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Collective variables (CV), when chosen judiciously, can play an important role in recognizing rate-limiting
processes and rare events in any biomolecular systems. However, high dimensionality and inherent complex-
ities associated with such biochemical systems render the identification of an optimal CV a challenging task,
which in turn precludes the elucidation of underlying conformational landscape in su�cient details. In this
context, a relevant model system is presented by 16-residue �-hairpin of GB1 protein. Despite being the
target of numerous theoretical and computational studies for understanding the protein folding, the set of
CVs optimally characterizing the conformational landscape of �-hairpin of GB1 protein has remained elusive,
resulting in a lack of consensus on its folding mechanism. Here we address this by proposing a pair of optimal
CVs which can resolve the underlying free energy landscape of GB1 hairpin quite e�ciently. Expressed as a
linear combination of a number of traditional CVs, the optimal CV for this system is derived by employing
recently introduced Time-structured Independent Component Analysis (TICA) approach on a large number
of independent unbiased simulations. By projecting the replica-exchange simulated trajectories along these
pair of optimized CVs, the resulting free energy landscape of this system are able to resolve four distinct
well-separated metastable states encompassing the extensive ensembles of folded,unfolded and molten globule
states. Importantly, the optimized CVs were found to be capable of automatically recovering a novel partial
helical state of this protein, without needing to explicitly invoke helicity as a constituent CV. Furthermore, a
quantitative sensitivity analysis of each constituent in the optimized CV provided key insights on the relative
contributions of the constituent CVs in the overall free energy landscapes. Finally, the kinetic pathways con-
necting these metastable states, constructed using a Markov State Model, provide an optimum description
of underlying folding mechanism of the peptide. Taken together, this work o↵ers a quantitatively robust ap-
proach towards comprehensive mapping of the underlying folding landscape of a quintessential model system
along its optimized collective variables.

I. INTRODUCTION

The complexity of protein folding requires one to em-
ploy a multi-dimensional approach to understand the di-
versity of folding pathways via transition states 1. Over
the last decade, computer simulation, with the advent of
new algorithms and better hardware, has slowly gained
its reputation as a suitable method for exploring pro-
tein folding. While Molecular Dynamics (MD) simula-
tions, by harnessing the power of special purpose com-
puters, have recently lived up to its true potential of ex-
ploring the complete protein folding process in an un-
biased fashion 2, enhanced sampling schemes have also
emerged as e�cient and cost-e↵ective methods for simu-
lating the protein folding landscape. The proven ability
of these enhanced sampling schemes to overcome multi-
ple, deep rugged free energy minima within modest sim-
ulation time have made them popular techniques among
the scientific communities. However, the key to the quan-
titative analysis of protein folding lies in exploring the
underlying conformational transition along one or multi-
ple collective variables (CV). More over, majority of these
enhanced sampling schemes (such as metadynamics 3–5
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and umbrella sampling6) require choosing an appropriate
collective variable (CV) which describes the progress of
the conformational transition. Hence, the quality, relia-
bility, and usefulness of the explored conformational en-
semble depend on the quality of the chosen CV. As key
requirement, a chosen CV should capture all the relevant
slowly changing degrees of freedom in the system and
should separate out all relevant metastable states. How-
ever, the lack of an unique approach for dimensionality
reduction has made the quest for an appropriate collec-
tive variable for any physical process, including protein
folding, an emerging problem.

Identification of optimal CV in very complex biologi-
cal system is currently being recognized as a true chal-
lenge which has motivated several methodological devel-
opments. Tiwary and Berne have recently proposed 8

spectral gap optimization of order parameters (SGOOP)
algorithm which identifies the slowest linear or nonlin-
ear combination of CVs using maximum caliber-based
approach. Sultan and Pandey9 have also introduced an-
other CV optimization method coined as ”TICA-MetaD”
which identifies the linear combinations of CVs using
the time-structure based independent component anal-
ysis (TICA) approach10–14. Very recently, Parrinello
and coworkers 15,16 also have developed an alternate ap-
proach to both SGOOP and TICA-MetaD, namely VAC-
MetaD. In VAC-MetaD, a trial combination of conven-
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FIG. 1: Representation of the crystal
three-dimesnsional stucture of GB1 hairpin-peptide
(PDB ID 1GB17). Only backbone atoms for every
residues are shown. The cartoon representation is also
overlaid using yellow color for beta-sheet and green
color for loop regions.

