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Abstract 24 

 25 

The rapid accumulation of ancient human genomes from various places and time periods, 26 

mainly from the past 15,000 years, allows us to probe the past with an unparalleled 27 

accuracy and reconstruct trends in human biodiversity. Alongside providing novel 28 

insights into the population history, population structure permits correcting for population 29 

stratification, a practical concern in gene mapping in association studies. However, it 30 

remains unclear which markers best capture ancient population structure as not all 31 

markers are equally informative. Moreover, the high missingness rates in ancient, 32 

oftentimes haploid, DNA, may distort the population structure and prohibit genomic 33 

comparisons. In past studies, ancestry informative markers (AIMs) were harnessed to 34 

address such problems, yet whether AIMs finding methods are applicable to aDNA 35 

remains unclear. Here, we define ancient AIM (aAIMs) and develop a framework to 36 

evaluate established and novel AIMs-finding methods. We show that a novel principal 37 

component analysis (PCA)-based method outperforms all methods in capturing ancient 38 

population structure and identifying admixed individuals. Our results highlight important 39 

features of the genetic structure of ancient Eurasians and the choice of strategies to 40 

identify informative markers. This work can inform the design and interpretation of 41 

population and medical studies employing ancient DNA. 42 

 43 

 44 

  45 
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Author summary 46 

Ancient DNA studies aim to identify geographical origin, migration routes, and disease 47 

susceptibility genes through the analysis of genetic markers such as single nucleotide 48 

polymorphisms (SNPs) in growing cohorts of ancient data. In addition to the existence of 49 

sub-structure in the studied population (i.e., differences in ancestry), ancient DNA suffers 50 

from high missingness rates and is oftentimes haploid, which may distort the inferred 51 

population structure and lead to spurious results. It is thereby imperative to address this 52 

possible bias by identifying the most accurate population structure. Due to the success of 53 

past studies in addressing similar problems using ancestry informative markers (AIMs), 54 

we defined ancient ancestry informative markers (aAIMs) that like AIMs can be used to 55 

interrogate ancient population structure. To find aAIMs, we designed a framework to 56 

evaluate established and novel AIMs-finding methods. We developed a database of 57 

150,278 autosomal SNPs from 302 ancient genomes and 21 populations recovered from 58 

Europe, the Middle East, and North Eurasia dated to time periods from 14,000 to 1,500 59 

years ago. We then applied two existing and three novel AIMs-finding methods and 60 

compared their performances against the complete dataset. We found that a novel 61 

principal component analysis (PCA)-based method captured the ancient population 62 

structure most accurately. Importantly, we introduce here a novel concept of aAIMs, a 63 

novel method that effectively identifies aAIMs, and a framework to compare the 64 

performances of AIMs. The outcome of our studies can improve the accuracy of genetic 65 

studies employing ancient DNA. 66 

  67 
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Introduction 68 

 69 

Population stratification or geographic variation are a major concern in population, 70 

biomedical, and evolutionary studies. In genetic association studies, mismatching cases 71 

and controls introduces genetic heterogeneity that can lead to spurious associations and 72 

obscure the true association [1, 2]. In large groups the stratification bias may be less 73 

pronounced, but it is practically unavoidable in the case of rare diseases due to the 74 

difficulties in recruiting genetically homogeneous participants [3]. These problems are 75 

particularly challenging since the human population structure itself remain contentious. 76 

Nonetheless, is now clear that conquering population structure requires considering 77 

ancient DNA (aDNA) [4-6]. 78 

 79 

The advent of next-generation sequencing and the availability of large-scale genomic 80 

data and genotyping techniques have facilitated investigations of genomic variability that 81 

are central to understanding our evolutionary history and genomic origins. Over the last 82 

decade a plethora of ancient human genome sequencing projects have been 83 

accomplished, generating more than a thousand ancient genomes [7]. The revolution in 84 

aDNA sequencing has aided in investigations of ancient human migration, human 85 

adaptation, agricultural lifestyle, and disease co-evolution [7]. Notwithstanding its 86 

usefulness in delineating the evolutionary history of mankind, aDNA data can be 87 

problematic due to its haploidity and high missingness [6], which require having a large 88 

number of SNPs to infer population structure. However, SNPs are not equally 89 

informative and may distort the population structure. The plethora of mismatching 90 
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markers sequenced in different genomes has revived the “of AIMs matrix” problem and 91 

the difficulty of comparing genomes. These problems are not new and rather reminiscent 92 

of the early stages of human population genetics. Then, one of the most successful 93 

solutions was using ancestry informative markers (AIMs).  94 

 95 

AIMs are SNPs which exhibit large variation in minor allele frequencies (MAF) among 96 

populations. Over the past two centuries DNA studies scour genomes for these genetic 97 

patterns and produced numerous AIM sets for various purposes including determining an 98 

individual’s ancestry, detecting stratification in biomedical studies, inferring geographic 99 

structure, and localizing biogeographical origins [e.g., 8, 9-12]. AIM panels can delineate 100 

population structure in a cost effective manner by identifying population specific 101 

markers, which in turn help in detecting and correcting for variation in individual 102 

ancestry that can confound methods like admixture mapping, Mendelian Randomization 103 

trials, association studies, and forensics by increasing false positive results and/or 104 

reducing Power [e.g., 13, 14, 15]. In the case of genetic association studies, AIMs-based 105 

solution has been preferred over methods like genomic control (GC) correction, which is 106 

only applicable in genome-wide scale data [16]. However, it remains uncertain which 107 

