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Abstract 
Understanding the link between community composition and function is a major challenge in             
microbial ecology, with implications for the management of natural microbiomes and the design of              
synthetic consortia. For this purpose, it is critical to understand the extent to which community               
functions and properties can be predicted from species traits and what role is played by complex                
interactions. Inspired by the study of complex genetic interactions and fitness landscapes, here we              
have examined how the amylolytic function of combinatorial assemblages of seven           
starch-degrading soil bacteria depends on the functional contributions from each species and their             
interactions. Filtering our experimental results through the theory of enzyme kinetics, we show that              
high-order functional interactions dominate the amylolytic rate of our consortia, even though this             
function is biochemically simple, redundantly distributed in the community, and additive in the             
absence of inter-species interactions. As the community grows in size, the contribution of             
high-order functional interactions grows too, making the community function increasingly          
unpredictable. We can explain the prevalence of high order effects and their sign from the               
redundancy of ecological interactions in the network, in particular from redundant facilitation            
towards a high-performing community member. Our results suggest that even simple functions can             
be dominated by complex interactions, posing challenges for the predictability and bottom-up            
engineering of ecosystem function in complex multi-species communities. 
 
Keywords: Synthetic ecology, microbial communities, high-order interactions, community        
structure-function landscape 
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Introduction 

Microbial communities carry out critical biochemical functions throughout the biosphere: from           

nitrogen fixation and photosynthesis to the recycling of nutrients and the decomposition of inert              

organic matter [1,2] . In host associated communities, the metabolic activity of the microbiota can              

also profoundly affect the host’s health, and has been found to modulate life history traits such as                 

flowering timing in plants [3,4] or the lifespan and reproductive behavior of animals [5,6] . In more                

applied settings, microbial consortia are being designed for the processing of undesirable materials             

into valuable products [7–11] , to protect valuable crops from pathogens [12,13] or other stressors              

[14,15] , or even to increase crop yields [16] . All of these effects that microbial communities have on                 

the environment and their hosts are often referred to as “functions” of these communities. These               

functions depend very strongly on community composition: i.e. on which species are present and in               

what numbers. Thus, manipulating community composition to accomplish desirable functional          

outcomes has become a major goal in fields as diverse as medicine, environmental engineering, and               

biotechnology [15] .  

 

To accomplish this goal, it is imperative to develop a predictive understanding of the relationship               

between microbial community composition and function [17,18] . This is widely recognized as one             

of the main challenges in the field [7,17–21] , but many fundamental questions remain. Importantly,              

it is still unclear to what extent one can predict the function of a large multi-species community                 

from low-dimensional information, such as the functional contributions of single species and their             

pairwise interactions [22–26] . The answer to this question has important implications: If predicting             

community function in such a bottom-up manner were generally feasible, this would encourage             

synthetic approaches to designing complex communities in a rational manner, by mixing and             

matching components with known functional traits [7,18,26,27] . However, the contributions of a            

given species or pair of species to a community function may also depend on the presence or                 

absence of other taxa, for instance through ecological interactions that modulate species            

abundance. This can easily lead to higher-than-pairwise functional interactions. If community           

functions were generally complex and enriched in nonlinear or higher order functional interactions,             

bottom-up prediction of community function would be significantly more challenging. In this            

scenario, top-down approaches such as community-level selection [28] might be a more promising             

avenue for the manipulation and design of complex microbiomes [4,14,28–32] .  
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The crux of the problem is thus the contribution of high order interactions to community functions.                

In spite of an increasing appreciation of the role that high-order interactions may play in               

ecosystems [25,33–35] , we still know little about their contribution to specific processes and             

community-level functions [6,36] . In order to tackle this question, one would need to disentangle              

the contributions of single species in isolation from the effects of pairwise and higher order               

interactions. This is a notoriously challenging problem, particularly for complex functions for which             

“first principles” mechanistic models are hard to produce [37] . A similar problem has been              

encountered many times before in other areas of biology, most notably in the study of fitness                

landscapes and genetic interactions (i.e. epistasis) among mutations [38–40] . Typically, a           

model-free statistical approach is typically followed in these studies in order to detect and quantify               

interactions when mechanistic models are not available. In this model-free approach, one compares             

the quantitative phenotype of a multiple mutant with the expectation from a null model that               

assumes that no interactions exist; typically null models assume that the phenotypic effects of each               

mutation add up [41–43] . The difference between the measured phenotype and the null model              

prediction is attributed to genetic interactions [41,42] . This approach is routinely applied to             

empirical fitness landscapes to detect pairwise epistasis [38,42] as well as to determine the impact               

of high-order gene interactions on cellular phenotypes [37,39,40] . In recent years, this approach             

has also been extended to detect interactions in other complex biological systems, e.g. between              

transcription factors in combinatorial gene regulation [44,45] , or among multiple drugs in            

antibiotic or cancer drug cocktails [46,47] .  

