − y is fed
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Figure 6: Examples of second-order dynamics mechanisms. (a) A cascade of exponential processes. The incoming signal

u stimulates production of x1, which degrades at rate a1. The level of x1 stimulates production of x2, which degrades at

rate a2. Dynamics given in eqn 13. (b) The first part of this mechanism is the same as the upper panel, with u stimulating

production of x1, which degrades at rate α. In addition, x1 and x2 are coupled in a negative feedback loop. Dynamics

given in eqn 14.

back into the system as its input. The signal process-

ing pathway in Fig. 1c is a closed loop, because the

output is fed back into the system.

This section compares the performance costs and

benefits of an open loop system without feedback

and a closed loop system with feedback.

Performance metric: plasticity vs homeostasis

To analyze tradeoffs, we need a performance mea-

sure. Before choosing a measure, it is useful to con-

sider two attributes with respect to the goals for this

section. First, we want a measure that provides suf-

ficient generality to achieve broad insight and also

provides sufficient specificity to allow numerical il-

lustration. Second, we want a measure that em-

phasizes the tradeoff between the responsiveness of

plasticity to environmental change and the ability to

hold a homeostatic setpoint in response to random

perturbations.

Often, a system that responds relatively quickly to

environmental change also deviates more easily from

a homeostatic setpoint. A tradeoff occurs between

responsive plasticity and homeostasis.

Responsiveness can be measured in many differ-

ent ways. Classic control theory often analyzes how

quickly and accurately a system responds to a step

change in the environmental reference signal. For

example, the environmental signal may initially be a

constant value of zero to represent the baseline en-

vironment. Then, suppose the environment shifts in-

stantaneously to a constant value of one. How does

the system respond to that unit step change?

Using the measure in eqn 10, we can write the step-

response performance between an initial time, t = 0,

and an arbitrary final time, T , as

Js =
∫ T

0

(
e2 + ρũ2

)
dt, (15)

Figure 7a shows how the second-order dynamics in

eqn 12 responds to a step change in input. For the

various values of the parameter α illustrated in the

figure, the caption lists the associated performance

measure, Js with ρ = 0, which reduces Js to the inte-

gral of the quadratic error, e2.

Homeostasis, or regulation to hold a setpoint, also

can be measured in many different ways. Classic

control theory often analyzes how a single, large in-

stantaneous perturbation causes a system to deviate

from its setpoint, and the path that the system fol-

lows as it returns to its setpoint. Technically, at some

time instant, say t = 0, the system experiences a per-

turbation to its input of infinite energy and infinites-

imal duration, a Dirac delta impulse perturbation. In
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Figure 7: Performance metric for plasticity versus homeostasis. (a) Responsive plasticity to a unit step change in the

environmental reference signal. The curves from top to bottom show α = 1,2,4 from eqn 12. (b) Homeostatic return

to setpoint after impulse perturbation. Same underlying dynamics and parameter values as the upper panel. (c) The

components of performance given by the cost metrics Js in blue and γJp in gold for γ = 3 and varying values of the

parameter α along the x-axis. Lower values of the cost metrics correspond to better performance. (d) Total performance

cost J = Js + γJp for γ = 3. The optimal minimum J =
√

1+ γ = 2 is at α =
√

1+ γ = 2.

the typical analysis, the input is a constant value of

zero before and after the perturbation. Thus, the

error is the output deviation from zero, y , and the

control deviation from the input is ũ = u−r = u for

input r = 0, so we can write the performance as

Jp =
∫∞

0

(
y2 + ρu2

)
dt. (16)

Figure 7b shows how the second-order dynamics in

eqn 12 responds to an impulse perturbation in input.

For the various values of the parameter a illustrated

in the figure, the caption lists the associated perfor-

mance measure, Jp with ρ = 0, which reduces Jp to

the integral of the quadratic deviation of the output

from the zero setpoint.

In signal processing theory, an integral of the

squared deviations over an infinite time period, such

as
∫∞
0 y2dt, is referred to as the energy of a signal.

For finite energy signals, an interesting identity pro-

vides conceptual and numerical benefits. For the re-

sponse to an impulse perturbation input, the energy

is proportional to a measure, H2, of the area under

the Bode magnitude plot curve, such as in Fig. 2e.

Thus, we can use the frequency response of a system

to understand and to calculate a system’s intrinsic

homeostatic regulation.

The total performance measures the tradeoff be-

tween plasticity and homeostasis as

J = Js + γJp, (17)

in which γ describes the weighting of the homeo-

static performance in response to perturbation rel-

ative to the plasticity performance in response to

a step change in the environmental reference sig-

nal. Optimal performance minimizes J , as shown in

Fig. 7d.