AIMs to use since all AIMs panels have limitations [17] and their applicability to ancient 108 

genomes was never tested. The characteristics of ideal AIMs are remain contentious with 109 

some authors preferring common SNPs (minor allele frequency >1%) [16], SNPs with 110 

high FST [18], SNPs with high pairwise MAF between populations [17], or SNPs that 111 

satisfy several criteria. Consequently, AIMs may not overlap across studies that focus on 112 

particular populations and even those reported in global studies do not necessarily 113 
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overlap. Finally, studies typically show that AIMs can separate populations or broadly 114 

classify individuals into subcontinental populations, rather than capture the population 115 

structure of the complete SNP set or allow fine-population mapping. Given the 116 

uncertainties surrounding AIMs, their potential incompatibility to capture ancient 117 

structure and admixtures, and the challenges imposed by aDNA data, it is unclear 118 

whether, if at all, AIMs-finding methods or AIMs can be utilized to study ancient 119 

population structure. 120 

 121 

In this study, we defined ancient ancestry informative markers (aAIMs) as SNPs that vary 122 

in their MAF across ancient populations (Figure 1) and attempted to identify and validate 123 

the first autosomal aAIMs. Since AIMs-finding tools were never tested on aDNA, it was 124 

necessary to compare their ability in finding aAIMs. For that, we interrogated a 125 

comprehensive dataset of 302 ancient genomes classified to 21 populations from Europe, 126 

the Middle East, and North Eurasia. This dataset was used to compare two existing AIMs 127 

finding algorithms: Infocalc [19] and Wright’s FST [20, 21], three novel Admixture- and 128 

PCA-based algorithms, and two random SNP sets in identifying aAIMs that can capture 129 

the population structure and identify admixed individuals. Our study offers a 130 

methodological framework to evaluate AIMs, contrasts different strategies to find aAIMs, 131 

and reports the first set of aAIMs.  132 

 133 

 134 

 135 

  136 
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Results 137 

 138 

Ancient genomic data 139 

 140 

We developed a framework to identify and evaluate the efficacy of aAIM candidates in 141 

capturing ancient population structure and allow admixture mapping (Figure 2). We 142 

constructed a dataset of 150,278 autosomal SNPs from 302 ancient genomes and 21 143 

populations recovered from Europe, the Middle East, and North Eurasia dated to time 144 

periods spanning the past 14,000 years till 1,500 years ago (Figure 3, Table S1). Due to 145 

the limited availability of ancient genomes, our dataset was inconsistent over time and 146 

space. For instance, there were 57 Central European genomes from the Late Neolithic to 147 

the Bronze Age, but populations, such as, Central Western Mesolithic Europeans, Bronze 148 

Age Jordanians, Chalcolithic, and Mesolithic Russians, comprised of three genomes each. 149 

 150 

Missingness largely varied between the samples and markers. The sample-based 151 

missingness ranged from 0.05% (KK1) to 99.2% (I1951) with an average of 54%. The 152 

sample-based missingness varied among populations with Levantine Epipaleolithic 153 

Neolithic genomes having the highest missingness (n=19, µ=90±16%) and Mesolithic 154 

Swedish genomes having the lowest one (n=8, µ=29±27%). The variant-based 155 

missingness ranged from 30% to 98% with an average of 54%.  156 

 157 

Principal component analysis (PCA) of the ancient genomes substantiated previous 158 

observations of a Europe–Middle East contrast along the vertical principal component 159 
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(PC1) and parallel clines (PC2) in both Europe and the Middle East (Figure 4). Genomes 160 

from the Epipaleolithic and Neolithic Levantine clustered at one extreme of the Near 161 

East-Europe cline with some overlapping with Neolithic Turkish and Central European 162 

genomes. Neolithic Iranians clustered between Central European genomes. While ancient 163 

Spanish, Armenian, Central EU, and British genomes occupied the intermediate position 164 

of Near Eastern and North Eurasian genomes, Russian and Swedish genomes clustered at 165 

the end of the Near East-Europe cline.  166 

 167 

We next applied an unsupervised ADMIXTURE analysis to the dataset. Analyzing the 168 

results generated with various number of splits (K) (Figure S1), no choice of K 169 

minimized the cross-validation error (CVE) (Figure S2), likely because the high noise 170 

and missingness in the data prevented the CVE from stabilizing. We observed that at 171 

K=10, multiple genomes (e.g., Britain Iron Saxon, Mesolithic Neolithic Caucasus 172 

population, Bronze Age Jordanian and Epipaleolithic Levantine, Chalcolithic, Mesolithic 173 

and Early Mid Bronze Russian, Early Neolithic Spanish, Mesolithic and Mid Neolithic 174 

Swedish, and Neolithic Turkish) appeared homogeneous in relation to their population 175 

and assigned to a distinct allele frequency profile or admixture components (Figure 5). In 176 

these figure, putative ancient ancestral components, like the Early Neolithic European 177 

(brown) and Russia Mid Late Bronze (magenta), predominantly found among European 178 

genomes, may be identified. Except their predominance in Neolithic Turkish genomes, 179 

these components also exist in most Neolithic Central Europeans. Some 20-30% of 180 

Central European genomes have discernible fractions of Europe Late Neolithic-Early 181 