 

Applied to microbial communities, this strategy would involve reconstituting all possible           

combinatorial sub-communities (i.e. every possible monoculture as well as every possible pairwise            

co-culture, three species co-culture, four member co-culture etc.) and measuring their function;            

then comparing this measurement with the prediction from a null model to identify interactions              

[6,36] . Clearly, constructing a null model that captures the absence of interactions is critical for               

unambiguously establishing the contribution of both pairwise and high order interactions to            

community-level functions. Yet, for complex functions that are also often inherently non-linear and             

depend in poorly understood ways on the molecular interplay between hosts and microbes, it is far                

from obvious what that null model should be. Without it, the relative role of high-order interactions                

and the predictability of community function cannot be unequivocally determined. Here, we have             

tackled this problem by focusing on a simple community-level function that can be quantitatively              
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modeled on solid biochemical grounds. This allows us to formulate a null model that is based on the                  

theory of enzymatic kinetics and validate it experimentally. Armed with that, we are able to               

unambiguously show not only that functional interactions exist, but that high-order interactions            

often dominate the functional landscape of our microbial consortia. As we will show, our              

combination of theory and experiments also allows us to understand the ecological basis for these               

high-order functional interactions. 

 

 

Results 

A simple additive function in a simple in vitro consortium. We seeked to study a small synthetic                 

consortium that could be combinatorially reconstituted in vitro, and which performs a simple             

function that could be mechanistically and quantitatively understood from first principles when            

interactions among species are absent. Having a quantitative mechanistic model would allow us to              

directly detect interactions, as deviations from the predicted effect of independent species            

contributions. This is important because many complex biochemical functions can be non-additive            

even in the absence of interactions [44] . 

 

For this end, we constructed a synthetic consortium made up by seven amylolytic soil bacteria:               

Bacillus subtilis , Bacillus megaterium, Bacillus mojavensis , Paenibacillus polymyxa , Bacillus         

thuringiensis, Bacillus licheniformis , and Bacillus cereus (Fig. 1A). As a simple function that can be               

mechanistically understood from first principles, we chose the starch hydrolysis rate of the             

enzymes released by the consortium (Fig. 1B-C). This function was expressed on agar plates as well                

as in liquid culture (Fig. 1A-D) by all members of the consortia in isolation (Fig. 1D). The amylolytic                  

community function is thus redundantly distributed, and it is also a simple function that requires               

just one kind of extracellular enzyme (an endoamylase) on its biochemical pathway. 

 

A kinetic in vitro measurement of starch hydrolysis by purified B. subtilis amylase (Fig. 1B-C)               

indicates that starch hydrolysis follows a sequential two-step reaction with two identical rates (V),              

which is well fitted by a Michaelis-Menten Model (Fig. 1C; See Methods). The same model also fits                 

very well the kinetics of starch hydrolysis when we incubate soluble starch with the supernatants of                

every one of the species when grown independently in liquid culture (Fig. 1D). As shown in the                 

Methods section, a kinetic model of enzymatic starch hydrolysis where the enzymes released by              
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two species (A and B) act independently on the substrate predicts that the starch hydrolysis rate of                 

(V AB) is the sum of the catalytic rates of each enzyme in isolation (V AB=V A+V B). We tested this                 

prediction by growing all seven species in monocultures for 24 hours, and then mixing their               

supernatants in every possible pairwise combination (Fig. 1E). A series of different volumes of              

these supernatant admixtures were incubated with a 0.1% w/v starch solution for 2 hours, and the                

fraction of starch degraded in that time was then measured. A fit to the model in Eq. 2 (Methods)                   

allowed us to obtain the catalytic rate of the enzymatic cocktails, which can be compared to the                 

prediction from the model of independently acting enzymes (Fig. 1E). This naturally additive,             

interaction-free mechanistic model explains 97% of the variance observed when mixing every            

possible pair of enzymes from different species together (Fig. 1F).  

 

In summary, the theory of chemical kinetics states that the rate of hydrolysis when two different                

enzymes are mixed together should be the sum of the hydrolysis rate of each enzyme, if those                 

enzymes act independently on the substrate. This prediction is validated in our system. Therefore,              

when the species in our consortia are grown in separate culture tubes and thus do not interact with                  

one another in any way, their contributions to the rate of starch degradation add up. We have thus                  

selected a simple function that is additive in the absence of interactions, and which can be                

expressed redundantly by every member of our host-free consortium. This function can also be              

explained mechanistically in terms of simple biochemistry. Armed with this null mechanistic model,             

we are now set up to investigate the role of pairwise and higher order functional interactions in this                  

microbial ecosystem. 

 

Pairwise functional interactions are ubiquitous in our microbial consortium. To investigate           

the contribution of pairwise and higher interactions to the function of our consortia we made use of                 

tools that were originally developed for the study of genetic interactions. By analogy with Fitness               

Landscapes, we define the Functional Landscape as a map connecting every possible            

combinatorially assembled consortia with its function (which we generically denote as F and which,              

in the case at hand, it represents the amylolytic rate of the enzymes collectively secreted by the                 

consortia). In the absence of interactions, and as predicted by the null model described above, the                

Functional Landscape is expected to be smooth, and the function would grow monotonically with              

the number of members of the consortia (Fig. 2A). To test this prediction, we assembled consortia                

formed by pairs, trios, as well as four, five, six and seven member species and measured the                 

amylolytic rates of the enzyme cocktails they released after 24 hours of co-culture (Methods). The               
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results (Fig. 2B) show a marked deviation from the null additive model, indicating the presence of                

substantial functional interactions. 