For this example, I weighted the control signal by

ρ = 0, thus ignoring the cost of control. With that

assumption, α =
√

1+ γ in the second order process

P in eqn 12 yields the optimal performance value

J =
√

1+ γ, which balances the tradeoff between

plasticity and homeostasis. See the supplementary

Mathematica code for the derivation of the optimal

value of α and associated minimization of J . In some

of the analyses below, I vary α around its optimal

value as a way in which to introduce environmental

perturbations.

Optimal open and closed loops

This section analyzes the costs and benefits of er-

ror feedback. To quantify those costs and benefits,
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I compare the design and performance of a system

without feedback and a system with feedback.

We can denote the system generically from Fig. 1

as r → G → y , in which the r is the environmental

reference input signal, y is the system output, and

the transfer function, G, represents all of the system

components between the input and output signals.

Consider the open loop system in Fig. 1b. We can

write that system as G = CP = L, in which C is the

controller transfer function, P is the plant transfer

function, and L denotes the open loop, CP , between

the input and the output. The closed loop system in

Fig. 1c has G = L/(1 + L), as derived in eqn 8. For

the plant, I use P in eqn 12, which depends on the

parameter, α.

The analysis proceeds as follows. First, all deriva-

tions in this section start by optimizing the perfor-

mance metric, J , in eqn 17, ignoring signal costs,

ρ = 0.

Second, I use the value of α in the plant, P , that

optimizes the performance metric, J in eqn 17, for

the uncontrolled system r → P → y . From the pre-

vious section, we have the optimal value α =
√

1+ γ
and associated optimal performance J =

√
1+ γ. By

using the optimal value of α, we can consider how

a controller improves system performance by alter-

ing the constraints on the dynamics rather than by

simply tuning the plant’s intrinsic dynamics.

Third, for the controller, I use

C = q0s2 + q1s + q2

p0s2 + p1s + p2
. (18)

Optimization finds the best values of the qi and pi
parameters. For the performance metric described

in the previous paragraphs, the numerical optimiza-

tion analysis suggests that, for both open and closed

loop systems, the optimal controller typically trans-

forms the uncontrolled second order plant system,

r → P → y , into the first order controlled system

r → G → y , in which

G = p
s + p . (19)

For all numerical optimizations, I used the

NMinimize procedure from version 11.3 of Wol-

fram Mathematica (https://www.wolfram.com/

mathematica/) or the differential evolution method

from version 2.7 of the Pagmo optimization software

library (https://esa.github.io/pagmo2/).

Optimal controllers

For the open loop system, in which G = L = CP , we

can write

C = 1
P

(
p
s + p

)
= p

(
s2 +αs + 1

)
s + p ,

so that in the system G = CP , the 1/P term in the

controller cancels the plant, P . In the control opti-

mization of deterministic systems, such canceling of

terms often occurs, because the system can reshape

response dynamics by removing the fixed plant dy-

namics and replacing those dynamics with the mod-

ifiable dynamics of the controller.

For the closed loop system, in which L∗ = C∗P , we

can write

C∗ = 1
P

(
p
s

)
= p

(
s2 +αs + 1

)
s

= p
(
s +α+ 1

s

)
. (20)

This form is known as a proportional, integral,

derivative (PID) controller, the most widely used gen-

eral controller in systems engineering. From the

right-hand side, the term α amplifies the input signal

by a constant value of proportionality, the term 1/s
yields the integral of the input signal, and the term s
yields the derivative of the input signal. These three

terms provide wide scope for modulating the dynam-

ics of a feedback system.

The controller C∗ yields the open loop

L∗ = C∗P = p
s
.

In earlier sections, I discussed how an open loop inte-

grator, L∗ = p/s, yields a closed loop low pass filter

with exponential dynamics. Thus, we obtain

G = L∗

1+ L∗ =
p
s + p ,

which is a simple first order low pass filter, as in

eqn 6. A low pass filter corresponds to basic ex-

ponential dynamics, as discussed in earlier sections.

These derivations show that the optimizing con-

trollers transform the second order plant, P , into the

first order low pass filter system, G.

The supplementary Mathematica file demonstrates

analytically that p = 1/√γ yields the optimal perfor-

mance J = √γ. Thus, the optimal controllers shown

here improve the optimized plant performance from
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Figure 8: Dynamics of the unmodified plant, P , from eqn 12, with γ = 1 and optimal parameter α =
√

1+ γ =
√

2

(blue curves) compared with the optimized open and closed loop systems with dynamics given by the low pass filter

G = p/(s + p) with p = 1/√γ = 1 (gold curves). The left panel shows the unit step response, and the right panel shows

the impulse perturbation response.

the uncontrolled value of
√

1+ γ to the controlled

value of
√γ. For the analytic analysis, the time pe-

riod for the step response performance in eqn 15 is

T = ∞. In numerical analysis, the step response typ-

ically converges to the reference input, r , by T = 20,

as illustrated in the various example plots.