Bronze (navy-blue) and Russia Mid-Late Bronze (deep-pink) components, respectively. 182 
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Two components (cyan and dark purple) appeared sporadically in a few populations, 183 

likely due to noise.  184 

 185 

Identifying aAIM candidates  186 

 187 

To identify aAIM candidates, we employed Infocalc and FST, commonly used to detect 188 

AIMs. We also implemented three novel Admixture- and PCA-based methods 189 

(Admixture1, Admixture2, and PCA-derived [PD]). Finally, we selected two random SNP 190 

sets of 10,000 and 15,000 markers, which approximated the number of AIMs identified 191 

by the various methods (Rand10k and Rand15k). Four criteria were adopted to evaluate 192 

how the candidate aAIMs capture the population structure depicted by the complete SNP 193 

set (CSS): first, by qualitatively comparing the dispersal of genomes obtained from a 194 

PCA to that of the CSS. Second, by comparing the Euclidean distances between the 195 

admixture proportions of each genome and those obtained from the CSS. To avoid 196 

inconsistencies between the SNP sets, we used admixture components obtained through a 197 

supervised ADMIXTURE (see methods). Third, by testing which aAIMs classify 198 

individuals to populations most accurately. The abilities to identify admixed individuals 199 

and evaluated for the top performing method.  200 

As with the CSS, genomes with over 90% missingness were removed, leaving each 201 

dataset with 223-263 genomes (Table S2). 310 SNPs without data were removed from the 202 

Rand10k dataset. The final number of aAIM candidates identified using each method is 203 

shown in Table S3. Overlapping aAIMs between the methods are remarkably small and 204 

range from 560 (Rand10k and Admixture1) to 2,160 (Admixture1 and Admixture2). 205 
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Interestingly, Infocalc and FST, oftentimes used together share only ~10% of their aAIM 206 

candidates. The PD method shares 13.7% of its aAIMs with FST and ~10% with Infocalc. 207 

Comparing the sequence properties of the aAIM candidates, we found that for ancient 208 

populations (Figure 6a) Infocalc’s aAIMs mirrored the MAF of the CSS with most 209 

variants having low MAF (45% of the aAIMs have MAF<0.1). The FST aAIM also had 210 

high frequency of low-mid MAF values. By contrast, the PD and Admixture-based 211 

methods exhibited higher frequencies of high MAF SNPs with Admixture2 having the 212 

highest proportion of high MAF aAIMs (75% of the aAIMS have MAF>0.4). 213 

Interestingly, the MAF distributions exhibited similar distributions in modern populations 214 

(Figure 6b), though with fewer alleles in lowest MAF bins for all the methods. 215 

Unsurprisingly, most of the aAIM variants were non-functional (94.6-96.3%) and vary 216 

little from the CSS’s annotation (Table S4).  217 

 218 

Comparative testing of aAIM candidates 219 

 220 

We compared the performances of aAIMs candidates to each other and to the CSS in 221 

capturing the population structure and classifying individuals to populations through 222 

three analyses. First, we calculated the PCA for each SNP set and compared the 223 

population dispersion along the primary two axis. Similarly to the CSS (Figure 4), all the 224 

methods depicted the Europe–Middle East contrast (PC1) and parallel clines (PC2) in the 225 

European genomes so that ancient Jordanian, Levantine, Turkic, and Spanish genomes 226 

clustered at one extreme of the Near East-Europe cline, whereas the genomes from 227 

Russia and Sweden clustered at the other end (Figure S3). However, much like the 228 
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random sets, Infocalc and FST did not separate Levantine and Turkish individuals from 229 

each other. Infocalc also merged the Caucasus individuals with central Europeans. The 230 

admixture-based methods and PD separated all the ancient populations, similarly to the 231 

CSS and better, in the case of Scandinavians and Russians.  232 

 233 

We next quantitatively assessed which dataset produced the closest admixture signature 234 

to that of the CSS (Figures 5). For that, we calculated the admixture proportions in 235 

relation to ten putatively ancient ancestral populations (Figures S4-5) and then computed 236 

their Euclidean distances to their counterparts obtained by the CSS (Figure 7). The PD 237 

aAIMs had significantly short Euclidean distances (μ=0.13, σ= 0.1, n=302) compared to 238 

all other aAIMs (Welch t-test p-values: Infocalc 0.002, FST 8.5x10-13, Admixture1 2.2x10-239 

16, Admixture1 2x10-16, Rand10k 5x10-6, and Rand15k
 0.001). Infocalc’s aAIMs produced 240 

the second shortest distances from the CSS (μ=0.17, σ=0.15), however they were not 241 

statistically shorter than the distances obtained by the two random datasets (Welch t-test 242 

p-values: Rand10k 0.12 and Rand15k 0.77 respectively), suggesting that Infocalc was 243 

unable to capture the population structure. FST-derived AIMs (μ=0.2, σ=0.13) performed 244 

worse than the Rand15k aAIMs (Welch t-test p-value 0.004), and similarly to the Rand10k 245 

aAIMs (Welch t-test, p-value=0.13). The admixture-based datasets performed worst of all 246 

aAIMs (μ1=0.22, σ1=0.15 and μ2=0.24, σ1=0.16) and significantly worse than the two 247 

random datasets (Welch t-test: Admixture1 [Rand10k p-value=0.002] and [Rand15k p-248 

value=1.6x10-5]; Admixture2 [Rand10k p-value=1.7x10-5] and [Rand15k p-value=2.5x10-8]).  249 

