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Abstract 

 

The rapid accumulation of ancient human genomes from various areas and time periods 

potentially allows the expansion of studies of biodiversity, biogeography, forensics, 

population history, and epidemiology into past populations. However, most ancient DNA 

(aDNA) data were generated through microarrays designed for modern-day populations 

known to misrepresent the population structure. Past studies addressed these problems using 

ancestry informative markers (AIMs). However, it is unclear whether AIMs derived from 

contemporary human genomes can capture ancient population structure and whether AIM 

finding methods are applicable to ancient DNA (aDNA) provided that the high missingness 

rates in ancient, oftentimes haploid, DNA can also distort the population structure. Here, we 

define ancient AIMs (aAIMs) and develop a framework to evaluate established and novel 

AIM-finding methods in identifying the most informative markers. We show that aAIMs 

identified by a novel principal component analysis (PCA)-based method outperforms all 

competing methods in classifying ancient individuals into populations and identifying 

admixed individuals. In some cases, predictions made using the aAIMs were more accurate 

than those made with a complete marker set. We discuss the features of the ancient Eurasian 

population structure and strategies to identify aAIMs. This work informs the design of 

population microarrays and the interpretation of aDNA results. 

 

 

Keywords: ancient DNA, ancient ancestry informative markers, population structure, PCA, 

admixture mapping 
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Introduction 

 

Toward high-resolution population models using ancient samples 

 

Over the past decade, genomic techniques have been reshaping our fundamental 

understanding of human prehistory and origins [1]. Ancient DNA (aDNA) human genomes 

have aided in investigations of population structure, human migration, human adaptation, 

agricultural lifestyle, and disease co-evolution [2]. Ancient genome studies have already 

accelerated progress in the search for genetic variations underlying the inheritance of 

adaptations and forensics traits. Recently, Cassidy et al. [3] tested the allelic association of 

cystic fibrosis and hemochromatosis in ancient Irish samples, expanding genetic 

epidemiology onto ancient genomes. Such studies can potentially identify new risk factors 

for rare diseases. 

 

Next generation sequencing technologies to study ancient DNA 

 

Whole genome sequencing and SNP microarrays are the two leading approaches to aDNA 

sequencing. Although the former is preferable as it provides more data, by late 2017, only a 

quarter of the 1,100 sequenced ancient humans were whole genomes. The vast majority of 

genomes (762) were captured by SNP microarrays [2], mainly the Human Origins [4] and 

Illumina 610-Quad arrays [5, 6] – neither of which were designed for ancient humans – 

making it particularly challenging to identify and control for ancient population structure. 

 

Single nucleotide polymorphism (SNP) genotyping microarrays were originally developed 

to detect phenotype-genotype associations in association-, admixture-, identity by descent-

mapping and alike studies. It was not until later that SNP microarrays were employed in 

population genetic studies aimed at inferring population structure through principal 

component analyses (PCAs), admixture-like programs, and other tools aimed at predicting 

group membership. It soon became clear that the allele frequency spectrum obtained through 

microarrays is more skewed for some populations than for other ones due to the choice of 
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SNP panels [7]. The Human Origins and various Illumina microarrays (including the 

Illumina Human 660W-Quad, which is very similar to the Illumina 610-Quad array) were 

shown to distort the population structure for modern day populations compared to larger 

genomic databases and underreport the biodiversity compared to microarrays customized for 

population genetics [8, 9], which results in an ascertainment bias. 

 

The problems of ascertainment bias and population stratification in aDNA 

 

Any inference of identity in archeological studies is fraught with difficulties. Carbon dating 

requires extracting organic material from fossil bones and authenticating it as composed of 

degraded proteins – a process highly subjectable to contamination which yields erroneous 

estimates [10]. The identification of ‘cultures’ from archaeological remains and their 

association with past population groups is also inadequate [11]. Population genetic studies 

suffer from similar problems due to ascertainment bias, which can distort measures of human 

diversity, bias population genetic inferences, and alter the conclusions in unexpected ways 

[12]. Ascertainment bias is a major concern in genetic, biomedical, and evolutionary studies 

particularly in the absence of an established population structure model for either modern-

day or ancient populations.  

 

The difficulties to establish an acceptable population model are partially due to our 

incomplete knowledge of human population biodiversity in the past and present. 

Consequently, modern-day populations are oftentimes assumed to be the parental 

populations of the modern-day population of interest, which results in population 

stratification. This problem arises due to differences in the allele frequencies of unknown 

case\control subpopulations due to separate demographic histories (not biological processes). 