 

To better understand these interactions and their implications, we quantified the deviations in the              

function of each consortium to the biochemical null in an approach resembling how epistasis              

quantifies gene-gene interactions in the context of fitness landscapes[6] . For instance in Fig. 2C-D              

we plot the Functional Landscape for two different pairwise consortia: one formed by B.              

thuringiensis and B. mojavensis (Fig. 2C) and a second one formed by P. polymyxa and B.                

thuringiensis (Fig. 2D). In gray, we show the expected function from the null model that assume that                 

no interactions are present and predicts that the function of a pair of species A and B (F AB,(Null))                  

would be equal to the sum of the catalytic rates of each species in isolation (VA and VB, so                   

FAB,(Null)=V A+VB). On top of this prediction we plot in red the experimentally measured function of the                

pairwise consortia. As we see in Fig 2C, the null model approximates fairly well the function of the                  

pairwise consortia formed by B. thuringiensis and B. mojavensis, suggesting that the pairwise             

interaction is weak for this pair. In contrast, the null model fails for the second consortia formed by                  

B. thuringiensis and P. polymyxa (Fig. 2D), indicating the presence of a stronger functional              

interaction (which we denote by the symbol 𝜀AB ). The deviation between the null model prediction               

and the function of the consortia quantifies the pairwise functional interaction (i.e: FAB=V A+VB+𝜀AB ). 

 

The strength of pairwise functional interactions can be determined in the same manner for other               

pairs of species too, and the result is presented in Fig. 2E. This plot identifies one of the species, P.                    

polymyxa, as the one having by far the strongest pairwise functional interactions. For pairs that do                

not involve P. polymyxa , pairwise interactions are weaker (and often negative) (Fig. 2E). Consistent              

with these findings, the additive “null” model is highly predictive of function (explaining 84.9% of               

the variance) for all of the consortia where P. polymyxa is absent, including three, four, five and six                  

members (Fig. 2F). Yet, it grossly underestimates function for all of the consortia that contain P.                

polymyxa , irrespectively of community size (Fig. 2F).  

 

Quantifying high-order functional interactions in our simple consortia. Although pairwise          

interactions are in some cases sufficient to describe important effects in ecology, recent work has               

highlighted the need to incorporate high-order relations, focusing mainly on their role in population              

dynamics [25,33–35,48,49] . However, the role that high-order functional interactions may play in            

determining community function is not well understood, and has only recently began to be              
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investigated [6,36] . Again borrowing from the study of complex genetic interactions[50] , one could             

determine the contribution of high-order functional interactions to the community-level function           

by measuring how much the pairwise functional interactions depend on their ecological context             

(e.g. which other members of the community are present) (Fig. 3A). To determine to which extent                

pairwise interactions depend on the presence of other species, we measured the amylolytic rate for               

every possible pairwise and three-member consortia, and then followed the approach outlined in             

Fig. 3A to determine how the presence of a third species altered the strength of a pairwise                 

interaction. The results are summarized in Fig. 3B, which exhibits a strong trend: the presence of P.                 

polymyxa substantially alters the pairwise functional interactions between every two other species,            

and the pairwise interactions that include P. polymyxa also exhibit substantial changes when a third               

species is present.  

 

This analysis shows that third-order functional interactions are present in our consortia, and they              

are particularly strong when they involve P. polymyxa . As a result, a model that incorporates the                

sum of all single species contributions and pairwise interactions for a three-member consortia,             

vastly overestimates the amylolytic function of our communities. An example is given in Fig. 3C,               

which shows a three member community formed by P. polymyxa , B. cereus and B. megaterium. None                

of the three have a strong amylolytic activity in monoculture, but the two pairs that include P.                 

polymyxa have high amylolytic rates, driven by strong pairwise interactions. However, as shown in              

Fig. 3D, the trio has much lower function than would be expected by adding together every possible                 

pairwise interaction. Third-order interactions (but not first order interactions; Fig S2) exhibit a             

strong negative correlation with the sum of all pairwise interactions (Pearson’s 𝜌=-0.96, P<10-10)             

(Fig. 3D), suggesting that pairwise interactions do not add up as one may predict based on the                 

Functional Landscape model in Fig. 3A. Instead, the result in Fig. 3D shows that pairwise               

interactions combine sub-additively, indicating that pairwise interactions in communities that          

contain P. polymyxa may be redundant.  

 

Redundancy of ecological interactions in multi-species consortia. The results reported in Fig.            

3D indicate that in multi-species consortia, the pairwise interactions involving P. polymyxa are             

functionally redundant. The strain of P. polymyxa we used in our consortia is a biotin auxotroph                

[51] , and it grows poorly in our growth medium, which does not include a vitamin supplement (Fig.                 

S3). This led us to hypothesize that the positive pairwise interactions between every other              

community member and P. polymyxa may arise as a result of facilitation towards P. polymyxa (Fig.                