 250 
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We last assessed which aAIMs dataset allows classifying individuals to population 251 

groups most accurately. For that, an admixture-based population classifier was applied to 252 

the admixture proportions produced by all the datasets and their accuracy was compared 253 

to that of the CSS (76±25%) and the known population classification (Table S1). The 254 

mean classification accuracy per population ranged from 3% (FST) to 61% (PD) with the 255 

PD outperforming all other methods (Table 1). In other words, ~13k (8%) of the SNPs 256 

are sufficiently informative to classify individuals to populations with 80% of the 257 

accuracy of the CSS. In nine out of 21 population groups (22% of the individuals) PD-258 

based classification was similar or more accurate than the CSS. All other methods 259 

performed similarly or worse than the random SNP sets (42±22% and 50±23%) with 260 

Infocalc (50±23%) outperforming the remaining methods. Of note are the poor 261 

performances of FST aAIMs, likely due to the high sensitivity of FST to aDNA data. As 262 

expected, high missingness was associated with incorrect predictions (Figure S6). For 263 

example, the low-coverage low-quality Britain Anglo-Saxon genomes proved 264 

challenging for all the methods (0-40%) but predicted correctly with the CSS (100%). 265 

Due to the high accuracy of the PD aAIMs compared to the alternative datasets, we 266 

continued to analyze its aAIMs, 267 

 268 

Inference of admixed samples 269 

 270 

Admixture mapping is a powerful method of gene mapping to map phenotypic variation 271 

or diseases that show differential risk by ancestry and takes advantage of higher densities 272 

of genetic variants and extensions to admixed populations [22]. Thereby a large number 273 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/333690doi: bioRxiv preprint 

https://doi.org/10.1101/333690
http://creativecommons.org/licenses/by-nc/4.0/


13 
 

of markers throughout the genome is necessary to allow inference of local chromosomal 274 

ancestry blocks. Figure 8 illustrates the genome-wide distribution of PD aAIMs. To test 275 

whether these aAIMs can identify admixture in hybrid individuals, ancient individuals 276 

were hybridized to form 120 mixed individuals, each associated with three datasets: CSS, 277 

PD aAIMs, and a random SNP set of the size of PD aAIMs (Table 2).  278 

 279 

The genetic distances between the CSS and PD aAIMs were significantly smaller 280 

(µ=0.05, σ=0.04) than the distances between the CSS and the random SNP sets (µ=0.45, 281 

σ=0.15, Welch t-test p-values=2.2x10-8) as well as between the OD and the random SNP 282 

sets (µ=0.43, σ=0.15, Welch t-test p-values=1.9x10-8). We, thus, demonstrated that PD 283 

aAIMs can be used to infer admixed individuals and be used in future admixture mapping 284 

involving aDNA.  285 

 286 

 287 

 288 

 289 

Discussion 290 

 291 

The use of ancient genomes in research is at its infancy and expected to intensify as data 292 

are becoming available. It is reasonable to expect that many of the tools employed to 293 

study modern-day genomes will need to be adapted to the ancient DNA environment. 294 

Some of the most useful tools in addressing population, biomedical, and evolutionary 295 

questions were ancestry informative markers (AIMs), however it is unclear whether they 296 
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are applicable to ancient genomic data, which not only represent populations with 297 

different population structure, but has some unique characteristics like high missingness 298 

and haploid genomes [6]. 299 

 300 

In this study, we defined ancient ancestry informative markers (aAIMs) (Figure 1) and 301 

sought to identify those using various methods. The number of aAIMs identified by each 302 

method ranges from 9 to 15 thousands. These numbers of the same magnitude of large 303 

AIMs studies [e.g., 23, 24] and reasonable provided the potential relatedness of the 304 

ancient populations and the near absence of heterozygote markers in the data. To find 305 

which of the aAIMs candidates produced by each method best represent the true 306 

population structure, we used the complete SNP set as a benchmark for qualitatively and 307 

quantitatively comparisons.  308 

 309 

Identifying the ideal AIMs set that would be both small and include redundancies (in case 310 

of sequencing failure), capture the population structure, and allow identifying admixed 311 

individuals remains one of the challenges of population genetics. We showed that aAIMs 312 

identified through a PCA-derived (PD) method outperformed all other methods in 313 

agreement with previous studies that tested PCA-based methods [16]. Some 314 

classifications made by the PD were more accurate than those made using the CSS, 315 

which highlights the negative influence of ancestry uninformative markers. To the best of 316 

our knowledge, such markers and their influence were never explored. Infocalc and FST 317 

aAIMs, typically used in conjunction to identify AIMs [10] and have been reported to 318 

perform well in admixed populations [25] have oftentimes underperformed random 319 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/333690doi: bioRxiv preprint 

https://doi.org/10.1101/333690
http://creativecommons.org/licenses/by-nc/4.0/


15 
 

SNPs. Not only was FST already shown to be particularly small within continental 320 

populations [26], but these methods may be particularly sensitive to ancient DNA data 321 

that is both haploid and has high missingness (Figure S6). We also found no relationships 322 

between MAF and aAIMs performances (Figure 5). Enrichment for high or low MAF 323 