Figure 8 compares the dynamics of the unmodi-

fied plant, P , with the optimized open loop system,

G = CP . The unmodified plant, shown in the blue

curves, has reasonably good response characteris-

tics, because we chose the parameter α =
√

1+ γ to

optimize the performance cost metric. For γ = 1,

the unmodified plant has performance J =
√

2. The

optimized open loop, shown in the gold curves, im-

proves the response characteristics, yielding an im-

proved performance metric, J = 1.

Comparing open vs closed loop systems

When the plant is a known, deterministic process, the

optimal open and closed loop systems yield the same

system response. We can write both open and closed

loop systems as r → G → y , in which G is the open

or closed loop processing of the input, r , to yield the

output, y .

Typically, the closed loop system is more costly to

build and run, because it requires sending a measure

of the output, y , back to controller input, and sub-

tracting that output from the reference input, r , to

produce an error signal, e = r − y . The open loop

system does not require that extra signal transmis-

sion and processing. Thus, for known determinis-

tic systems, open loops generally outperform closed

loops.

That general advantage of open loops is a well

known principle of engineering control design. As

noted by Vinnicombe (2001, p. xvii): “There are two,

and only two, reasons for using feedback. The first is

to reduce the effect of any unmeasured disturbances

acting on the system. The second is to reduce the

effect of any uncertainty about systems dynamics.”

Closed loop systems with feedback can often cor-

rect for disturbance and uncertainty. With a feed-

back measure of error, a closed loop system can al-

ways do well simply by moving in the direction that

reduces the error. By contrast, open loop systems

cannot correct themselves because they lack a mea-

sure of error. With regard to design principles, the

key question concerns how often inevitable uncer-

tainties favor the complexity of closed loop feedback

over the simplicity of an open loop design.

Sensitivity to uncertainty

In this section, I analyze uncertainties in the dynam-

ics of the intrinsic plant process and in the con-

troller. I show that a closed loop design is much less

sensitive to those uncertainties than an open loop

design.

Figure 9a illustrates how the performance cost

metric, J , increases as the plant process parameter,

α, takes on variable values, α̂, yielding the uncertain

plant

P = 1
s2 + α̂s + 1

. (21)

The open loop (gold curve) and closed loop (blue
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Figure 9: Sensitivity of open loop (gold curve) and closed loop (blue curve) systems to parametric variations in dynamics.

The y-axis shows the performance cost metric, J , and the x-axis shows a variable parameter. (a) The plant dynamics

parameter, α, takes on variable values, α̂. (b) The controller dynamics parameter, q2, takes on variable values.
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Figure 10: Sensitivity of closed versus open loop systems given in eqn 22. As in Fig. 2e, this Bode plot shows the

logarithm of the transfer function magnitude versus the logarithm of the input frequency.

curve) take on their identical minimum values at the

optimum α̂ = α =
√

1+ γ, with γ = 1 in this exam-

ple. As α̂ varies, the open loop performs much worse

than the closed loop. In other words, the open loop

is much more sensitive to variations in plant system

dynamics than is the closed loop.

Similarly, Fig. 9b illustrates the greater open loop

sensitivity to variations in the controller dynamics.

In this case, the controller parameter q2 takes on

variable values around its optimum at 1/√γ.

General analysis of sensitivity

Closed loop systems are generally less sensitive to

parametric variations than are open loop systems.

We can study that general pattern of sensitivity by

analyzing the derivatives of the systems with re-

spect to parameter variations. In particular, write an

open loop system as L and a closed loop system as

L∗/(1 + L∗), and let ∂ be the partial derivative with

respect to some parameter, θ. Then we can write the

parametric derivative to describe the relative sensi-

tivity of closed versus open loop systems

S = ∂(closed)
∂(open)

= ∂[L
∗/(1+ L∗)]
∂L

= ∂L
∗

∂L
1

(1+ L∗)2
.

At low frequency inputs, closed loop systems typi-

cally have high gain values for their open loop com-

ponents, L∗, causing the closed loop systems to be

much less sensitive to parametric variations.

In the example of this section, L = CP and L∗ =
C∗P , for which P depends on the variable parameter

α̂, as shown in eqn 21. Taking the partial deriva-

tive with respect to α̂, the relative sensitivity of the

closed versus open loop systems is

S = C
∗

C
1

(1+ C∗P)2
.

Noting from Fig. 1 that we can express the open loop

system as Y = RCP and the closed loop system as

Y = REC∗P , equating these expressions for Y yields
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C∗/C = 1/E. From eqn 9, we have 1/E = 1 + L∗ =
1 + C∗P , thus the relative sensitivity reduces to the

simple expression

S = 1
1+ C∗P =

1
1+ L∗ ,

which provides a very general description for the re-

duced sensitivity of closed loop error feedback sys-

tems relative to open loop systems with respect to

variations in the plant process, P .