7 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 29, 2018. ; https://doi.org/10.1101/333534doi: bioRxiv preprint 

https://paperpile.com/c/QkJzoK/mlBl+OkIj
https://paperpile.com/c/QkJzoK/PdZG
https://paperpile.com/c/QkJzoK/Xvr3
https://doi.org/10.1101/333534


4A). To test this hypothesis, we determined the number of Colony Forming Units of P. polymyxa in                 

monoculture as well as in co-culture with each of the other members of the consortia. Consistent                

with our hypothesis we find that P. polymyxa is substantially facilitated by every other member of                

the consortium (Fig. 4B), but their facilitative effects are redundant: co-culturing P. polymyxa with              

three or more members of the consortium produces the same growth stimulation than that              

observed in pairwise co-culture (Fig. 4C).  

 

Growth stimulation is also observed when P. polymyxa is grown in media supplemented with the               

filtered supernatant of every other species in monoculture (with the exception of B. megaterium              

and B. cereus, Fig. 4D). This ecological facilitation also results in a marked increase in the amylolytic                 

activity of P. polymyxa (Fig. 4E). To ensure that this increase in amylolytic activity is not due to the                   

activity of extracellular amylases carried over in the Bacillus filtrates, we filtered these a second               

time through a 30 KDa filter membrane (Methods), which is small enough to let vitamins such as                 

biotin through (MW~0.244 KDa) but blocks the passage of amylases (MW >50 KDa). Indeed, the               

filtrate through the second 30 KDa filter exhibited no amylolytic activity, demonstrating that             

amylases are not present. 

 

These results suggest that cross-feeding is sufficient to stimulate the growth of P. polymyxa , which               

also leads to a larger amylolytic activity (Fig. 4E), comparable to the highest levels observed among                

communities (see Fig. 2B). We also find that all of the Bacillus species in our consortia are able to                   

facilitate the growth of P. polymyxa , supporting our hypothesis that this facilitation is redundant. In               

other words, any combination of the Bacillus species stimulates the growth of P. polymyxa growth               

about as much as any of these species do separately (Fig. 4C and Fig. S5). Because all other                  

members of the consortium similarly stimulate the growth of P. polymyxa , and their combined              

effects are less than additive, high-order corrections are strongly negative and scale with the              

overestimation produced by adding together the second-order pairwise functional interactions,          

which explains the strong correlation between third-order and second order interactions reported            

in Fig. 3C. 

 

The strength of high-order interactions increases as the communities grow in size. The             

importance of high-order interactions is reflected by the poor predictive power of the pairwise              

model (Fig. 5A) for consortia with three or more species. This last result prompted us to ask                 

whether the importance of high-order interactions would grow as communities increase in size. As              
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shown in Fig. 5B, the ability of the pairwise to predict community function declines as more and                 

more species are added to the consortia. As shown in Fig. S4, the same is true even if we include                    

third-order interactions into the model. 

 

Discussion 

Functional interactions are observed when the contribution of a community member, or set of              

members, to a community-level function depends on the presence or absence of other species. For               

instance, pairwise interactions reflect how the contribution of a single species to a community              

function (e.g. in the case explored above, the amylolytic activity of the enzymes it secretes) depends                

on whether it is alone or in co-culture with a second species. Likewise, third order interactions                

capture how the function of a pair of species, (e.g. the amylolytic rate of the enzymes secreted by                  

the pair) is altered when a third species is present. This simple idea, based on the study of fitness                   

landscapes and complex interactions in genetics, allowed us to decompose the function of a              

community into the contributions of single species and the interactions that modulate these             

contributions, and can be used to shed light onto the role played by high order interactions in                 

community function. As we have shown here, and others have shown before in different contexts               

[37] , a null model of how the functional contributions of multiple species should combine to               

determine the community function is essential in order to unequivocally identify interactions            

through this approach. 

 

Most community-level functions of interest are highly complex. For instance, in consortia designed             

for biotransformation, multiple chemical steps (often carried out by different species) are typically             

required to convert waste materials into high-value products [8,9] . For host associated            

communities, functions of interest typically include effects that the community has on its host, be it                

on its health [15,52,53] , behavior [5] , or life history traits [3,6] . Thus, these functions involve not                

only biochemical processes carried out by the community, but the host’s response to them. Given               

this complexity, it is not obvious how functional contributions from many species should combine              

together to determine the community function.  

 

A similar problem has been found in the study of complex genetics. Most models in genetics assume                 

that the effects of non-interacting mutations are additive (e.g. [41,42,54] ). Although additivity can             

be used for lack of a better alternative, many functions in complex biological and biochemical               

systems are intrinsically non-additive even in the absence of direct interactions [44] , potentially             
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leading to misinterpretations of what are and are not interactions. This is well known in genetics,                

and it has lead to the argument that pairwise or higher order interactions may be statistical                

artifacts in the presence of non-linearities [37] . Unfortunately, what the form of the null model               

should be is far from obvious when the function or phenotype of interest is complex and difficult to                  

model mechanistically. Some encouragement comes from the recent application of similar methods            

to the study of interactions between antibiotics [46] and cancer drugs [47] . The combinatorial effect               

of multiple drugs could be predicted in a model-free manner from single drug effects and pairwise                

interactions alone, suggesting that low dimensional representations and a null additive model may             

be predictive even for highly complex biological processes for which a detailed mechanistic             

interpretation is not available [46,47] .  