SNPs did not guarantee success, although the PD harbored more common SNPs than 324 

most underperforming methods.  325 

 326 

The applicability of the PD aAIMs for admixture mapping combined with tools that can 327 

homogenize cases and controls [e.g., 27] enable future association studies to be carried 328 

out on ancient DNA samples. Indeed, Cassidy et al. [28] provided evidence for the 329 

existence of Hemochromatosis alleles in ancient genomes and point at the association of 330 

hemochromatosis alleles in ancient Irish. Due to the nature of the ancient data and to 331 

enable admixture mapping studies we refrained from optimizing the number of aAIMs. 332 

Further investigations with additional data may identify formerly common markers 333 

associated with the disease that with time became rare and undetectable.  334 

 335 

Our study has several limitations. We studied an uneven number of Eurasian populations 336 

from various times and locations, causing a skew towards markers that predict central 337 

European populations from the Late-Neolithic Bronze Age. A modest attempt to reduce 338 

this bias was made by including modern-day African and Asian populations, however a 339 

more comprehensive analyses should be made when more global genomes are available. 340 

Second, the aAIMs were calculated independently by each method with individual 341 

populations considered independent, although the PCA and ADMIXTURE plots indicate 342 
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that central European populations may not be independent. Finally, due to high 343 

missingness of the data, it is likely that our study missed informative markers that could 344 

improve the classification accuracy in newly sequenced populations. We thereby advise 345 

applying our method to more comprehensive aDNA datasets when such will be available. 346 

 347 

In summary, AIMs are some of the most effective tools that spear-headed population 348 

genetics over the past two decades and ancillary to the challenge of understanding 349 

population structure. We defined ancient AIMs (aAIMs), proposed a framework to 350 

evaluate AIMs-finding methods, demonstrated the accuracy of a novel aAIMs-finding 351 

method, and reported the most successful set of aAIMs. Future analyses may benefit from 352 

using our method to uncover powerful aAIMs and using our aAIMs to refine ancient 353 

population structure models. 354 

 355 

Methods 356 

 357 

Sample collection 358 

 359 

Ancient DNA genomic data were obtained from 11 publications depicting 207 ancient 360 

genomes (Table S1). In the case of sequence data, sequence reads were aligned to the 361 

human reference assembly (UCSC hg19-http://genome.ucsc.edu/) using the Burrows 362 

Wheeler Aligner (BWA version 0.7.15) [29], allowing two mismatches in the 30-base 363 

seed. Alignments were then imported to binary (bam) format, sorted, and indexed using 364 

SAMtools (version 1.3.1) [30]. Picard (version 2.1.1) (http://picard.sourceforge.net/) was 365 
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then used for MarkDuplicates to remove reads with identical outer mapping coordinates 366 

(which are likely PCA artifacts). The Genome Analysis Toolkit RealignerTargetCreator 367 

module (GATK version 3.6) [31, 32] was used to generate SNP and small InDel calls for 368 

the data within the targeted regions only. GATK InDelRealigner/BaseRecalibrator was 369 

then used for local read realignment around known InDels and for base quality score 370 

recalibration of predicted variant sites based on dbSNP 138 and 1000 Genomes known 371 

sites, resulting in corrections for base reported quality. The recalibration was followed by 372 

SNP/InDel calling with the GATK HaplotypeCaller. Variants were filtered for a 373 

minimum confidence score of 30 and minimum mapping quality of 40. At the genotype 374 

level, all genotypes that had a genotype depth less than 4 (GD < 4) or a genotype quality 375 

score less than 10 (GQ < 10) were removed from the dataset by setting them to missing in 376 

the VCF. GATK DepthofCoverage was then used to re-examine coverage following the 377 

realignment. VCFtools (version 0.1.14) [33] were used to convert the VCF file to PLINK 378 

format [34]. The final dataset comprised of 150,278 autosomal SNPs from 302 ancient 379 

DNA (aDNA) genomes (Table S1; Additional file 1). Eight aDNA genomes (I0247, 380 

I1584, I1955, ATP9, IR1, Kostenki14, MA1, and Ust_Ishim) without any country/region 381 

designation were omitted in the closest population determination calculations. For 382 

coherency, the genomes were divided into 21 populations, based on the sampling 383 

country/region and their era. 384 

 385 

Data analyses 386 

 387 
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The genetic structure canvas of ancient Eurasian genomes. The population structure of 388 

the ancient genomes was described using principal component analysis (PCA) 389 

implemented in PLINK v1.9 (https://www.cog-genomics.org/plink/1.9/). Individuals with 390 

high SNP missingness were removed using --mind 0.9 flag alongside the --pca command 391 

for all the aAIMs datasets. We also applied the model-based clustering methods 392 

implemented in ADMIXTURE v1.3 [35]. All PCA and Admixture plots were generated 393 

in R v3.2.3. Minor allele frequency (MAF) was calculated using PLINK (--maf 394 

command) for ancient populations and for modern ones, MAF was calculated from the 395 

1000 Genomes populations (ALL.2of4intersection.20100804.genotypes) [36]. Percentage 396 

of rare and novel variants and other functional information were obtained through VEP 397 

(McLaren et al. 2016). 398 

 399 

Identifying aAIMs via five methods. aAIMs were considered markers that can infer the 400 

ancestry of ancient DNA (aDNA) genomes in a similar accuracy to the complete SNP set 401 

(CSS). We compared methods to detect candidate AIMs, three of which are novel: 402 