A misunderstanding of the population structure necessitates mismatched cases and controls, 

which introduces genetic heterogeneity into the analysis that can lead to spurious associations 

and obscure the true association [13]. Thereby, the phenotypes of interest (e.g., risk loci or 

drug response) may differ between these sub-populations and bias the association analyses 

by generating false positives [14].  
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These problems have been well known for a long time [15], and statistical remedies have 

been proposed; however, they were all tailored for modern-day data and did not address the 

conceptual problems. It is now clear that population models should consider aDNA data and 

the unique challenges they pose, namely haploidy and high missingness [1].  

 

The use of ancestry informative markers (AIMs) in genetics 

 

Past studies resolved, to a large extent, the problems faced in aDNA analyses with ancestry 

informative markers (AIMs). AIMs are SNPs which exhibit large variation in minor allele 

frequencies (MAF) among populations. Over the past two centuries and to this date, 

geneticists have scoured genomes for these patterns and produced numerous AIM sets to 

determine an individual’s ancestry, detect stratification in biomedical studies, infer 

geographic structure, find risk loci in a candidate region, and localize biogeographical origins 

[e.g., 8, 9, 16-18]. AIM panels can delineate population structure in a cost effective manner 

by detecting variation in individual ancestry that can confound methods like Mendelian 

Randomization trials, association analyses, and forensic investigations in increasing false 

positive results or reducing power [e.g., 19]. 

 

Although initially preferred due to the high cost of sequencing, which has decreased with 

time, AIMs are still highly used in forensics, carrier screening, and biogeography in both 

microarrays [e.g., 8, 20] and whole genomic data [21]. Admixture mapping is another 

powerful method to map phenotypic variation or diseases that show differential risk by 

ancestry. The mapping takes advantage of higher densities of genetic variants and extensions 

to admixed populations that exhibit strong differences in prevalence across populations [22]. 

It is therefore necessary to have a large number of AIMs throughout the genome to allow for 

inference of local chromosomal ancestry blocks. 

 

Despite their high prevalence, it was never clear which AIMs should be used. All AIM panels 

have limitations [23], and it is unknown whether established AIMs would be informative for 

ancient studies. The characteristics of ideal AIMs remain contentious with some authors 
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preferring common SNPs (minor allele frequency >1%) [24], SNPs with high FST [25], SNPs 

with high pairwise MAF between populations [23], or SNPs that satisfy several criteria. 

Consequently, AIMs do not overlap across studies. Of the 21 AIM datasets, reviewed by 

Pakstis et al. [26], only 1397 AIMs appeared in at least two sets. Finally, studies typically 

show that AIMs can separate populations or broadly classify individuals into subcontinental 

populations rather than showing that AIMs can capture the population structure of the 

complete SNP set or allow fine-population mapping. Given the uncertainties surrounding 

AIMs, their potential incompatibility to capture ancient structure and admixtures, and the 

challenges imposed by aDNA data, it is unclear whether, if at all, AIM-finding methods or 

AIMs can be utilized to study ancient population structure. 

 

Ancient ancestry informative markers (aAIMs) to define ancient population structure 

 

Unlike modern-DNA, aDNA allows for the construction of AIM panels from the actual 

parental populations of modern-day people and can, therefore, refine estimates of population 

structure. To overcome some of the aforementioned problems with aDNA data, we defined 

ancient ancestry informative markers (aAIMs) as SNPs that vary in their MAF across ancient 

populations (Figure 1) and attempted to identify and validate the first autosomal aAIMs to 

improve the inference of ancient population structure. Since AIM-finding tools were never 

tested on aDNA, it is necessary to first compare their ability in finding informative markers. 

For that, we interrogated a comprehensive dataset of 302 ancient genomes grouped into 21 

populations from Europe, the Middle East, and North Eurasia. This dataset was used to 

compare the ability of different methods to identify aAIMs that can best capture the 

population structure and identify admixed individuals. These methods are: two existing AIM 

finding algorithms (Infocalc [27] and Wright’s FST [28, 29]), three novel Admixture- and 

PCA-based algorithms and two random SNP sets. First, we derived summary statistics using 

these AIM candidates. Then, we compared the performances of the best aAIM set and the 

complete SNP set in classifying individuals to populations and identifying two-way admixed 

individuals (Figure 2). Our study offers a methodological framework to evaluate AIMs, 
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contrasts different AIM-finding strategies, reports the first set of aAIMs, and demonstrates 

that in some cases they provide more reliable predictions than the complete SNP set.  