 

Our approach here has been to examine a function for which a quantitative biochemical model               

could be derived, thus offering a direct estimate of interactions that does not rely on a priori                 

assumptions. By focusing on a simple, tractable model system for which we have a theoretically               

grounded mechanistic null model, we have been able to unambiguously determine the presence of              

pairwise and higher interactions in our model consortia. Our results emphasize the importance of              

high-order interactions in determining community-level functions, even for a decidedly          

non-complex function: one that could be independently carried out by each species in isolation, and               

that does not require more than a single gene in each species.  

 

One potential feature of our study is worth discussing. Our null model predicts that the amylolytic                

rate of the enzymes secreted by a multi-species consortium should be equal to the sum of the                 

amylolytic rates of the enzymes released by each species in monoculture. One could argue that,               

when grown in co-culture in the same bioreactor, each species would have access to less resources                

than they do in monoculture, as they are competing for the same pool of nutrients. It might thus                  

seem implausible that these species would ever combine additively, as the density that each species               

reaches in co-culture would be lower than it is in isolation. We note, however, that competition is a                  

form of ecological interaction that could have effects on function, and may very good lead to the                 

function of a consortia being different than additive. In spite of this, we find that consortia that lack                  

P. polymyxa are actually quite close to the additive functional prediction, (see Fig. 3D) even though                

competitive interactions are frequent in these consortia (Fig. S5). Moreover, the largest deviation             

we see from additivity come from consortia that contain P. polymyxa , and in those cases the                
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deviation is always positive (the function of these consortia is always larger than the predicted by                

the additive model), and this is mediated by facilitation, rather than competition.  

 

It is yet unclear what these findings mean for the complex functions that are of interest in most                  

natural and synthetic systems. By comparison to an additive null model, high-order interactions             

have been reported in a set of recent experiments where the microbiome of D. melanogaster was                

combinatorially reconstituted to map its effects on several life history traits of the fly, such as its                 

longevity or developmental time [6] . The confluence of findings between this study and ours              

suggest that high-order functional interactions may be generically prevalent in microbial           

communities, presenting a fundamental challenge to predict their function from the bottom-up.            

While this may be seen as a disappointment, it is not unusual in ecology, nor in complex systems in                   

general, that the whole is more than the sum of its parts. Understanding exactly how this                

complexity works and how the parts come together to produce complex quantitative traits has lead               

to fruitful research in other fields, from genetics to metabolism to neuroscience. We hope that our                

findings will help motivate similar efforts in microbial ecology. 

 

Methods 

Strains and Media . Bacterial strains were obtained from ATCC (Manassas, VA) with the following              

designations: Bacillus subtilis (ATCC 23857), Bacillus megaterium (ATCC 14581), Bacillus mojavensis           

(ATCC 51516), Paenibacillus polymyxa (ATCC 842), Bacillus thuringiensis (ATCC 10792), Bacillus           

licheniformis (ATCC 14580). Bacillus cereus was isolated from a soil sample in Boston,             

Massachusetts. Cell stocks were prepared according to manufacturer instructions and stored at            

-80ºC in 40% glycerol.  

  

Basic growth minimal media (1x bSAM) was prepared from 10x concentrated stocks of bM9 Salts               

containing Na 2HPO 4 × 2H 2O (85.4 g/L; Bioworld), KH 2PO 4 (30 g/L; Fisher Scientific), NaCl (5 g/L;               

Sigma Aldrich), NH 4Cl (10 g/L; Fisher Scientific), supplemented with 0.04% synthetic complete            

amino acids (w/v; Sunrise Science Products), 0.1% starch (w/v; soluble, Sigma Aldrich), 1% trace              

mineral supplement (v/v; ATCC), CaCl 2 (0.1mM; Sigma Aldrich), and MgSO 4 (2mM; Fisher            

Scientific). Starch assay media consisted of 2x bM9 salts, supplemented with 0.2% starch (w/v),              

CaCl 2 (0.2mM) and MgSO 4 (4mM).  
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Culture inoculation and combinatorial assembly. Strains were streaked out on BE Starch Agar             

(0.3% beef extract, 1% starch) plates and grown for 24 hours at 30oC. Seed cultures were started                 

from several colonies (depending on colony size), inoculated into three mL 1x bSAM and grown still                

at 30oC for 24 hours. Cultures were then transferred to a 96 well plate (Corning Cat. No. 3596) and                   

the optical density (620 nm) of 100 µL was measured (Multiskan Spectrophotometer; Fisher             

Scientific). Cells were harvested by centrifugation at 3500 rpm for 15 min, washed twice with 1x                

phosphate buffered saline and suspended in fresh 1x bSAM media at a concentration of 5x105               

cfu/µL. Monocultures or combinatorially assembled communities of the seven bacilli species were            

prepared by inoculating two µL from each seed culture into 96 deep-well plates (VWR) containing               

500 µL of 1x bSAM. Plates were covered with Aerogel film (VWR) and incubated still at 30oC for                  

another 24hrs. Optical density (620 nm) of the grown cultures was measured as above at the end of                  

the new incubation period.  