 403 

1. Infocalc (Rosenberg et al. 2003), which determines the amount of information 404 

multiallelic markers provide about an individual’s ancestry by calculating the 405 

informativeness (I) of each of each markers separately and ranks the SNPs by 406 

their informativeness. Infocalc determines I based on the mathematical expression 407 

described in Rosenberg et al. (2003). We compared the performances of four 408 

choices of the top 5,000, 10,000, 15,000, and 20,000 most informative markers in 409 
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the Infocalc v1.1 output file (results not shown). The 15,000 dataset outperformed 410 

all other datasets and was selected for further analyses.  411 

2. FST. Wright’s fixation indices (FST) [21] measures the degree of differentiation 412 

among populations potentially arising due to genetic structure within populations. 413 

Given a set of populations (Table S1), we employed PLINK [34] to estimate FST 414 

separately for all the markers using –fst command alongside --within flag, that 415 

defines population IDs of the genomes. Due to the high fragmentation of the data, 416 

FST values could only be calculated for 46% of the dataset. We compared the 417 

performances of four choices of the highest 5,000, 10,000, 15,000, and 20,000 Fst 418 

values. The 15,000 dataset outperformed all other datasets and was selected for 419 

further analyses.  420 

3. Admixture1. This method assumes that AIMs have high allelic frequencies in 421 

certain subpopulations and drive the differentiation of admixture components. 422 

Analyzing ADMIXTURE’s output file (P file) for K of 10, we identified the 423 

markers (rows) that had high allele frequency (>0.9) in only one admixture 424 

component (columns). We identified 9,309 from the five columns with the highest 425 

number of such markers.  426 

4. Admixture2. This method assumes that AIMs embody both high allelic 427 

frequencies in certain subpopulations and high variance between these allelic 428 

frequencies that differentiate of admixture components. Analyzing 429 

ADMIXTURE’s output file (P file) for K of 10, we identified 11,418 SNPs that 430 

for each SNP (rows) had high variance (≥0.04) and high allele frequency range 431 

(maxima - minima ≥ 0.65) between the admixture component (columns).  432 
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5. PC-based (PD) approach. This methods assumes that AIMs can replicate the 433 

population structure of subpopulations represented by the variation in the first two 434 

PCs. This is an interactive PC-based approach that identifies the smallest set of 435 

markers necessary to capture the population structure of a group of individuals as 436 

captured by the CSS. More specifically, for each population group (Table S1) in 437 

which at least 100 SNPs were available, we calculated PCA and used PC1 and 438 

PC2 to plot the individuals after all SNPs with high missingness (>0.05) were 439 

excised. If the population group had insufficient SNPs we relaxed the missingness 440 

threshold by additional 0.05, though 0.05 were sufficient for almost all groups. 441 

We then scored the SNPs by their informativeness as in [37] and visually 442 

compared the plot to that obtained from the CSS (Figure S7). If the plots were 443 

dissimilar, we repeated the analysis using additional 100 top scored SNPs until 444 

either the plots exhibited high similarity or a threshold of 2000 SNPs was reached. 445 

We were unable to complete the analyses for 3 populations due to the small 446 

number of individuals. The PD method is available on 447 

https://github.com/eelhaik/PCA-derived-aAIMs. On average 861 SNPs were 448 

found per population group. Overall, the dataset comprised of 13,027 SNPs. 449 

 450 

To compare the prediction accuracy of the aAIMs subsets, two control datasets (Rand10k 451 

and Rand15k) were generated by randomly sampling 10,000 and 15,000 SNPs from the 452 

CSS, respectively. aAIMs identified by all methods are available as Additional file 2.  453 

 454 
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Classifying individuals to populations from genomic data. Identifying ancient 455 

admixture components. We selected a random hundred ancient genomes and removed 456 

six for insufficient data (>95% missingness). To those, we added 20 Han Chinese and 20 457 

Yoruba modern genomes from the 1000 Genomes Project (Durbin et al. 2010). We then 458 

applied supervised ADMIXTURE with various K’s ranging from 8 to 13. While we were 459 

unable to find a single K where culturally related genomes exhibited homogeneous 460 

admixture patterns, the most robust population substructure was found for K of 10. Two 461 

more components were obtained by analyzing Spanish and German genomes that 462 

appeared indistinguishable along with five Yoruba genomes separately. We observed 463 

very little admixture with the Han and Yoruba. Overall, we identified 10 admixture 464 

components in ancient genomes, corresponding to allele frequencies of hypothetical 465 

populations. Similarly to Elhaik et al. [9], we simulated 15 samples for each hypothetical 466 

population, by generating 30 alleles whose average corresponds to the mean allele 467 

frequency of that population and assigning those genotypes to the simulated individuals.  468 

The putative ancestral ancient populations are available in Additional file 3. Relabeling 469 

populations. Initially, the labels from the corresponding papers were used to classify 470 

individuals to population. The consistency of these labels with data was evaluated by 471 

carrying out a supervised ADMIXTURE analysis on the genomic data combined with the 472 

150 putative ancient ancestral individuals. Due to the high similarity of the admixture 473 

patterns between individuals of different groups living in similar periods or entire groups 474 

(e.g., Neolithic individuals from Hungary and those from Germany), we re-labeled some 475 

of the population to reduce the number of populations and create more genomically 476 

homogeneous populations,. For instance, Natufian and Neolithic samples from Jordan are 477 
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grouped into the label Levant Epipaleolithic Neolithic. Overall, we identified 23 478 

populations, whose labels are all of the form “area_time period.” In the case of the 479 