For this particular example, we can use the expres-

sion for C∗ in eqn 20 and P in eqn 12, yielding

S = s
s + p . (22)

These relative sensitivity expressions further

demonstrate the power of transfer functions for the

analysis of control dynamics. Using the general prop-

erties of transfer functions, we can describe how sen-

sitivity changes with the frequency of inputs to the

system. At low frequency, s → 0, the relative sensitiv-

ity of closed versus open loops declines toward zero,

implying a large advantage for closed loop systems

versus open loop systems.

In general, we can plot the relative sensitivity on a

log scale by using the Bode magnitude plot method

in Fig. 2e, yielding the relation between relative sen-

sitivity, S, and frequency, as shown in Fig. 10. In

that figure, we see a pattern analogous to the classic

high pass filter. At high input frequencies, the sys-

tem has a gain of one (log(1) = 0), corresponding to

equal sensitivity of open and closed loops. As the in-

put frequency declines, the relative sensitivity of the

closed loop declines.

Frequency tradeoffs

The sensitivity pattern in relation to frequency il-

lustrates a key point about control system design.

When considering tradeoffs, we must often analyze

how tradeoffs change in relation to the frequency

of inputs and the frequency of perturbations to a

system. Often, improving performance at one fre-

quency band reduces performance at another fre-

quency band, creating an additional perspective on

the tradeoffs in design.

The essence of the plasticity versus homeostasis

tradeoff comes down to a tradeoff between an organ-

ism’s response to different frequencies of inputs. In

the examples here, plasticity associates with the re-

sponse to a step change in input, and homeostasis

corresponds to the response to an impulse perturba-

tion.

Consider the response to a step input in terms of

frequency. A step input has a transfer function 1/s,
in which the input has a lot of energy at low fre-

quency (small s) and decreasing energy as frequency

increases. If an organism filters out high frequency

inputs and responds to low frequency inputs, it will

slowly and accurately adjust to long-term environ-

mental change. The more strongly the organism re-

sponds to high frequency inputs, the more rapidly

the organism adjusts to sudden step changes in en-

vironmental state. We may say that greater high fre-

quency sensitivity corresponds to a more malleable

and rapid plastic response.

The plasticity versus homeostasis tradeoff arises

because the greater the plastic response to the high

frequency components of step inputs, the more

strongly the organism’s homeostasis will be dis-

rupted by impulse perturbations. In particular,

an impulse input has a constant transfer function,

which corresponds to an input with equal energy

over all frequencies. The wider the frequency bands

that the organism filters out and does not respond

to, the less sensitive the organism is to impulse per-

turbations that disturb homeostasis.

Putting all of that together, responding to low

frequencies is most important for plasticity, be-

cause step inputs with transfer function 1/s strongly

weight the lower frequencies. By contrast, homeosta-

sis gains by filtering all frequencies equally, because

impulse energy is uniformly distributed over all fre-

quencies. Thus, to balance good plasticity and good

homeostasis, the organism must respond to inputs

in the lower frequency band and reject inputs in the

higher frequency band.

As γ declines, the performance metric weights the

plastic step response more strongly than the home-

ostatic perturbation response. Thus, a decline in γ
favors the organism to increase its range of high fre-

quency sensitivity, to achieve the benefit of faster,

more malleable plastic response while paying the rel-

atively low cost of suffering greater homeostatic per-

turbation.

The parameter p = 1/√γ in eqn 19 corresponds

to the point at which the system more strongly fil-
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ters relatively higher frequencies. As γ declines and

performance weights plasticity more strongly than

homeostasis, the optimal organismal design moves

the frequency cutoff p to higher values, causing the

organism to respond to relatively higher frequency

inputs.

Sensitivity and variability

The closed loop system is less sensitive to parame-

ter variations than the open loop system. Less sensi-

tivity means that mutations have less effect on per-

formance. Thus, the theory predicts that the closed

loop systems will accumulate more genetic variabil-

ity than the open loop systems (Frank, 2004, 2007).

Less sensitivity also means that a system can tol-

erate greater stochasticity in phenotypic expression

with less consequence for performance. Thus, the

theory predicts that the closed loop systems will

have greater phenotypic stochasticity in gene expres-

sion than the open loop systems (Frank, 2013).

A subsequent article in this series develops the

prediction that low sensitivity and high robustness

enhance genetic and phenotypic variability.

Summary

Error feedback compensates for uncertainty and

stochastic perturbation. Because most biological sys-

tems have uncertain or stochastic aspects, feedback

control inevitably plays a key role in biological de-

sign. However, the net benefit of feedback depends

on the frequency of system inputs and on the various

costs associated with running the relatively complex

control loop of error correction.

One aspect of cost arises from the extra com-

ponents and energy required to build and run the

feedback loop. Another aspect of cost concerns the

strength of the control signal required to correct er-

rors. The next section considers the costs associated

with control signal strength.

Costs of control

In the prior section on optimizing open and closed

loops, I ignored the cost of the control signal. This

section extends that prior optimization to include

the control costs, by assuming that the control cost

weighting is greater than zero, ρ > 0.