 

Quantifying growth of P. polymyxa in pairwise co-cultures. Combinatorially assembled          

communities were incubated at 30oC for 24hrs and then stored at -80oC in 40% glycerol. To                

measure the amount of P. polymyxa colony forming units (cfu) in each mixture, ∼20µl of the frozen                 

stock was melted and serially diluted 1:10 up to 1:105. 50µl of dilutions 1:102, 1:103, 1:104 and 1:105                  

were then plated onto BE Starch and incubated at 30oC for 48hrs. Plates were scanned with an                 

EPSON Perfection V700-V750 scanner at a 300dpi resolution and cfu/mL were recorded with the              

ImageJ plugin Cell Counter. Colony morphology was different enough to easily allow differential             

identification of P. polymyxa  from all other species. 

 

Cross-feeding Assays. The seven bacilli strains were individually grown in three mL of 1x bSAM at                

30oC for 24 hrs. To obtain the the supernatants for cross-feeding assays, cultures were pelleted at                

3500 rpm for 15 min and the supernatants were carefully transferred to clean sterile tubes and                

kept at room temperature. Cells were processed as described above. Supernatants were then             

transferred to 0.2 µm spin filter columns (VWR 82031-358) and centrifuged at 14000 x g for 5                

minutes. The flow-through was subjected to a second filtration step through a 30 KDa centrifugal               

device (Nanosep 3K; Pall OD003C33) at 5000 x g for 10 min. 50 µL of undiluted supernatants were                 

mixed with 250 µL 2x bSAM and 200µL water in 96 deep-well plates. Two µL containing 106 cfu of                   

P. polymyxa cells were inoculated into this media and grown still at 30oC for 24 hours. Prior to                  

filtering, all devices were sanitized with 70% ethanol, according to manufacturer instructions. 
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Determination of amylolytic rates. Starch hydrolysis assays were based on a Lugol iodine             

staining method for starch [55] . Lugol Staining solution was prepared with 390 mL water: 60 mL                

Lugol’s Iodine stain (Sigma Aldrich). Supernatants containing extracellular amylases were prepared           

for enzymatic assays by applying 330µL of homogeneously suspended bacterial cultures grown for             

24 hrs directly to a 96 well 0.2µm Acroprep filter plate (Pall Corp., Cat. No. 8019) fitted to a 96 well                     

collection plate (Corning, Cat. No. 3596) with the metal collar adaptor (Pall Corp., Cat. No. 5225)                

and centrifuged for 20 minutes at 1500 xg in a table top centrifuge (Eppendorf 5810).  

  

Assays, in 96 well plates, contained varying volumes of filtered supernatant (100, 50, 25, 10 and                

5µL), 100µL 2x SAM and water to a total reaction volume of 200 µL. Control reaction plates were                  

also prepared for either no enzyme (100µL 2x SAM and 100µL water) or no starch with                

supernatant (100µL water and 100µL supernatant). Reactions, assembled with pre-warmed SAM,           

were incubated at 30oC to the desired time point, and quenched by transferring 50 µL to a solution                  

containing Lugol Iodine stain (130 µL water and 20 µL Lugol per well). Starch degradation was                

quantified by measuring the optical density at 690 nm.  

 

Michaelis-Menten kinetic model of starch hydrolysis. Our model is based on the theory of              

chemical kinetics [56] , which predicts that when a reaction can occur independently and in parallel               

through distinct channels, the overall rate of the reaction is the sum of the rates for each of the nS                    

independent channels [57] . We here consider that starch is broken down in a two-step              

Michaelis-Menten scheme, with both steps having equal rate where . We       [E ]V j = kcat, j  j  , , ..,j = 1 2 . nS   

make the further assumption here that substrate concentration [ S ] is much larger than the              

Michaelis constant KM, so that the enzyme is always saturated. Previous characterization of KM for               

various bacilli amylases acting on non-soluble amylases are in the range of ~1-5 mg/mL [58,59] ,               

indicating that this assumption is reasonable. Each step is catalyzed by the types of enzymes            nS    

released by the species in the consortia. Since all enzymes break down starch independently   nS            

from each other, the velocity of each step is thus: 

,[E ]V = ∑
nS

j=1
V j = ∑

nS

j=1
kcat, j  j  (Eq. 1) 

and therefore the fraction of starch degraded by the enzymes after a time t  is: 

.1 t)e 1 [E ] t)ef = 1 − ( + ∑
nS

j=1
V j

− t∑
nS

j=1
V j

= 1 − ( + ∑
nS

j=1
kcat, j  j

− [E ] t∑
nS

j=1
kcat, j  j

(Eq. 2) 
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Equation [4] gives us the fraction of starch degraded over a time t by a cocktail of enzymes of rates                    

that act independently on the substrate, and whose catalytic rates are not affected[E ]V j = kcat, j  j               

by each other’s presence.  