Results 

 

Depicting ancient population structure  

 

We constructed a dataset of 150,278 autosomal SNPs from 302 ancient genomes classified 

into 21 populations from Europe, the Middle East, and North Eurasia and dated to time 

periods spanning 14,000 years ago through 1,500 years ago (Figure 3, Table S1). Due to the 

limited availability of ancient genomes, our dataset was not uniform over time and space. For 

instance, there were 57 Central European genomes from the Late Neolithic to the Bronze 

Age, but populations such as Mesolithic Central and Western Europeans, Bronze Age 

Jordanians, Chalcolithic Russians, and Mesolithic Russians, comprised of three genomes 

each. 

 

Missingness varied greatly within the samples, as well as within the markers. The sample-

based missingness ranged from 0.05% (KK1) to 99.2% (I1951) with an average of 54%. 

Similarly, missingness also varied among the populations, with Levantine Epipaleolithic and 

Neolithic genomes having the highest missingness (n=19, µ=90±16%) and Mesolithic 

Swedish genomes having the lowest (n=8, µ=29±27%). The SNP-based missingness ranged 

from 30% to 98% with an average of 54%.  

 

Principal component analysis (PCA) of the ancient genomes substantiated previous 

observations of a Europe–Middle East contrast along the vertical principal component (PC1) 

and parallel clines (PC2) in both Europe and the Middle East (Figure S1). Genomes from the 

Epipaleolithic and Neolithic Levantine clustered at one extreme of the Near East-Europe 

cline with some overlapping with Neolithic Turkish and Central European genomes. 

Neolithic Iranians clustered between Central European genomes. While ancient Spanish, 

Armenian, Central EU, and British genomes occupied the intermediate position of Near 
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Eastern and North Eurasian genomes, Russian and Swedish genomes clustered at the end of 

the Near East-Europe cline.  

 

Our unsupervised ADMIXTURE analysis with various number of splits (K) (Figure S2) 

found that no choice of K minimized the cross-validation error (CVE) (Figure S3), likely 

because the high noise and missingness in the data prevented the CVE from stabilizing. At 

K=10 (Figure S4) multiple genomes (e.g., Britain Iron Saxon, Mesolithic Neolithic Caucasus 

population, Bronze Age Jordanian and Epipaleolithic Levantine, Chalcolithic, Mesolithic and 

Early Mid Bronze Russian, Early Neolithic Spanish, Mesolithic and Mid Neolithic Swedish, 

and Neolithic Turkish) appeared to be homogeneous in relation to their population and 

exhibited a distinct allelic frequency profile of admixture components. For these reasons, we 

decided to choose K=10 as the optimal value. Furthermore, in this case, putative ancient 

ancestral components, such as the Early Neolithic European (brown) and the Russia Mid 

Late Bronze (magenta), predominantly found among European genomes, may be identified. 

Except for their predominance in Neolithic Turkish genomes, these two components also 

exist in most Neolithic Central Europeans. Some 20-30% of Central European genomes have 

discernible fractions of Europe Late Neolithic-Early Bronze (navy-blue) and Russia Mid-

Late Bronze (deep-pink) components, respectively. Two components (cyan and dark purple) 

appeared sporadically in a few populations, likely due to noise.  

 

Identifying and describing the aAIM candidates  

 

We developed a framework to identify and evaluate the efficacy of aAIM candidates in 

capturing ancient population structure and allowing admixture mapping (Figure 2). aAIM 

candidates were identified using five methods (Figure 2). Similarly to the CSS, genomes and 

SNPs with over 90% missingness were removed, leaving each dataset with 223-263 genomes 

(Table S2). Furthermore, 310 SNPs without data were removed from the Rand10k dataset. 

The final number of aAIM candidates is shown in Table S3. Overlapping aAIMs between 

the methods are remarkably small and range from 560 (Rand10k and Admixture1) to 2,160 

(Admixture1 and Admixture2). Interestingly, Infocalc and FST, oftentimes used together, 
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share only ~10% of their aAIM candidates. The PD method shares 13.7% of its aAIMs with 

FST and ~10% with Infocalc. 

 

Comparing the properties of the aAIM candidates (Figure S5a), we found that Infocalc 

prioritized SNPs with the lowest MAF (45% of the aAIMs have MAF<0.1) and FST captured 

aAIM with high frequency of low-mid MAF. By contrast, PD and the Admixture-based 

methods exhibited higher frequencies of high MAF SNPs, with Admixture2 having the 

highest proportion of high MAF aAIMs (75% of the aAIMS have MAF>0.4). Interestingly, 

the MAF distributions exhibited similarity with modern populations (Figure S5b), though, 

for all methods, with fewer alleles in the lowest MAF bins. Unsurprisingly, most of the aAIM 

variants were non-functional (94.6-96.3%) and vary little from the CSS’s annotation (Table 

S4).  