tional CVs is first employed to carry out biased simula-
tions, from which few slow modes (based on spectral gap
in timescales) are variationally identified using TICA ap-
proach. Finally, these slow modes are used as new CVs to
perform further well tempered metadynamics. All these
methods, while retaining mutual distinction, have shown
that optimized CVs, derived using these methods, can
guide the sampling in a remarkable way. Taking cue
from this, in this work, by using a TICA based approach,
we put forward the proposal of an optimized set of CV
for exploring conformational landscape of GB1 hairpin,
a classic model system for understanding protein folding.

The system of our interest is the C-terminal domain of
GB1 protein7 which forms a �-hairpin (Figure 1) and has
been extensibly characterized by both experiments and
simulations. It has been observed that it independently
folds into �-hairpin structure which is similar to its na-
tive state. Although it is a fast folder (with folding time
⇠6 µs) and has 50% folded fraction at 300 K, there is no
consensus on the underlying folding mechanism of this
peptide. The folding mechanism of this peptide has been
previously investigated using Replica-Exchange Molecu-
lar Dynamics (REMD) simulations17 in explicit solvent
that performs a random walk in temperature space and
allows system to overcome the energy barriers.18–21 By
projecting simulated data along the conventional and in-
tuitively chosen CVs, such as Radius of gyration (Rg),
root-mean-squared deviation (RMSD), fraction of native
contacts (Qn), and native state hydrogen bonds (Qh),
these works reported the presence of three metastable
states in GB1. The first two dimensions of principal
component analysis (PCA) of REMD data also described
only three free energy basins22. Previous metadynam-
ics simulations studies of �-hairpin peptide23–25 used the
conventional collective variables such as Rg and native
hydrogen bonds to describe and accelerate the folding
process. These studies also reported that this peptide
has L-shaped free energy landscape with maximum three
metastable states. On the other hand, structure based
clustering19 and the sketch-map analysis26 of simulated
data suggest that this peptide could have more than
four di↵erent types of metastable conformations i.e, un-

folded, collapsed, helical, and �-sheet structures. But
none of the CVs, on its own, was able to distinguish
all of these conformationally distinct states with proper
energy-barrier. In these contexts, our current work pro-
vides a quantitative solution towards deriving an opti-
mized CV for GB1 hairpin, which is capable of resolving
the free energy landscape into well-separated basins.
In this work, we have employed a quantitative ap-

proach, based upon TICA10–14, to construct a set of op-
timized CVs of GB1 hairpin and in the process have
elucidated the complete free energy landscape of this
peptide via projection of REMD trajectories along these
CVs. As will be presented in the current article, free-
energy landscape plotted against first two slowest varying
TICs, obtained by projecting them along a linear com-
bination of five traditional CVs, are able to resolve four
distinct metastable states which are not otherwise visi-
ble using conventional CVs. Apart from recovering the
folded,unfolded and molten globule ensembles of GB1 �-
hairpin, the free energy projection along optimized CVs
were able to spontaneously recover a partial helical state
of this protein, without needing to explicitly invoke helic-
ity as a constituent CV, unlike previous works. Further-
more, the relative contributions of each constituent in the
optimized CV were also quantitatively assessed. Finally,
the kinetic pathways connecting the metastable ensem-
bles were obtained under the frame-work of a Markov
state Model, which provided a streamlined view of the
underlying folding mechanism of GB1 hairpin.