The general performance cost metric from eqn 17

is J = Js +γJp. The step input response component,

Js , was defined in eqn 15 as

Js =
∫ T

0

(
e2 + ρũ2

)
dt,

for which ũ = u−r is the difference between the con-

trol signal, u, and the environmental reference input

signal, r . For a step input, r = 1. The control cost

depends on how much the control process causes a

deviation from the external environmental state.

Similarly, the impulse perturbation response com-

ponent Jp was defined in eqn 16 as

Jp =
∫∞

0

(
y2 + ρu2

)
dt.

For an impulse response, the environmental refer-

ence signal is zero except for an infinite impulse

over an infinitesimal duration around time t = 0, so

ũ = u − r ≡ u. In the numerical calculations of the

control signal cost, I ignore the infinitesimal impulse

interval, and sum up the deviations over the period

t > 0, after the impulse.

Control signal dynamics

To analyze the control costs, we need expressions for

the dynamics of the control signal, u. For the open

loop system in Fig. 1b, the control signal is simply

the response of the controller to the reference input.

Thus, U = C , and we can study the control signal re-

sponse by analyzing the controller transfer function.

For the closed loop in Fig. 1c, the control signal

arises as the response of the controller, C , to the

error input signal, E, thus U = EC . From eqn 9,

E = 1/(1 + L), in which L = CP . Thus the control

signal is U = C/(1+ L).
In deterministic systems with known dynamics,

the optimal open and closed loop systems will pro-

duce the same control signal. Thus, the optimal con-

troller for the open loop system, C , will be related

to the optimal controller for the closed loop system,

C∗, by the relation C = EC∗.

The error component, E, typically reduces the mag-

nitude of the reference input, R. Thus, the optimal

closed loop controller by itself tends to amplify sig-

nals much more strongly than the optimal open loop
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Figure 11: The tradeoffs between plasticity, homeostasis, and the costs of control signals. Each panel shows log2 of

a component of performance versus log2 γ. The text describes the different components of performance. Within each

panel, the five curves correspond to log10 ρ = −4,−3, . . . ,0. In panel (a), the values of ρ rise from the bottom to the top

curve, whereas in the other panels, the values of ρ decline from the top to the bottom curve.

controller.

In terms of biology, this theory predicts that con-

trolling subsystems designed to modulate internal

biochemical signals within a broader system will am-

plify signals in very different ways when in open ver-

sus closed loops.

Zero cost pass-through controller

Before studying the role of variable costs in shaping

the tradeoff between plasticity and homeostasis, it

is useful to consider the special case of high control

signal costs.

If the cost weighting, ρ, for the control signal is

very high, then the optimal system will reduce the

control signal deviation ũ = u − r to zero, which

means u = r . In that case, the optimal controller will

simply pass through the unchanged reference signal,

and the optimized control signal is U = 1. In this

case, the open loop controller is simply C = 1.

For closed loops, noting that L∗ = C∗P , the closed

loop controller is

U∗ = C∗

1+ C∗P = 1,

thus

C∗ = 1
1− P .

It seems likely that as ρ increases, the benefit of

the closed loop system with regard to plant uncer-

tainty and disturbance rejection declines until that

benefit disappears at the pass through limit for large

ρ. The following section analyzes that conjecture.

Plasticity vs homeostasis

We can now consider quantitative examples of two

key tradeoffs in control system design. First, systems

typically must trade off plastic responsiveness to

changing environments versus homeostatic buffer-

ing against perturbations. Second, systems trade off

the costs of producing control signals to adjust dy-

namics versus the benefits of those control signals to

manipulate dynamics.

Performance metric expression of tradeoffs

The prior sections developed a performance metric

that captures the two tradeoffs. The full expression

of the performance metric can be written as

J = Js + γJp

=
∫ T

0

(
e2 + ρũ2

)
dt + γ

∫∞
0

(
y2 + ρu2

)
dt. (23)
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The first line emphasizes the plasticity versus home-

ostasis tradeoff. The parameter γ weights the rela-

tive importance of plastic responsiveness, given by

the step response performance, Js , and homeostatic

buffering, given by the perturbation response, Jp.

Smaller values correspond to higher performance.

Thus, a greater value of γ favors improving home-

ostatic performance at the expense of reduced plas-

ticity.

The second line emphasizes the tradeoff associ-

ated with control signal strength. A greater value of

ρ favors reducing the control signal strength. Re-

duced control signal strength may alter the tradeoff

between plasticity and homeostasis, as illustrated in

the following example.

Numerical example

This example begins with the optimized plant in

eqn 21, with α̂ =
√

1+ γ. The general form of the

controller is given in eqn 18. For each combination

of γ and ρ parameters, I used the differential evolu-

tion method of Pagmo 2.7 to find a candidate combi-

nation of controller parameters that optimizes (min-

imizes) the performance metric in eqn 23.