 

Comparative testing of aAIM candidates 

 

The accuracy of the aAIMs was evaluated using four criteria and comparing each method 

against both CSS and two random SNP sets of sizes that approximated the number of aAIM 

candidates. We first calculated the PCA for each SNP set and compared the population 

dispersion along the primary two axes. Similarly to the CSS (Figure S1), all the methods 

depicted the Europe–Middle East contrast (PC1) and parallel clines (PC2) in the European 

genomes so that ancient Jordanian, Levantine, Turkic, and Spanish genomes clustered at one 

extreme of the Near East-Europe cline, whereas the genomes from Russia and Sweden 

clustered at the other end (Figure S6). However, much like the random sets, Infocalc and FST 

did not separate Levantine and Turkic individuals from each other. Infocalc also merged the 

Caucasus individuals with central Europeans. The admixture-based methods and PD 

separated all the ancient populations, similarly to the CSS and better, in the case of 

Scandinavians and Russians.  

 

We next quantitatively assessed which dataset produced the closest admixture signature to 

that of the CSS (Figure S4). For that, we calculated the admixture proportions in relation to 
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the ten putatively ancient ancestral populations that we obtained with the CSS (Figures S7-

8) and then computed their Euclidean distances to their counterparts obtained with the CSS 

(Figure 4). The PD aAIMs led to significantly shorter Euclidean distances (μ=0.13, σ= 0.1, 

n=302) compared to those obtained from the other aAIMs (Welch t-test p-values: Infocalc 

0.002, FST 8.5x10-13, Admixture1 2.2x10-16, Admixture1 2x10-16, Rand10k 5x10-6, and Rand15k
 

0.001). Infocalc’s aAIMs produced the second shortest distances from the CSS (μ=0.17, 

σ=0.15); however, they were not statistically shorter than the distances obtained with the two 

random datasets (Welch t-test p-values: Rand10k 0.12 and Rand15k 0.77 respectively), 

suggesting that Infocalc was unable to capture the population structure. FST-derived AIMs 

(μ=0.2, σ=0.13) performed worse than the Rand15k aAIMs (Welch t-test p-value 0.004), and 

similarly to the Rand10k aAIMs (Welch t-test, p-value=0.13). Finally, the two admixture-

based datasets performed the worst performances of all the methods (μ1=0.22, σ1=0.15 and 

μ2=0.24, σ1=0.16), being even significantly worse than the two random datasets (Welch t-

test: Admixture1 [Rand10k p-value=0.002] and [Rand15k p-value=1.6x10-5]; Admixture2 

[Rand10k p-value=1.7x10-5] and [Rand15k p-value=2.5x10-8]).  

 

Third, we assessed which aAIMs dataset allows classifying individuals into population 

groups most accurately. An admixture-based population classifier was applied to the 

admixture proportions produced by all the datasets, and their accuracy was compared to that 

of the CSS (76±25%) and the known population classification (Table S1). The mean 

classification accuracy per population ranged from 3% (FST) to 61% (PD) with the PD 

outperforming all the other methods (Table 1). In other words, ~13k (8%) of the SNPs are 

sufficiently informative to classify individuals to populations with 80% of the accuracy of 

the CSS. In nine out of 21 population groups (22% of the individuals) PD-based classification 

was similar or more accurate than the CSS. All other methods performed similarly or worse 

than the random SNP sets (42±22% and 50±23%) with Infocalc (50±23%) outperforming the 

remaining methods. Of note is the poor performance of FST aAIMs, likely due to the high 

sensitivity of FST to aDNA data. As expected, high missingness was associated with incorrect 

predictions (Figure S9). For example, the low-coverage, low-quality Britain Anglo-Saxon 
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genomes proved challenging for all the methods (0-40%) but predicted correctly with the 

CSS (100%). 

 

Inference of admixed samples 

 

The last criterion used to evaluate the accuracy of the aAIMs was to test whether they can 

identify hybrid individuals. Due to the high accuracy of the PD aAIMs in classifying 

individuals into populations, when compared to the alternative datasets, we then decided to 

drop the other methods and tested only the aAIMs derived from PD. Figure S10 illustrates 

the genome-wide distribution of PD aAIMs. To assess whether these aAIMs can identify 

hybrid individuals, ancient individuals were hybridized to form 120 mixed individuals, each 

associated with three datasets: CSS, PD aAIMs, and a random SNP set of the size of PD 

aAIMs (Table 2).  

 

The genetic admixture distances between the admixture components generated using the CSS 

and PD aAIMs were significantly smaller (µ=0.05, σ=0.04) than both the genetic admixture 

distances between the CSS and the random SNP set (µ=0.45, σ=0.15, Welch t-test p-

values=2.2x10-8) and those between the PD and the random SNP set (µ=0.43, σ=0.15, Welch 

t-test p-values=1.9x10-8). We thus demonstrated that PD aAIMs can be used to study 

admixed individuals and for future admixture mapping involving aDNA.  