II. MATERIAL AND METHODOLOGY

A. System preparation and molecular dynamics:

The C-terminal domain of GB1 hairpin (residues
41–56) was taken out from the full-length GB1 pro-
tein NMR structure (PDB: 1GB17). The peptide was
capped with acetyl group on N-terminal and methyl
amide on C-terminal. The 16-residue long peptide Ace-
41GEWTYDDATKTFTVTE56-Nme was modeled using
AMBER03-STAR27,28 forcefield and solvated in a trun-
cated octahedron simulation cell containing 984 TIP3P29

water molecules. The system was charge-neutralized by
using six Na+ ions, and three Cl� ions. All simula-
tions were performed using GROMACS 5.130 package.
The system was minimized for 10000 steps using steep-
est decent algorithm. Particle Mesh Ewald summation
method31 was used for long-range electrostatic interac-
tions with a 0.12 nm grid spacing and 1.0 nm cuto↵. All
the bonds connected with H atoms were constrained us-
ing LINCS32 method. SETTLE algorithm33 was used to
constrain the bonds and the angle of water molecules.
During equilibration period, solvent molecules were first
allowed to relax by restraining the positions of all heavy
atoms of the peptide in NVT ensemble at 300 K using
Berendsen34 thermostat for 200 ps. Then, the full system
was equilibrated at same temperature without any re-
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FIG. 2: Two dimensional free energy surface along the
conventional CVs: Rg, RMSD, Fraction of native
contacts(NC), number of water around peptide(NW),
and number backbone-backbone hydrogen bonds
(NHB). Contours are drawn at 1(white),1.5(black),
2(yellow), 3(green), 4(blue) kcal/mol.

strain using velocity-rescaling35 method with a coupling
constant of 0.5 ps for 500 ps. The system was further
equilibrated in NPT ensemble at 300 K and 1 bar pres-
sure for 5 ns using first Berendsen34 barostat, followed by
Parrinello-Rahman36 barostat with a coupling constant
of 2 ps. The equilibrated structure obtained at the end
of the NPT simulation was used for all subsequent NVT
simulations.
In this work, two types of simulations have been carried

out: REMD simulations17 and multiple unbiased room-
temperature simulations. REMD simulation is first uti-
lized to e�ciently sample the conformational landscape
and generate key conformations (by clustering) for ini-
tializing subsequent multiple unbiased room temperature
simulations. Subsequently, 200 multiple unbiased sim-
ulations, spawned from REMD-derived snapshot, were
performed and later used for deriving the optimized CVs
using TICA model. The REMD-derived trajectories were
finally employed again to project the conformational free
energy landscape along the optimized CV.
For the purpose of REMD simulations, a total of 32

replicas were used with temperature range 278-595 K.
The temperatures used were as 278, 287, 295, 303, 312,

321, 329, 338, 346, 355, 365, 375, 385, 396, 406, 416,
427, 437, 448, 459, 470, 482, 493, 505, 517, 528, 539,
551, 562, 573, 584, and 595 K. Each replica was initially
equilibrated at the given temperature in the NVT en-
semble for 20 ns. Subsequently, the simulations were
carried out for 400 ns per replica with a time step 2
fs, and the exchange between adjacent replica were at-
tempted at an interval of every 10 ps. The coordinates
were saved every 2 ps for the purpose of further anal-
ysis. Parallel Tempering Weighted Histogram Analysis
Method (PTWHAM)37 was employed for the calculation
of free energies. Figure S1A and S1B in SI text shows
the time evolution of two representative replicas of sim-
ulations. A good exchange among replicas during the
course of the simulation demonstrated that each trajec-
tory performs a random walk in temperature space. Fur-
thermore, the distributions of the potential energy for
all of the replicas (Figure S1C) clearly show reasonable
overlap between adjacent replicas and guarantee reason-
able exchange probabilities. The good correlation be-
tween calculated ensemble averaged NMR chemical shift
using SPARTA+38 at 278 K and experimental chemical
shift39 (Figure S2) further ensures that simulation is well-
converged and equilibrium ensemble is properly sampled.
The REMD conformations at 303 K were subsequently

divided into 200 clusters using the RMSD based k-means
clustering algorithm40. Then one conformation from each
of the clusters was selected randomly and used as a start-
ing conformation for subsequent unbiased MD simula-
tions. Each trajectory was simulated up to 100 ns at 303
K with the same setup as used for REMD simulations.