The optimal controllers differ for open and closed

loops. However, when the system is deterministic

and there is no uncertainty in the plant dynamics, the

optimized open and closed loops have identical dy-

namics and control signals, as described in the prior

section. Thus, this example does not differentiate

between optimized open and closed loops. The fol-

lowing section develops this example when the plant

parameter α varies, which highlights the differences

between open and closed loops under uncertainty.

We can partition the total performance metric in

eqn 23 into four components. From Js , the compo-

nents in the step response are: (a) the squared er-

ror deviation from the environmental setpoint, e2,

and (b) the squared control signal deviation from the

signal that would occur in a pass-through controller,

ũ2. From Jp, the components in the perturbation re-

sponse are: (c) the squared deviation from the base-

line zero setpoint, y2, and (d) the squared control

signal deviation from zero, u2. The various compo-

nents are weighted by the parameters γ and ρ.

Figure 11 shows the components of performance

in optimized systems. Lower values correspond to

better performance. Panels (a–d) present the four

components of performance in the order given in the

prior paragraph. Each panel plots log2 of the compo-

nent performance versus log2 γ. The curves in each

panel show log10 ρ = −4,−3, . . . ,0. In panel (a), the

values of ρ rise from the bottom to the top curve,

whereas in the other panels, the values of ρ decline

from the top to the bottom curve.

In Fig. 11, comparing panels (a) and (b) illustrates

the primary plasticity versus homeostasis tradeoff.

As γ increases, the performance metric depends

more strongly on homeostasis, causing the home-

ostasis component to show improved (lower) con-

tributions to J and an associated rise in the plas-

ticity component. In essence, the system responds

more slowly to environmental changes, which ben-

efits homeostatic performance with respect to per-

turbations and weakens plastic responsiveness to a

rapid, long-term shift in the environment.

As the cost of the control signal rises, the system

shifts toward improved homeostatic performance at

the expense of reduced plastic responsiveness. In the

homeostatic response of panel (b), rising signal cost,

ρ, corresponds to lower (better) performance curves.

In the plastic response of panel (a), the opposite pat-

tern of higher (worse) performance associates with

rising signal cost.

The plasticity versus homeostasis tradeoff with ris-

ing signal costs occurs because high signal costs tend

to favor a lower control signal intensity and thus a

slower system response. A slower system reduces

the rate of plastic responsiveness to a sudden, long-

term environmental shift and also reduces the sensi-

tivity of the system to short-term perturbations that

disturb homeostasis.

Panels (c) and (d) show the inevitable decline in

control signal energy with rising signal cost. The

higher signal energies in panel (d) reflect the strong

system response to the high-intensity instantaneous

jolt to the system caused by the perturbation.

Open vs closed loops

The previous section assumed that the parameters

controlling the intrinsic plant dynamics are known

and constant. For known plant dynamics, optimized

open and closed loops perform identically. If plant
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Figure 12: Log ratio of open versus closed loop performance for variable plant dynamics. The x-axis shows the varying

plant parameter α̂ from eqn 21.
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Figure 13: Log ratio of open versus closed loop performance when averaged over variable plant dynamics. The x-axis

shows 2γ . The curves from top to bottom plot results for increasing values of ρ.

dynamics deviate from the assumed form, open and

closed loops typically perform differently.

This section considers the relative performance of

open versus closed loops for variable plant dynam-

ics. As in previous sections, I describe variable plant

dynamics with eqn 21, in which the optimized plant

has parameter α =
√

1+ γ. The open and closed

loops are then optimized with respect to the opti-

mized plant. I then analyze the open and closed loop

responses when the plant parameter α̂ varies around

the optimum α.

Figure 12 illustrates the relative performance of

open versus closed loops as α̂ varies over (α/2,2α).
The curve plots log2 Jo/Jc , the log ratio of the open

loop performance relative to the closed loop perfor-

mance. The curve touches zero at α̂ = α. For other

values of α̂, the closed loop outperforms the open

loop, which means that the closed loop has a lower J
value than the open loop.

Figure 12 shows the same information as Fig. 9a,

but plotted in a different way. The advantage of

Fig. 12 is that we can take the average performance

ratio over the range of α̂ values as a rough measure

of the relative advantage of the closed loop versus

the open loop for variable plant dynamics. The aver-

aged relative performance metric is the integral area

under the curve in Fig. 12 divided by the range of α̂
values. For Fig. 12, the average height of the curve is

0.108.

Plotting Fig. 12 requires specific parameter values

for γ and ρ, which determine the relative weighting

of various performance components. In that figure,

γ = 1 and ρ = 0.

Figure 13 plots the averaged performance metric
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for varying values of γ and ρ. The x-axis shows

log2 γ. The curves show varying values of ρ. The

top curve is for ρ = 0. The subsequent curves are for

log10 ρ = −4,−3,−2,−1.