 

Discussion 

 

Questions of identity are at the center of scientific and public debate. Until recently, charting 

the emergence of agriculture, the spread of languages, and the rise and decline of cultures 

were topics dominated by archeologists. The emergence of aDNA allows paleogeneticists to 

delve into this debate with a discordant set of assumptions about biology and identity [30]. 

This was not unforeseen, as population genetic analyses excel at identifying individual 

differences, which can inform archeologically contended subjects like migration and the 

degree of admixture or population replacements. However, aDNA analyses also require 
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destroying genetic material, sometimes irrevocably, which makes them impossible to 

replicable. It is thereby crucial to develop a robust genetic methodology that uses population 

genetic principles to examine the assumptions made by both archeologists and 

paleogeneticists. It is reasonable to expect that many of the tools employed to study modern-

day genomes will need to be adapted to the four-dimensional environment facilitated by 

aDNA.  

 

Ancestry informative markers (AIMs) are some of the most useful tools in addressing 

population, biomedical, forensics, and evolutionary questions that remain in use today [8, 31-

33]. However it is unclear to what extent known AIMs are applicable to ancient genomic 

data, characterized by high missingness and haploidy[1]. 

 

In this study, we defined ancient ancestry informative markers (aAIMs) (Figure 1) and sought 

to identify them using various methods. The number of aAIM candidates detected by each 

method ranges from 9,000 to 15,000. These numbers are of the same magnitude as large 

AIMs studies [e.g., 34, 35] and reasonable, provided the potential relatedness of the ancient 

Eurasian populations and the near absence of heterozygote markers in the data. To find which 

of the aAIM candidate sets produced by each method best represent the true population 

structure, we used the CSS as a benchmark for qualitatively and quantitatively comparisons.  

 

Identifying the ideal AIM set that would be both small and include redundancies (in case of 

sequencing failure), capture the population structure, and allow identifying admixed 

individuals is one of the challenges of population genetics. We showed that aAIMs identified 

through a PCA-derived (PD) method outperformed all other methods, in agreement with 

previous studies that tested PCA-based methods [24]. Forty percent of the classifications 

made by the PD method were more accurate than those made using the CSS, which highlights 

the limitations of using markers indiscriminately. This is not surprising, since not all markers 

are equally informative and less-informative markers (e.g., exomic markers) may mask the 

population structure resulting in misclassification of populations. The notion of “more is 

better” is thereby particularly misguided with aDNA that harbors multi-layered population 
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structure in a poor set of markers. The applicability of the PD aAIMs for admixture mapping 

combined with tools that can homogenize cases and controls [e.g., 15] allows for carrying 

out future association studies on aDNA samples [e.g., 3]. Further investigations with 

additional data may identify formerly common markers associated with the disease that with 

time became rare and undetectable.  

 

Surprisingly, Infocalc and FST aAIMs, typically used in conjunction to identify AIMs [17] 

and reported to perform well [36], have oftentimes underperformed random SNP selections. 

Not only was FST already shown to be particularly small within continental populations [37], 

but these methods may be particularly sensitive to aDNA data that is both haploid and has 

high missingness (Figure S9). We also found no relationships between MAF and aAIMs 

performances (Figure S5). Enrichment for high or low MAF SNPs did not guarantee success, 

although the PD harbored more common SNPs than most underperforming methods.  

 

Our study has several limitations. We studied an uneven number of Eurasian populations 

from various times and locations, causing a skew towards markers that predict central 

European populations from the Late Neolithic and Bronze Age. A modest attempt to reduce 

this bias was made by including modern-day African and Asian populations; however, a more 

comprehensive analyses should be made when more global genomes are available from 

consecutives eras. Second, the aAIMs were calculated independently by each method with 

individual populations considered independent, although the PCA and ADMIXTURE plots 

indicate that central European populations may not be independent. Finally, due to high 

missingness of the data, it is likely that our study missed informative markers that could 

improve the classification accuracy in newly sequenced populations. Our framework and 

methods should therefore be applied again when more comprehensive aDNA datasets are 

available. 