B. Time-structured independent component analysis:

The Independent Component Analysis (ICA)41 is a
statistical and computational technique for transforming
an observed multidimensional data into statistically inde-
pendent components, called the independent components
(ICs), and has been used extensively in the field of signal
processing and data analysis. Although there are vari-
ous ICA methods, we have employed the Time-structure
based Independent Component Analysis (TICA) which
is a kinetically motivated unsupervised learning method
to find the slowest degrees of freedom without losing im-
portant kinetic information. In TICA, the goal is to find
a linear combination of input coordinates or structural
order parameters that maximizes the autocorrelation of
transformed coordinates at a particular lag time. The
complete mathematical derivation for the TICA formal-
ism could be found in the references10–14. Here, we will
briefly describe it. It should be noted that, for clarity,
most of our notations is borrowed from the references9,14.
Let {Xt}

Nf�1
t=0 be a multidimensional time series MD

data where each frame of trajectory is represented via a
column vector of d-dimensions for a system. The Xt is a
frame at time t and Nf is the total number of frames in
MD trajectory data. Further, we are assuming that the
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mean of data is zero. The goal of TICA is to maximize
the function f(|vi), which is autocorrelation function of
the projection of |Xti onto |vi:

f(|vi) = E[hv|Xti hv|Xt+⌧ i]
E[hv|Xti hv|Xti]

Here, ⌧ is some lag time greater than zero. Since the
inner product is symmetric, we can rewrite this equation
as:

f(|vi) = E[hv|Xti hXt+⌧ |vi]
E[hv|Xti hXt|vi]

The outer products E[XtXt+⌧ ] and E[XtXt] in the above
equation are the same as the time-lag correlation matrix
C(⌧) and the covariance matrices ⌃, respectively. Hence,
we can rewrite the function as:

f(|vi) =
⌦
v|C(⌧)|v

↵

hv|⌃|vi

After applying the constraint on TICs to have unit vari-
ance: hv|⌃|vi = 1 and setting up optimization problem
that is similar to PCA and solvable via Lagrange multi-
pliers methods, it can be shown that the solution to above
equation is also a solution to the generalized eigenvalue
problem:

C(⌧)v = �⌃v

Further, the remaining TICs, the slowest projections,
can be obtained similarly by constraining the TICs to be
uncorrelated with the previously found solutions.
To find the desired TICs, we have followed the proce-

dure described in references9,14 with the following steps:
(1) We have run 200 unbiased (100 ns each) MD simula-
tions starting from the conformations obtained after the
clustering of 303 K REMD data, (2) then, five dimen-
sional time series data of five traditional and frequently
used CVs, namely, Rg of all backbone heavy atoms,
RMSD of all backbone heavy atoms with respect to the
crystal structure, fraction of native contacts (NC), the
number of backbone-backbone hydrogen bonds(NHB),
and the number of water molecules around 5 Angstrom
of peptide (NW) were used as input to build the TICA
model (which is a linear combination of the input CVs)
with a lag time of 1 ns using MSMBuilder3 package42.
The steps to build TICA models are:

• Compute time-lag correlation matrix, C(⌧), and co-
variance matrix, ⌃, from multidimensional time-
series data.

• Symmetrize the C(⌧).

• Solve the C(⌧)v = �⌃v.

• Then select desired number of eigenvectors (TICs)
with the top (largest) eigenvalues.

In this work, two TICs with the largest eigenvalues
(named hereafter as“TIC1” and “TIC2”) were used in
all the analysis.
Thus, the resulting TIC1 and TIC2 are linear combi-

nations of five input CVs and can be represented as ( see
equation 1):

TIC1 = cNHB
e�NHB + cNC

e�NC + cRg
e�Rg + cRMSD

e�RMSD + cNW
e�NW

TIC2 = c0NHB
e�NHB + c0NC

e�NC + c0Rg
e�Rg + c0RMSD

e�RMSD + c0NW
e�NW (1)

where e�k represents k-th mean free input CV and ck
and c0k are associated coe�cients for TIC1 and TIC2 re-
spectively. All the input CVs were first rescaled between
0 and 1 before using them to build the TICA model.