Caucasus labelling, all the samples from Iran (except Iran_HotuIIIb) were excavated in 480 

the Zagros Mountains, south of the Caucasus. Given their admixture similarity with 481 

Armenians and Georgians from the same periods and their proximity to the Caucasus, 482 

this area was labelled as Caucasus. Iran_HotuIIIb was found in a more eastern region, 483 

just below the southeastern edge of the Caspian Sea, and given its similarity to Georgians 484 

and other Iranians it was included in the group Caucasus Mesolithic Neolithic. 485 

Genomically defining reference populations. For each population with  𝑁𝑃 > 4, where 486 

𝑁𝑃 is the number of individuals in the population, individuals were grouped in clusters 487 

through an iterative process that uses a k-means clustering technique paired with multiple 488 

pairwise F-tests. Iterations ran over the number of 𝑘 clusters [2, NP/2]. At each iteration 𝑖, 489 

k-means was used to identify the 𝑘 clusters, then the F-test was applied on each pair of 490 

clusters to test whether they are significantly (P<0.05) different. If the two clusters are 491 

different from all the pairs at iteration i, the process advances to i+1 until at least one pair 492 

violates the condition, in which case kop=i-1 is the optimal number of clusters or 493 

reference populations within that population. Assigning individuals to populations. We 494 

developed an admixture-based classifier, which is not sensitive to exclusion of random 495 

groups of individuals nor inclusion of large numbers of individuals from admixed groups 496 

and was trained on a third of the data. Using supervised ADMIXTURE, we calculated the 497 

admixture proportions of the individuals in relation to the putative ancient ancestral 498 

populations. Population assignment was then made based on the minimal Euclidean 499 

distance between the admixture components of each genome and those of the reference 500 
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populations. The assignment accuracy was calculated based on the known classification 501 

(Table S1).  502 

 503 

Assessing admixture mapping. Creating hybrid individuals. We selected 15 individuals 504 

from five populations that showed homogeneity in their admixture components (Figure 5) 505 

and randomly sampled 120 pairs. Since selecting random alleles from each parent was 506 

problematic due to the high missingness of the data, we randomly selected half the 507 

genotypes of each parent to form 120 “offspring” or hybrid genomes. Each hybrid had 508 

three SNP sets: the CSS, PD aAIMs, and a random SNP set of the size of PD aAIMs with 509 

SNPs selected randomly for each hybrid. Assessing admixture accuracy. We defined 510 

genetic distances (d) as the Euclidean distance between two set of admixture proportions. 511 

We applied a supervised admixture to the three SNP sets of each hybrid and calculated 512 

their distances d from each another.  513 

 514 

Graphics. Maps were drawn using the ‘rworldmap’ package implemented in R v3.2.3. 515 

 516 

Availability of data and materials. The dataset supporting the conclusions of this article 517 

are included within the article and its additional files.  518 
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Figure 1 650 

Geographic distribution of the highly differentiated rs7896530 in ancient (A) and 651 

modern-day (B) populations. The geographic distributions of the T (black) and G 652 

(yellow) alleles in ancient and modern-day populations were obtained from our dataset 653 

(Table S1) and the Geography of Genetic Variants Browser [38], respectively. 654 

 655 

  656 
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Figure 2 657 

A scheme to identify and evaluate aAIMs. 658 

 659 

  660 
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Figure 3 661 

Geographical locations of the ancient genomes. The geographical coordinates of the 662 

ancient genomes. The shapes plotted in the map designate the country of origin of the 663 

genomes and their colors designate the era. The total number of ancient genomes from a 664 

specific era is shown.  665 
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Figure 4 668 

Scatter plot of all ancient populations along the first two principal components. 669 

Symbols corresponding to individuals and their color and shape correspond to the 670 

location map and the era table, respectively.  671 
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Figure 5 674 

Ancient population structure inferred by ADMIXTURE analysis. Each individual is 675 

represented by a vertical (100%) stacked column of genetic components proportions 676 

shown in color for K=10.  677 
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Figure 6 680 

Minor allele frequency distributions for aAIMs identified with various methods. 681 

MAF frequencies were calculated for ancient (A) and modern-day (B) populations. To 682 

avoid confusion, the distributions represent the frequency of the minor allele in each 683 

datasets, which was the same one in 91.5% of the genotypes. 684 
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Figure 7 687 

Violin plots comparing the Euclidean distances between the admixture proportions 688 

of the ancient genomes obtained from the CSS and those obtained from the aAIM 689 

sets.  690 
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Figure 8 693 

Genome wide distribution of SNPs in the CSS (dots) and PD (red bars) datasets.  694 
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Supporting Information Legends 697 

Elhaik et al 2018 – Supp – Figures S1-S7 and Tables S1-S4 698 

Additional file 1.zip – Genotype data of the aDNA samples 699 

Additional file 2.zip – aAIMs candidates used in all analyses 700 

Additional file 3.zip – Genotype file of the putative ancient ancestral populations   701 
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Tables 702 

 703 

Table 1 704 

Accuracy in classifying individuals to populations using the aAIM candidates. Mean 705 

and standard deviation for each SNP set are provided in the last row. 706 

 707 

Population n CSS PD FST Infocalc Admixture1 Admixture2 Rand10k Rand15k 

Britain Iron Saxon 10 10 (100) 4 (40) 0 (0) 0 (0) 0 (0) 0 (0) 1 (10) 3 (30) 