 

Conclusions 
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The use of ancient genomes in research is in its infancy and expected to intensify and expand 

to new fields as more data become available. One of the main advantages of aDNA is that it 

widens the number of ancestry types and makes them multi-faceted, requiring fine-tuned 

molecular utilities to depict ancestry over time. AIMs are some of the most effective tools 

that have spear-headed population genetics over the past two decades and are ancillary to the 

challenge of understanding population structure. Here, we defined ancient AIMs (aAIMs), 

proposed a framework to evaluate AIM-finding methods, demonstrated the accuracy of a 

novel aAIM-finding method, and reported the most successful set of aAIMs. Future analyses 

may benefit from using our framework, methods, and aAIMs in order to refine ancient 

population structure models. 
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Methods 

 

Data collection 

 

Genomic data were obtained from 11 publications depicting 302 ancient genomes (Table S1). 

In the case of sequence data, sequence reads were aligned to the human reference assembly 

(UCSC hg19-http://genome.ucsc.edu/) using the Burrows Wheeler Aligner (BWA version 

0.7.15) [38], allowing two mismatches in the 30-base seed. Alignments were then imported 

to binary (bam) format, sorted, and indexed using SAMtools (version 1.3.1) [39]. Picard 

(version 2.1.1) (http://picard.sourceforge.net/) was then used for MarkDuplicates to remove 

reads with identical outer mapping coordinates (which are likely PCA artifacts). The Genome 

Analysis Toolkit RealignerTargetCreator module (GATK version 3.6) [40, 41] was used to 

generate SNP and small InDel calls for the data within the targeted regions only. GATK 

InDelRealigner/BaseRecalibrator was then used for local read realignment around known 

InDels and for base quality score recalibration of predicted variant sites based on dbSNP 138 

and 1000 Genomes known sites, resulting in corrections for base reported quality. The 

recalibration was followed by SNP/InDel calling with the GATK HaplotypeCaller. Variants 

were filtered for a minimum confidence score of 30 and minimum mapping quality of 40. At 

the genotype level, all genotypes that had a genotype depth less than 4 (GD < 4) or a genotype 

quality score less than 10 (GQ < 10) were removed from the dataset by setting them to 

missing in the VCF. GATK DepthofCoverage was then used to re-examine coverage 

following the realignment. VCFtools (version 0.1.14) [42] were used to convert the VCF file 

to PLINK format [43]. The final dataset comprised of 150,278 autosomal SNPs from 302 

ancient DNA (aDNA) genomes (Table S1; Additional file 1). Eight aDNA genomes (I0247, 

I1584, ATP9, IR1, Kostenki14, MA1, and Ust Ishim) without any country/region designation 

were omitted in the closest population determination calculations. The genomes were divided 

into 21 populations, based on their sampling country/region and era. 

 

Data analyses 
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The genetic structure canvas of ancient Eurasian genomes. The population structure of the 

ancient genomes was described using principal component analysis (PCA) implemented in 

PLINK v1.9 [43]. Genomes and SNPs with over 90% missingness were removed. We also 

applied the model-based clustering methods implemented in ADMIXTURE v1.3 [44]. Minor 

allele frequency (MAF) was calculated using PLINK (--maf command). For modern-day 

populations, MAF was calculated from the 1000 Genomes populations 

(ALL.2of4intersection.20100804.genotypes) [45]. Percentage of rare and novel variants and 

other functional information were obtained through VEP. 

 

Identifying aAIMs. We applied two established and three novel methods to detect aAIM 

candidates: 

1. Infocalc v1.1 [27], which determines the amount of information multiallelic markers 

provide about an individual’s ancestry by calculating the informativeness (I) of each 

marker separately and ranking the SNPs by their informativeness. Infocalc 

determines I based on the mathematical expression described in Rosenberg et al. 

(2003). We compared the performances (Figure 2) of the top 5,000, 10,000, 15,000, 

and 20,000 most informative markers (results not shown). The 15,000 dataset 

outperformed all other datasets and was selected for further analyses.  

2. FST. Wright’s fixation indices (FST) [29] measures the degree of differentiation among 

populations potentially arising due to genetic structure within populations. Given a 

set of populations (Table S1), we employed PLINK [43] to estimate FST separately 

for all the markers using –fst command alongside --within flag. Due to the high 

fragmentation of the data, FST values could only be calculated for 46% of the dataset. 

We compared the performances (Figure 2) of 5,000, 10,000, 15,000, and 20,000 SNPs 

with the highest Fst values (results not shown). The 15,000 dataset outperformed all 

other datasets and was selected for further analyses.  

3. Admixture1. This method assumes that aAIMs have high allelic frequencies in certain 

subpopulations that drive the differentiation of admixture components. Analyzing 

ADMIXTURE’s output file (P file) for K=10, we identified the markers (rows) that 

had high allele frequency (>0.9) in only one admixture component (columns). 
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Comparing the number of high-MAF SNPs in all columns, we selected 9,309 from 

the five columns with the highest number of such SNPs.  