Toward this end, NC and NHB were calculated using

a switching function;

S =
X

i

X

j

sij

sij =

8
<

:

1�(
rij�d0

r0
)6

1�(
rij�d0

r0
)12

if rij > r0

1 otherwise

where d0 = 0.05 nm, and r0 = 0.65 nm were used for
NC calculation and d0 = 0.1 nm, and r0 = 0.23 nm were
used for the NHB calculation with D MAX = 0.25 nm as
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implemented in plumed43. rij is a distance where i and
j are pairs of all heavy atoms in native state within 0.65
nm whereas in case of NHB i and j are pairs of O and
HN atoms of backbone.

III. RESULTS AND DISCUSSIONS

A. Free-Energy Landscape of the �-hairpin along
traditional CVs does not resolve all important states

GB1 hairpin has remained a classic model system for
investigating the protein folding. Majority of the previ-
ous works have explored the conformations of �-hairpin
equilibrium by projecting the structural ensemble along
several conventional CVs, intuitively chosen based on in-
spection of simulation trajectories. The extensive stud-
ies on this system have zeroed in on five CVs, namely
Rg, RMSD, fraction of native contacts (NC), the num-
ber of backbone-backbone hydrogen bonds(NHB), and
the number of water molecules around 5 Angstrom of
peptide (NW). Before we arrive at our optimized sets
of CVs for GB1 hairpin, we first assessed the underly-
ing free energy landscape by projecting our extensively
performed (total 32 replicas from 278 to 595 K, each
of 400 ns) REMD simulated conformational ensembles
along these popular and conventional CVs, taking a pair
of conventional CVs at a time. Figure 2 shows the two-
dimensional free-energy surfaces as a function of pair of
CVs, at 303 K. These multi-dimensional free energy sur-
faces projected along the conventional CVs are very simi-
lar to the previous works and suggest that there exist only
two metastable states in the conformational landscape of
GB1 hairpin. Most of the earlier studies, focusing on the
folding mechanism of the beta-hairpin have attempted
to derive a CV that can distinguish between two major
events i.e., collapsing event and hydrogen bond forma-
tions. The culmination of all previous works have ma-
jorly pointed towards Radius of gyration (Rg) and the
number of intramolecular backbone-backbone hydrogen
bonds (NHB) of the GB1 hairpin as potentially capa-
ble of serving as better CVs. Accordingly, most of the
folding mechanisms of GB1 hairpin have revolved around
the projection of free energy profiles along these two CVs.
Previous studies have shown that the free energy land-
scape as a function of Rg and native hydrogen bonds is
L-shaped with either two states24 (folded and unfolded)
or three states22,25,26 (folded, collapsed, and unfolded).
When projected along same CVs, our results find it to be
a two state folder (Figure 2). However, none of the them
is able to show the importance of helix formation during
folding process of a beta-hairpin peptide. To understand
the role of helical structures in the folding process, previ-
ous investigations explicitly needed44,45 to use the frac-
tion of helical contacts as one of the CVs to separate out
the helical structures from unfolded ensemble. The over-
all analysis indicates the lack of an well-constructed and
rationally optimized CV which holds the potential of au-

tomatically resolving the free energy landscape of GB1
hairpin into all possible basins and can demarcate the
helical structures from unfolded ensemble without tak-
ing recourse to explicit usage of any secondary structure
analysis.

B. Optimized CV for GB1 based on TICA resolves free
energy landscape into four metastable states

The aforementioned discussion demonstrated that
these conventional CVs, when used as a pair, are not
su�cient to resolve all the relevant metastable states
of GB1 hairpin. In these contexts, as detailed in the
method section, we propose a pair of optimized CVs,
namely TIC1 and TIC2 (see equation 1) , derived using
a TICA-based approach by sampling over 200 unbiased
trajectories, each 100 ns long. As shown in equation 1,
the optimized CVs are the linear combination of five con-
ventional CVs, namely Rg, RMSD, NC, NHB, and NW.
Projection of unbiased trajectories along slowest first di-
mension TIC1 is shown in Figure S3 which suggests that
the peptide has explored enough phase space with suf-
ficient exchange between di↵erent conformations along
this optimized CV. Furthermore, Table S1 presents the
coe�cients associated with the each of five constituent
conventional CVs. We find that the values of these coef-
ficients are robust against variation of trajectory length
for construction of TICA dimensions.