 

A fundamental prediction of this model is that there exists a symmetry between the enzyme               

concentration ([ E ]) and the incubation time (t). In other words, the same amount of starch would be                 

degraded by increasing the incubation time 10-fold and leaving the enzyme concentration constant,             

as it would by leaving the incubation time constant and increasing the enzyme concentration by               

10-fold. This prediction was proven to be valid for a wide range of values of time (from 10min to                   

120min) and enzyme concentration (0.0078mg/mL to 0.125mg/mL) (Fig. S1). 

 

 

Determining pairwise and third order interactions. High-order interactions can be quantified           

by following the scheme in Fig. 3A, and briefly summarized below: Denoting by FABC
(0) the starch                

hydrolysis rate of the enzymes secreted by a three-species community, we can decompose this              

function in terms of the functional contributions from each of the single species in isolation               

Fj
(0)(where j=A,B,C), and which in this case are equal to the catalytic rates of the enzymes secreted                 

by each species in monoculture (F j
(0)=V j); the pairwise interactions measured from each pair in              

isolation (𝜀ij 
(0), where i,j=A,B,C), and a term that captures the high-order three-way interactions             

when the three species are together in co-culture (𝛥𝜀ABC
(0)): 

F ε      i, , ,F ABC
(0)

 = ∑
 

i

 

i
(0) + ∑

 

(i=j)/

 

ij
(0) + ΔεABC

(0)
     

 
j = A B C (Eq. 3) 

Since FABC
(0) is the net function of the three-species community, which can be measured              

experimentally; and all of the Vi
(0) and 𝜀ij 

(0) parameters can also be measured independently from               

the function of the monocultures and pairwise co-cultures, we can experimentally determine the             

strength of three-way interactions (𝛥𝜀ABC
(0)) as: 

     i, , ,Δε F V εABC
(0) = ABC

(0) − ∑
 

i

 

i − ∑
 

(i=j)/

 

ij
(0)

   

 

j = A B C (Eq. 4) 

 

Determining fourth and higher-order interactions: For communities of size N (larger than            

three-species), Equation 3 can be expanded as 
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V εFN = ∑
N

i=1

 

i
(0) + ∑

N

i=j/

 

ij
(0) + Δ3

(0) + Δ ...4
(0) + Δ5

(0) +
   

(Eq. 5) 

Where the collection of high order interactions can be defined as the sum of three-way (𝛥3
(0))                

four-way (𝛥4
(0)), five-way (𝛥5

(0)) interactions in isolation, etc., and can be determined            

experimentally as: 

Δ V εHN = ∑
N

S=3

 

S
(0) 

= FN − ∑
N

i=1

 

i
(0) + ∑

N

i=j/

 

ij
(0) (Eq. 6) 
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Figure 1. Starch degradation of simple consortia follows an additive null biochemical model.  

A. Extracellular degradation of starch is observed as a halo around colonies of different bacilli               

species growing on basic growth minimal media (1x bSAM). Starch is stained in blue using Lugol                

Iodine stain. B. Cartoon depicting the release of amylase (blue) and the extracellular degradation of               

starch (gray), which we model as a two-step process. C. Starch hydrolysis follows a sequential               

two-step reaction (black dots) that is well fitted by a two-step Michaelis-Menten Model. D. The               

kinetics of the amylolytic activity for the supernatants of individual species inoculated into 3mL of               

1x bSAM and grown for 24hrs. We quantified the fraction of starch degraded by different dilutions                

of the filtered supernatants from each monoculture in reactions incubated at 30oC with 0.1% (w/v)               

starch for 180 min and quenched by a solution containing Lugol Iodine stain. Experimental data               

(red points) was fitted to Equation 2 (solid line, see Methods). E. Kinetics of the amylolytic activity                 

for pairwise combinations (1:1) of the filtered supernatants of monocultures grown and assayed as              

in panel D. In addition to experimental data (red points) and fitted catalytic rate (Vij; solid black                 

line), we also show the prediction from the individual models assuming catalytic rates of the               

individual enzymes are additive (gray line ± 2SE). F. Comparison of fitted vs predicted values of Vij                 

for the same pairs shown in panel E (error bars represent ± 2SE); red line represents perfect                 

prediction. Note the log-log scale.  
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Figure 2. Pairwise interactions are ubiquitous in our microbial consortia.  

Cultures of the seven bacilli species grown at 30oC for 24 hrs were concentrated, washed and                

resuspended in growth media to assemble consortia containing one, two, three, four, five, six or               

seven species. Communities grew at 30oC for an additional 24hrs and the amylolytic rate of each                

supernatant was then measured (Methods). Species are designated as C, B. cereus; E, B. megaterium;               

L, B. licheniformis; M; B. mojavensis; P, P. polymyxa; S, B. subtilis and T, B. thuringiensis.  

A. Functional landscape expected from a pure additive biochemical model, as a function of species               

richness (x axis, richness measured as number of species in the consortia). The additive model               

assumes that the function (F ; amylolytic rate) of the enzymes collectively secreted by the              

communities represents the sum of each individual species contribution (shown in the inset). B.              

Experimental functional landscape, where each point is the experimentally measured amylolytic           

function of a consortium. C. Example of a non-interacting pair (B. mojavensis and B. thuringiensis).               