4. Admixture2. This method assumes that aAIMs embody both high allelic frequencies 

in certain subpopulations and high variance between these allelic frequencies that 

differentiate admixture components. Analyzing ADMIXTURE’s output file for K of 

10, we identified 11,418 SNPs showing high variance (≥0.04) and high allele 

frequency range (maxima - minima ≥ 0.65) between the admixture components. 

5. PC-based (PD) approach. This method assumes that AIMs can replicate the 

population structure of subpopulations represented by the variation in the first two 

PCs. This is an interactive PC-based approach that identifies the smallest set of 

markers necessary to capture the population structure of a group of individuals as 

captured by the CSS. More specifically, for each population group (Table S1) in 

which at least 100 SNPs were available, we calculated PCA and used PC1 and PC2 

to plot the individuals after all SNPs with high missingness (>0.05) were excised. If 

the population group had insufficient SNPs, we relaxed the missingness threshold by 

an additional 0.05, though 0.05 were sufficient for almost all groups. We then scored 

the SNPs by their informativeness, as in [46], and visually compared the plot to that 

obtained from the CSS (Figure S11). If the plots were dissimilar, we repeated the 

analysis using additional 100 top scored SNPs until either the plots exhibited high 

similarity, or a threshold of 2000 SNPs was reached. We were unable to complete the 

analyses for 3 populations due to the small number of individuals. The PD method is 

available on https://github.com/eelhaik/PCA-derived-aAIMs. On average, 861 SNPs 

were collated per population group. Overall, the dataset comprised of 13,027 SNPs. 

 

To compare the prediction accuracy of the aAIMs subsets, two control datasets (Rand10k and 

Rand15k) were generated by randomly sampling 10,000 and 15,000 SNPs from the CSS, 

respectively. aAIMs identified by all methods are available as Additional file 2.  

 

Classifying individuals into populations from genomic data. Identifying ancient admixture 

components. We selected 100 random ancient genomes and removed six for insufficient data 
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(>95% missingness). To those, we added 20 Han Chinese and 20 Yoruba modern genomes 

from the 1000 Genomes Project (Durbin et al. 2010). We then applied supervised 

ADMIXTURE with various K’s ranging from 8 to 13. While we were unable to find a single 

K where culturally related genomes exhibited homogeneous admixture patterns, the most 

robust population substructure was found for K of 10. Two more components were obtained 

by analyzing Spanish and German genomes that appeared indistinguishable along with five 

Yoruba genomes separately. We observed very little admixture with the Han and Yoruba. 

Overall, we identified 10 admixture components in ancient genomes, corresponding to the 

allele frequencies of 10 hypothetical populations. Similarly to Elhaik et al. [16], we simulated 

15 samples for each hypothetical population by generating 30 alleles which MAF 

corresponds to the MAF of each population and assigning those genotypes to the simulated 

individuals. The putative ancestral ancient populations are available in Additional file 3. 

Relabeling populations. Initially, the labels from the corresponding papers were used to 

classify individuals to population. The consistency of these labels with data was evaluated 

by carrying out a supervised ADMIXTURE analysis on the genomic data combined with the 

150 putative ancient ancestral individuals. Due to the high similarity of the admixture 

patterns between individuals of different groups living in similar periods or entire groups 

(e.g., Neolithic individuals from Hungary and those from Germany), we re-labeled some of 

the population to reduce the number of populations and create more genomically 

homogeneous populations. For instance, Natufian and Neolithic samples from Jordan are 

grouped into the label Levant Epipaleolithic Neolithic. Overall, we identified 21 populations, 

whose labels are of the form “area_time period.” In the case of the Caucasus label, all the 

samples from Iran (except Iran_HotuIIIb) were excavated in the Zagros Mountains, south of 

the Caucasus. Given their admixture similarity with Armenians and Georgians from the same 

periods and their proximity to the Caucasus, this area was labelled as Caucasus. 

Iran_HotuIIIb was found in a more eastern region, just below the southeastern edge of the 

Caspian Sea, and given its similarity to Georgians and other Iranians, it was included in the 

group Caucasus Mesolithic Neolithic. Genomically defining reference populations. For 

each population with  𝑁௉ > 4, where 𝑁௉ is the number of individuals in the population, 

individuals were grouped in clusters through an iterative process that uses a k-means 
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clustering technique paired with multiple pairwise F-tests. Iterations ran over the number of 

𝑘 clusters [2, NP/2]. At each iteration 𝑖, k-means was used to identify the 𝑘 clusters, then the 

F-test was applied on each pair of clusters to test whether they are significantly (P<0.05) 

different. If the two clusters are different from all the pairs at iteration i, the process advances 

to i+1 until at least one pair violates the condition, in which case kop=i-1 is the optimal number 

of clusters or reference populations within that population. Assigning individuals to 

populations. We developed an admixture-based classifier, which is not sensitive to exclusion 

of random groups of individuals nor inclusion of large numbers of individuals from admixed 

groups and was trained on a third of the data. Using supervised ADMIXTURE, we calculated 

the admixture proportions of the individuals in relation to the putative ancient ancestral 

populations. Population assignment was then made based on the minimal Euclidean distance 

between the admixture components of each genome and those of the reference populations. 