The REMD trajectory at 303 K was projected along
the optimized CVs TIC1 and TIC2 (Figure 3A and B).
Figure 3B shows the two dimensional free energy surface
along TIC1 and TIC2. We find that the system shows it’s
characteristic L-shaped free energy landscape with four
free-energy basin named as ms1, ms2, ms3 and ms4 (Fig-
ure 3B). After clustering the conformations belonging
to those minima, we identify that conformations of min-
ima ms1 and ms4 belong to the unfolded and the folded
state whereas ms2 and ms3 are collapsed molten glob-
ule intermediate states. Interestingly, the state ms2 rep-
resents the conformations with helical contents. These
molten globule states with partial helicity were not easy
to distinguish using traditional CVs. The previous study
needed to use helicity as one of the reaction coordinates
to identify them in free energy landscape. However, the
CVs, optimized in the current work, can resolve the basin
with partial helical structure automatically. The one di-
mensional free energy surface along slowest TIC1 shows
two dominated unfolded (ms1) and folded (ms4) states
with very shallow intermediate states ms2 and ms3 (Fig-
ure 3A). The two intermediate metastable states ms2
and ms3 are not prominent enough along first slowest di-
rection but can be easily distinguished after considering
first two TIC dimensions. Thus, we suggest using more
than one dimension to get free energy surface with proper
metastable states in case of GB1 hairpin.
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FIG. 3: (A) One dimensional free energy surface along the first slowest TIC1 dimension, (B) Two dimensional free
energy surface along the first two slowest TICA dimensions: TIC1 and TIC2. Representative structures belonging to
a particular minima are also shown. Contours are drawn at 1(white),1.5(black), 2(yellow), 3(green), 4(blue)
kcal/mol.

C. Assessment of key contributors in the optimized CV

One of the major benefits of using feature space in
stead of coordinate space in the optimized CV is that
these features are easy to implement in enhanced sam-
pling method and more importantly one can quantita-
tively assess the role of each function in the underlying
mechanism. As illustrated by the coe�cients of opti-
mized CV (Figure 4) (normalized for comparison), in our
case, the native contacts of peptide (NC) contribute the
most towards the construction of slowest dimension TIC1

whereas Rg contributes more towards second slowest di-
mension TIC2. To assess the e↵ect of each constituent
CV in free energy landscape, we perform a negative con-
trol analysis, where we systematically remove one of the
constituent CVs from the optimized CVs, one at a time.
Subsequently, same procedure, as previously described,
is iterated to obtain the optimized CV using remaining
four conventional CVs. Figure 5 shows the e↵ect of ab-
sence of each constituent CV on the two-dimensional free
energy landscape. As is evident from the figure 5, opti-
mization of CV in absence of NC and Rg triggers largest
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FIG. 4: Percent contributions of the conventional
input CVs to the first two slowest dimensions (TIC1
and TIC2) are shown as a bar plot. Here, only absolute
value of coe�cients (see Table S1 in SI text) is
considered for contribution calculations.

change in the shape of the free energy landscape, whereas
absence of other constituent CVs has minimal a↵ect on
the overall free energy landscape. Thus, both weights
of constituent CVs in the optimized CV and the cross-
validation via systematically removing each of them, one
at a time, provide key insights on their e↵ective contri-
butions on the optimized CVs.
Figure 4 indicates that even though NC and Rg con-

tribute the most towards TIC1 and TIC2 respectively,
the other input CVs also have considerable contributions
in clearly resolving the four metastable states shown in
Figure 3. This is physically corroborated by figure
S4 (see SI) which illustrates the values of each input
CVs averaged along two-dimensional grids of TIC1 and
TIC2. As we see, while values of NC change sharply
along TIC1, suggesting the major change of nativeness
occurring along TIC1, it alone can not di↵erentiate be-
tween partially folded helical (ms2) and collapsed (ms3)
structures shown in Figure 3. Similarly, while Rg values
change sharply along TIC2, it also can not di↵erentiate
between fully folded (ms4) and partially helical struc-
ture(ms2). These emphasize the significantt role of the
other input CVs as a linear combination in resolving the
whole free energy landscape of GB1 hairpin.