Closed loops perform relatively better for small

γ, corresponding to greater emphasis on plastic re-

sponsiveness to sudden onset, long-term changes in

the environment. Because closed loops use the error

as input, they strongly drive the system toward a new

setpoint when far from that setpoint and smoothly

ease up on the push toward the setpoint as the gap

is closed. Closed loops also perform better for lower

values of ρ, because they benefit from strong control

signals to drive the system when far from the target

setpoint.

For the parameters considered here, closed loops

outperform open loops. However, closed loops

require additional components, internal measure-

ments, and signal transduction, which may add ad-

ditional costs. With those additional costs, simpler

open loop systems will tend to outperform closed

loops when there is relatively little uncertainty, when

control signals are costly, and when homeostatic re-

jection of perturbation is more heavily weighted than

plastic responsiveness (high γ).

Performance vs stability under un-

certainty

Instability often causes a system to fail. To pro-

tect against instability, a well designed system may

trade lower performance in return for broader sta-

bility against perturbations or uncertainties.

For example, previous sections optimized a con-

troller solely for performance with respect to the

fixed dynamics of a given plant. In this section, I con-

sider optimized controllers subject to the constraint

that they must remain stable to a broad range of al-

ternative plant dynamics. A broader stability margin

reduces performance of the system for the target dy-

namics of the given plant.

In the previous analyses, I began with the plant

P = 1
s2 +αs + 1

= 1
D
,

with α =
√

1+ γ and D = s2 + αs + 1. I then found

optimal controllers with respect to the fixed dynam-

ics of this plant. This section extends that analysis

by requiring that the optimized system also be stable

with respect to the alternative plant, P̃ , with α = α̃,

for a given value α̃ < 0.

A system is stable if the real part of its maximum

eigenvalue is less than zero. The eigenvalues of a sys-

tem described by its transfer function are the roots

of the characteristic polynomial in s in the denomina-

tor of the transfer function. The alternative plant, P̃ ,

is unstable for α̃ < 0 because, by the Routh-Hurwitz

stability criterion, all coefficients of a quadratic must

have the same sign to be stable.

An open loop essentially cannot stabilize an un-

stable plant, whereas a closed loop can sometimes

stabilize an unstable plant. In particular, suppose we

have a controller C = n/d, in which the numerator n
and the denominator d are polynomials of s, and d is

stable with maximum real eigenvalue less than zero.

The open loop for the alternative plant is

CP̃ = n
d

1
s2 + α̃s + 1

= n
d

1

D̃
.

The roots of the denominator will include the roots

of D̃ = s2 + α̃s + 1, thus the system is unstable un-

less we can get rid of this quadratic component from

the alternative plant. Suppose that n/D̃ = c for a

constant, c, in other words, that n cancels D̃. That

cancellation removes the eigenvalues associated with

D̃, and the system is now stable because d is stable.

Although such eigenvalue (pole) cancellation

works in theory, it is difficult in practice to achieve

sufficiently accurate cancellation, particularly in bio-

logical systems. In essence, an unstable plant can-

not be stabilized by an open loop controller. Because

open loop systems cannot satisfy the constraint of

stabilizing alternative plants with α̃ < 0, we consider

open loops to fail for this constrained optimization

problem.

For a closed loop, the system with the alternative

plant is
CP̃

1+ CP̃
= n
dD̃ +n

.

This system is stable if we can find a controller with

numerator, n, and denominator, d, that stabilizes

the characteristic polynomial, dD̃ + n. For a con-

troller such as in eqn 18, we will often be able to

find stabilizing parameter combinations.

For the closed loop, the optimization problem is to
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Figure 14: Value of α̃ in an alternative plant, P̃ , that destabilizes a closed loop optimized for the target plant, P . The

x-axis shows the value of log2 γ used in the optimized performance metric.
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Figure 15: Relative performance of a closed loop optimized subject to a stability margin constraint compared with a

closed loop optimized without a stability margin constraint. The plot shows log2 of the performance ratio. The curves

from bottom to top show an increasing stability margin constraint, corresponding to α̃ = −0.2,−0.4,−0.8,−1.6. The

x-axis is log2 γ.

find the best performing controlling for the system

with the target plant, P , subject to the constraint that

that controller also stabilizes the alternative plant, P̃ ,

with parameter α̃.

As a first step, consider a closed loop optimized

for performance with respect to the target plant, P ,

without any stability constraint for the alternative

plant, P̃ . For this case, Fig. 14 shows the value of

α̃ at which the optimized closed loop transitions to

instability, with systems below the line being unsta-

ble.

Note that the transition depends on γ, which

weights the relative importance in the performance

metric of plastic responsiveness to a changed envi-

ronment versus homeostatic performance with re-

spect to sudden perturbations. Larger γ weights

homeostatic performance more heavily, which favors

a slower system response. In this case, slower sys-

tems are apparently not as good at stabilizing alter-

native plants as are faster systems or, put another

way, the stronger responsiveness of faster systems

apparently stabilizes systems more successfully than

slower systems.