Red lines show experimental measures (± SE), which are well predicted by the additive model              

(gray). D. Example of an interacting pair (P. polymyxa and B. thuringiensis) where the              

experimentally measured function of the pair (red) is not well predicted by the sum of the                

individual contributions (gray). The difference 𝜀PT quantifies the pairwise interaction. E. Pairwise            

interactions (𝜀AB ) in all possible two-member species consortia. F. Comparison of the community              

function (amylolytic rate) experimentally measured as in Fig. 1D versus the function predicted by              

the additive model. Shape and color represent community size and presence of P. polymyxa ,              

respectively.  
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Figure 3. Higher order interactions in simple amylolytic consortia. A. Box explaining how             

single, pairwise and higher order interactions in the function of microbial consortia can be              

separated and quantified using Ecological Functional Landscapes. B. Third order interactions in            

trios (𝛥𝜀ABC), quantified as the difference in the interaction when a pair “AC” is grown alone (𝛥𝜀AC
0)                 

versus in the presence of a third species “B” (𝛥𝜀AC
Β) whose identity is shown in x axis. Species are                   

designated as in Fig. 2. Trios containing P. polymyxa are shown in orange, and in blue otherwise. C.                  

Third-order interactions (y axis) are strongly anti-correlated to pairwise interactions (x axis)            

Pearson’s 𝜌=-0.96, P<10-10. D. Quantification of a third-order interaction between P. polymyxa (P), B.              

mojavensis (M) and B. subtilis (S) suggests redundancy between B. mojavensis and B subtilis when P.                

polymyxa  is present. 
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Figure 4. Redundancy in the ecological      

facilitation of P. polymyxa explains     

higher-order interactions. A. If P. polymyxa      

growth can be facilitated by any other species,        

this facilitation could be redundant. Species      

are designated as in Fig. 2. B. P. polymyxa         

grows in the presence of any other species        

(gray bars), but not in monoculture (orange       

bar). CFU/mL was obtained by colony      

counting of serially diluted cultures after      

24hrs of growth at 30oC. C. P. polymyxa grows         

to a comparable density in the presence of        

concurrent species, irrespective of their     

number (x axis). This strongly suggests      

redundancy in the facilitation mechanism. D.      

In contrast to monoculture in minimal      

medium (orange), P. polymyxa exhibits     

growth when cultured in media     

supplemented with the filtered supernatant of      

other species (1:10 dilution, Methods). E.      

Function (amylolytic activity, U × hr-1) of P.        

polymyxa cultured as in panel D. 
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Figure 5. The strength of high-order interactions increases with community size. A. Plot             

showing the prediction from the pairwise model against the experimentally measured value for             

communities of different size (represented by point color). B. Strength of higher order interactions,              

measured as the absolute value of the difference between the function determined            

experimentally(amylolytic activity, U × hr-1) and the expected one using the model including only              

single and pairwise effects.  
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Supplementary information 

 

Figure S1 . The model predicts an invariance between the         

time of incubation and the enzyme concentration. This        

was confirmed experimentally by either A. fixing the        

incubation time t and changing the enzyme concentration [E]         

or B. fixing the enzyme concentration and changing the         

incubation time. The fitting parameter kcat obtained is        

consistent across both conditions and over several orders of         

magnitude for both [E] and t, indicating that the two-step          

Michaelis-Menten model is a reasonable quantitative      

mechanism of starch hydrolysis by extracellular amylases. 

 
 

 

 

 

 

 

Figure S2. Sum of pairwise interactions is not        

correlated to additive expectation in     

three-species communities. Groups containing    

P. polymyxa are shown in orange, and in blue         

otherwise. 
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Figure S3. P. polymyxa grows better in media supplemented with vitamins. Optical density             

(620nm) of cultures of P. polymyxa grown at 30oC for 24 hrs in rich media (BE starch) or 1x bSAM                    

supplemented, as indicated, with a combination of 1% trace mineral supplement (T); 0.04%             

synthetic complete amino acids (C) or 1% vitamin supplement (V; v/v, ATCC). Growth of P.               

polymyxa in media containing the three supplements (TCV) shows a marked increase, whereas the              

media routinely used in this work (TC) poorly sustains its growth. Plots show the media for two                 

replicates and the standard error. 
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Figure S4. Strength of higher order interactions,       

measured as the absolute value of the difference        

between the measured function and the expected       

one using the model including only single,       

pairwise and third-order effects. Orange and blue       

dots represent communities with or without P.       

polymyxa , respectively. 
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Figure S5. Changes in CFU/mL observed after co-culturing the different bacilli species in             

pairs.  

Cultures of the seven bacilli species grown at 30oC for 24hrs were concentrated, washed,              

resuspended in growth media to inoculate monocultures or pairs and were grown at 30oC for an                

additional 24hrs. Species (light and dark green) are designated as C, B. cereus; E, B. megaterium; L,                 

B. licheniformis; M; B. mojavensis; P, P. polymyxa ; S, B. subtilis and T, B. thuringiensis. Upward arrows                 

denote an increase in CFU/mL from the value obtained when the two species are grown in                

monocultures to the value obtained after the same two species were co-cultured for 24hrs.              

Downward arrows indicate a decrease in CFU/mL. 
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