D. Markov state Model along optimized dimensions
kinetically connects GB1 folding pathways

GB1 hairpin has been the subject of extensive Markov
state model (MSM) based investigations for obtaining the
kinetics of folding and unfolding of this peptide.45–50To
check or validate the robustness of the our TICA based
optimized CVs, we have generated the MSMs from un-
biased short trajectories by considering only first two
TICs at di↵erent lag time and compared the relaxation
timescale of slowest process with previous works. Fig-
ure 6A shows the relaxation time (implied timescales)

of ten slowest processes of this peptide. Our CVs also
show same relaxation timescale range and similar associ-
ated gap between them as in previous studies46,50. The
first large gap in the spectrum of the relaxation times is
between first and second mode (top blue line) whereas
the second gap is then between third and fourth slow
modes (green line from top), which suggests that there
are maximum four metastable states in the underlying
free energy landscape. Further, we have chosen 5 ns as
lag time to build the final MSM and coarse grained it into
four metastable states using Robust Perron Cluster Anal-
ysis (PCCA+)51,52. Interestingly, these four metastable
states obtained from hidden MSM correspond to the en-
ergy minima basin (ms1-4) obtained using REMD data.
Furthermore, we used transition path theory (TPT)53–55

as implemented in PyEMMA56 package to identify the
folding paths from unfolded state. The TPT analysis
suggests that transition from unfolded state (ms1) to
folded state (ms4) is more preferable through interme-
diate ms3 than ms2 (helical state). The TPT analysis
also demonstrates that helical intermediate state (ms2)
first converts into ms3 to achieve final native state (ms4)
(see figure 6 B). Previous kinetic studies also have sug-
gested that the folding rate of this peptide is very slow
if the starting state is helical. Thus, the combinations
of di↵erent input CVs improve the geometrical classifica-
tion of di↵erent kind of conformations and TICA, which
is a variational approach, helps in the identification of
few slow linear combination of the input CVs to obtain
proper metastable states with correct kinetics. Overall,
these brief kinetic analysis based on only first two slowest
CVs namely TIC1 and TIC2 highlight the usefulness of
these reduced but optimum dimension to provide insights
in the underlying folding mechanism of this peptide.

IV. CONCLUSIONS

In summary, the current article demonstrates that the
CVs optimized using linear combination of feature space
with recently described TICA approach o↵ers a promis-
ing direction towards exploring the free energy landscape
of GB1 hairpin with properly resolved intermediates. By
using feature space as the input CVs, the optimized CVs
can uncover atomistic details of the free energy landscape
of this quintessential model system for protein folding
quite e�ciently. Along with resolving the free energy
landscape into four well-resolved metastable states of the
short-chain peptide, the optimized CV could automati-
cally recover a partial helical state of this system, with-
out requiring the utilization of helicity as a constituent
CV. As an added advantage of expressing the optimal
CV in the form of linear combination of multiple conven-
tional CVs, the method allows one to test the contribu-
tion of each constituent CVs in the overall free energy
landscape of GB1 hairpin. These feature spaces with
TICA approach are easy to implement in enhanced sam-
pling method. More over, the MSM-based kinetic analy-
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FIG. 5: Two dimensional free energy surface along the first two slowest dimensions, (A) considering all the
functions: NHB (number of hydrogen bonds), NC (fraction of native contacts), Rg (radius of gyration), RMSD
(root-mean-square deviation), NW (number of water molecules around peptide), after dropping (B) NHB, (C) NC,
(D) Rg, (E) RMSD, (F) NW from the optimal CV. NC and Rg show largest e↵ect on free energy landscape whereas
others show minimal e↵ect. Contours are drawn at 1(white),1.5(black), 2(yellow), 3(green), 4(blue) kcal/mol.