Caucasus Chalcolithic 

Bronze 
22 21 (95) 8 (36) 0 (0) 12 (55) 6 (27) 4 (18) 13 (59) 9 (41) 

Caucasus Mesolithic 

Neolithic 
9 6 (67) 7 (78) 0 (0) 6 (67) 1 (11) 7 (78) 4 (44) 4 (44) 

Central EU Early Neolithic 26 17 (65) 14 (54) 4 (15) 18 (69) 4 (15) 5 (19) 14 (54) 18 (69) 

Central EU Late Neolithic 

Bronze 
57 16 (28) 17 (30) 19 (33) 19 (33) 13 (23) 21 (37) 25 (44) 21 (37) 

Central EU Mid Neolithic 

Chalcolithic 
6 2 (33) 3 (50) 0 (0) 3 (50) 3 (50) 3 (50) 2 (33) 2 (33) 

Central Northern EU Late 

Neolithic Bronze 
20 18 (90) 9 (45) 0 (0) 6 (30) 0 (0) 5 (25) 4 (20) 6 (30) 

Central Western EU 

Mesolithic 
3 3 (100) 2 (67) 0 (0) 3 (100) 0 (0) 0 (0) 1 (33) 3 (100) 

Italy Mid Neolithic 

Chalcolithic 
4 4 (100) 3 (75) 0 (0) 1 (25) 1 (25) 0 (0) 1 (25) 1 (25) 

Jordan Bronze 3 3 (100) 2 (67) 0 (0) 0 (0) 2 (67) 3 (100) 1 (33) 2 (67) 

Levant Epipaleolithic 

Neolithic 
19 7 (37) 6 (32) 0 (0) 9 (47) 8 (42) 7 (37) 4 (21) 7 (37) 

Russia Chalcolithic 3 2 (67) 3 (100) 0 (0) 1 (33) 0 (0) 2 (67) 1 (33) 1 (33) 

Russia Early Mid Bronze 19 19 (100) 15 (79) 0 (0) 10 (53) 0 (0) 18 (95) 10 (53) 14 (74) 

Russia Late Chalcolithic 9 6 (67) 6 (67) 0 (0) 5 (56) 0 (0) 1 (11) 3 (33) 3 (33) 

Russia Mesolithic 3 2 (67) 2 (67) 0 (0) 2 (67) 0 (0) 1 (33) 2 (67) 2 (67) 

Russia Mid Late Bronze 22 15 (68) 16 (73) 0 (0) 7 (32) 0 (0) 0 (0) 4 (18) 6 (27) 

Spain Early Neolithic 6 4 (67) 5 (83) 0 (0) 6 (100) 4 (67) 4 (67) 4 (67) 5 (83) 

Spain Mid Neolithic 

Chalcolithic 
18 7 (39) 6 (33) 0 (0) 7 (39) 5 (28) 3 (17) 5 (28) 5 (28) 

Sweden Mesolithic 8 8 (100) 8 (100) 0 (0) 7 (88) 4 (50) 1 (13) 6 (75) 7 (88) 

Sweden Mid Neolithic 4 4 (100) 1 (25) 1 (25) 2 (50) 1 (25) 0 (0) 4 (100) 2 (50) 

Turkey Neolithic 24 23 (96) 18 (75) 0 (0) 12 (50) 3 (13) 6 (25) 8 (33) 11 (46) 

  76±25 61±23 3±9 50±27 21±23 33±32 42±22 50±23 
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Table 2 710 

Accuracy of inferring hybrid individuals using the PD aAIMs. The parental 711 

populations and the number of hybrids generated from them are shown. Each hybrid was 712 

represented by three datasets: CSS, PD aAIMs, and a random SNP set. The average 713 

genetic distances (d) between the admixture components of these datasets per population 714 

are shown.  715 

 716 

Parental population A Parental population B # Hybrids 𝑑(CSS, PD)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑑(CSS, 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑑(PD, 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Britain Iron Saxon Britain Iron Saxon 6 0.026 0.212 0.208 

Britain Iron Saxon Russia Late Chalcolithic 9 0.009 0.610 0.601 

Britain Iron Saxon Sweden Mesolithic 9 0.051 0.344 0.337 

Britain Iron Saxon Turkey Neolithic 9 0.003 0.428 0.431 

Britain Iron Saxon Spain Early Neolithic 9 0.108 0.221 0.241 

Russia Late Chalcolithic Russia Late Chalcolithic 6 0.009 0.443 0.448 

Russia Late Chalcolithic Sweden Mesolithic 9 0.062 0.578 0.561 

Russia Late Chalcolithic Turkey Neolithic 9 0.063 0.661 0.633 

Russia Late Chalcolithic Spain Early Neolithic 9 0.101 0.520 0.491 

Sweden Mesolithic Sweden Mesolithic 6 0.000 0.384 0.384 

Sweden Mesolithic Turkey Neolithic 9 0.055 0.567 0.522 

Spain Early Neolithic Sweden Mesolithic 9 0.108 0.402 0.377 

Turkey Neolithic Turkey Neolithic 6 0.001 0.627 0.626 

Spain Early Neolithic Turkey Neolithic 9 0.092 0.483 0.493 

Spain Early Neolithic Spain Early Neolithic 6 0.041 0.197 0.172 

 717 

 718 

 719 

 720 
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