For α̃ values below the curve in Fig. 14, the uncon-

strained optimization of closed loops creates unsta-

ble systems with respect to the alternative challenge.

The next step optimizes the closed loop system for

the target plant, P , subject to the constraint that the

system must be stable with respect to the alternative

plant, P̃ , with value α̃.
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For α̃ values below the curve, the constrained opti-

mization will reduce the performance of the closed

loop with respect to the target plant, P . The re-

duced performance reflects the tradeoff between the

performance in a target environment and the safety

margin of stability with respect to alternative envi-

ronments.

Figure 15 illustrates the reduced closed loop per-

formance to achieve a given margin of stability. Each

curve shows log2 of the ratio between the perfor-

mance of a closed loop optimized subject to the con-

straint that it must be stable for a particular α̃ value

relative to a closed loop optimized without a stabil-

ity margin constraint. The curves from bottom to top

are for α̃ = −0.2,−0.4,−0.8,−1.6. The x-axis mea-

sures log2 γ.

As the required stability margin becomes greater

with declining α̃ values, the performance cost in-

creases to achieve the required stability margin. As γ
rises, performance depends more strongly on home-

ostatic response to perturbation relative to plastic

response to a changed environment. The homeo-

static response imposes a much stronger tradeoff be-

tween stability and performance than does a plastic

response.

In this case, a faster system response improves

the plastic response and the stability margin but de-

grades the homeostatic performance. A fast system

suffers a greater deviation from the homeostatic set-

point in response to perturbation than does a slow

system. In other cases, a faster system response may

cause overshoot of the target setpoint, reducing sta-

bility.

This section used system eigenvalues to develop

the tradeoff between performance and stability mar-

gin. Engineering control theory includes more so-

phisticated methods for the study of stability mar-

gins (Vinnicombe, 2001; Frank, 2018a).

Conclusions

This article introduced the conceptual and analytic

foundation for the evolutionary design of regulatory

control. The theory provides broad, abstract predic-

tions about various tradeoffs. Those tradeoffs in-

clude the balance among the plastic responsiveness

of environmental tracking, the homeostatic rejection

of perturbations, system stability, and the costs of

controls that modulate dynamics. Additional trade-

offs arise from robustness to unpredictable chal-

lenges and from alternative responses to different

frequencies of inputs.

This broad framework provides the tools to make

sense of disparate studies and to develop novel pre-

dictions about regulatory control. To give one exam-

ple of an interesting prediction, consider the general

consequences of error-correcting feedback.

Error correction within a system compensates for

fluctuations in the performance of the system’s com-

ponents. That intrinsic robustness of feedback weak-

ens the direct selective pressure on individual com-

ponents of a system. Weakened selective pressure on

components likely increases their genetic variability

and their stochasticity of expression.

Although I have discussed those ideas in prior pub-

lications, there has been limited work on how con-

trol architecture influences the selective pressure on

components and the broad consequences for biolog-

ical variability (Frank, 2004, 2007, 2013). The second

article in this series builds on the framework devel-

oped here to analyze genetic variability and stochas-

ticity of expression in relation to alternative control

architectures (Frank, 2018b).

Another interesting problem concerns the differ-

ences between the control architecture of human-

engineered systems and the regulatory networks

within genomes (Frank, 2017). Eukaryotic gene

expression is influenced by transcription factors,

methylation, histone codes, DNA folding, intron se-

quences, RNA splicing, noncoding RNA, and other

factors. Vast wiring connectivity links genomic in-

fluence to a trait.

An engineer following classic principles of control

theory would design a simpler system with fewer

connections. Genomes are overwired. They have far

more nodes and connections than classically engi-

neered systems.

Why are genomes overwired? It helps to consider

what other sorts of systems are overwired. Computa-

tional neural networks in artificial intelligence stand

out. Deeply, densely connected computational net-

works pervade modern life. New computational sys-

tems often outperform humans.

The recent computational concepts and methods

comprise deep learning (Goodfellow et al., 2016). The
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learning simply means using data, or past experi-

ence, to improve the classification of inputs and the

adjustment of response. The deep qualifier refers to

the multiple layers of deep and dense network con-

nections. That wiring depth, and the computational

techniques to use vast connectivity, triggered revolu-

tionary advances in performance.

How can we understand the differences between

classic control architecture and the actual wiring of

genomes and computational neural networks? The

right approach remains an open problem. It seems

likely that the greater wiring complexity of genomes

and computational neural networks ultimately re-

duce to fundamental principles of classical control,

but also depend on various additional aspects.

One possibility is that the trial and error inductive

building of control systems by evolutionary dynam-

ics or computational learning gain from diffusely and

densely wired networks, ultimately achieving simi-

lar function to classic control architectures but con-

structed by a different route. Further study along

these lines will be interesting.
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