FIG. 6: Top ten implied timescale values as a function of lag time. Di↵erent color line represents the di↵erent
implied timescales (relaxation time). Transition pathways between unfolded metastable state to folded state
(obtained using Transition Path Theory) shown on the top of free energy landscape obtained from REMD data.
elliptical shape represents the metastable state whereas thickness of arrow represents the net flux going from one
state to another state.
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sis based upon only a limited number of optimal CVs is
found to yield crucial insights on the folding pathways of
GB1 hairpin. Overall, we believe that this work provides
a general and e�cient approach to explore the protein
folding problem and further it can be extended to under-
stand the other complex biomolecular mechanisms and
pathways.
Finally, we note that while our results illustrate the

merits of the using the combination of physically mean-
ingful CVs with TICA approach, the computational cost
and quality of the optimized CVs can still be improved
by incorporating the nonlinearity in the combination. In
the last few years, the deep learning, a particular variant
of machine learning approach, is emerging as an e�cient
approach for identification of linear and/or nonlinear re-
action coordinates to perform biased sampling57–60. In
future, it would be interesting to compare the behavior
(i.e. weight) of these input feature variables in machine
learning approach to decode the inherent complexity of
protein folding processes.
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Figure S1: Time series of exchange among replicas at three representative temperatures (A) 278 
K, (B) 595 K. (C) The canonical probability distributions of the total potential energy for 32 
temperatures. 
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Figure S2: Average chemical shifts of Hα atoms of each residue are shown which were 
calculated from REMD simulated ensemble (considering all the frames) at 278 K using the 
program SPARTA+. Our results show a very good correlation between the calculated (predicted) 
and experimental chemical shift with R = 0.93 and root-mean-square deviation RMSD = 0.1 ppm 
with respect to experimental values. 
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Figure S3: Time series plot of a few out of 200 short trajectories along the slowest dimension 
TIC1 to demonstrate that there is enough exchange between different conformations in the phase 
space.  
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Figure S4: The dependence of all the CVs on TIC1 and TIC2 coordinates. Here, each 
conformation of REMD simulation at 303 k is represented by a point in the TIC1-TIC2 plane. 
Different conformations are represented by the color determined by the value along that 
particular input CVs (NHB, NC, Rg, RMSD, and NW). (A) Distribution of all the conformations 
are shown in the form of number of hydrogen bonds along TIC1 and TIC2 where blue color 
represents less number of hydrogen bonds and red mean high number of hydrogen bonds. 
Similarly, (B) fraction of native contacts, (C) Radius of gyration (Rg) which range between 0.5 
nm to 1.3 nm, (D) RMSD (nm), and (E) number water molecules within 5 Å of peptide.  
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Table S1: TIC coefficients calculated considering different lengths of short trajectories.  

TIC1	Coefficients		
Time	(ns)	 CNHB	 CNC	 CRg	 CRMSD	 CNW	

100	 0.1403	 -3.4493	 -1.0840	 1.3081	 -0.4593	
90	 0.1461	 -3.4567	 -1.1044	 1.3367	 -0.4566	
80	 0.1499	 -3.4559	 -1.1206	 1.3718	 -0.4569	
70	 0.1585	 -3.4603	 -1.1240	 1.3983	 -0.4589	
	 	 	 	 	 	

TIC2	Coefficients	
Time	(ns)	 C’NHB	 C’NC	 C’Rg	 C’RMSD	 C’NW	

100	 -0.8187	 -0.4036	 8.2601	 -1.3305	 0.5111	
90	 -0.8053	 -0.3980	 8.2666	 -1.2606	 0.5103	
80	 -0.7785	 -0.3439	 8.2907	 -1.0868	 0.5028	
70	 -0.7692	 -0.4030	 8.3714	 -1.1432	 0.4819	
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