The assignment accuracy was measured against the population classification (Table S1).  

 

Assessing admixture mapping. Creating hybrid individuals. We selected 15 individuals from 

five populations that showed homogeneity in their admixture components (Figure S4) and 

randomly sampled 120 pairs. Since selecting random alleles from each parent was 

problematic due to the high missingness of the data, we randomly selected half the genotypes 

of each parent to form 120 “offspring” or hybrid genomes. Each hybrid had three SNP sets: 

the CSS, PD aAIMs, and a random SNP set of the size of PD aAIMs with SNPs selected 

randomly for each hybrid. Assessing admixture accuracy. Following [47-49], we applied a 

supervised ADMIXTURE to the three SNP sets of each hybrid and calculated their genetic 

admixture distances (d) from each another, defined as the Euclidean distance between two 

set of admixture proportions.  

 

Graphics. All PCA and Admixture plots were generated in R v3.2.3. Maps were drawn using 

the ‘rworldmap’ package implemented in R v3.2.3. 

 

Availability of data and materials. The dataset supporting the conclusions of this article is 

included within the article and its additional files.   
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Titles and legends to figures 

 

Figure 1 

Geographic distribution of the highly differentiated rs7896530 in modern-day (A) and 

ancient (B) populations. The geographic distributions of the T (black) and G (yellow) 

alleles were obtained from the Geography of Genetic Variants Browser [50] and Table S1, 

respectively. 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 9, 2018. ; https://doi.org/10.1101/333690doi: bioRxiv preprint 

https://doi.org/10.1101/333690
http://creativecommons.org/licenses/by-nc/4.0/


29 
 

 

  

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 9, 2018. ; https://doi.org/10.1101/333690doi: bioRxiv preprint 

https://doi.org/10.1101/333690
http://creativecommons.org/licenses/by-nc/4.0/


30 
 

Figure 2 

Our scheme to identify and evaluate the accuracy of aAIM finding algorithms 

compared to each other and to the complete SNP set. We adopted four criteria to 

evaluate how well the aAIMs candidate capture the population structure depicted by the 

complete SNP set (CSS): first, by qualitatively comparing the dispersal of genomes 

obtained from a PCA to that of the CSS. Second, by comparing the Euclidean distances 

between the admixture proportions of each genome and those obtained from the CSS. To 

avoid inconsistencies between the SNP sets, we used admixture components obtained 

through a supervised ADMIXTURE (see methods). Third, by testing which aAIMs classify 

individuals to populations most accurately. Finally, the ability to identify admixed 

individuals was evaluated for the top performing method against the CSS.  
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Figure 3 

Geographical locations of the ancient genomes. The geographical coordinates of the 

ancient genomes. The shapes plotted in the map designate the country of origin of the 

genomes and their colors designate the era. The total number of ancient genomes from a 

specific era is shown.  
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Figure 4 

A comparison of the Euclidean distances (Δ) between the admixture proportions of 

the ancient genomes obtained from the CSS and those obtained from the aAIM sets. 

Lower distances indicate high genetic similarity between the admixture proportions 

obtained using two different SNP sets. 
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Tables 

 

Table 1 

Accuracy in classifying individuals to populations using the aAIM candidates. Each 

column reports the number of individuals correctly predicted and, in brackets, the 

corresponding population percentage. The total number of individuals per population are 

reported in the second column. Mean and standard deviation for each SNP set are provided 

in the last row. 

 

Population n CSS PD FST 
Infoc

alc 

Admixt

ure1 

Admixt

ure2 

Rand

10k 

Rand

15k 

Britain Iron 

Saxon 

1

0 

10 

(100) 

4 

(40) 
0 (0) 0 (0) 0 (0) 0 (0) 

1 

(10) 

3 

(30) 

Caucasus 

Chalcolithic 

Bronze 

2

2 

21 

(95) 

8 

(36) 
0 (0) 

12 

(55) 
6 (27) 4 (18) 

13 

(59) 

9 

(41) 

Caucasus 

Mesolithic 

Neolithic 

9 6 (67) 
7 

(78) 
0 (0) 6 (67) 1 (11) 7 (78) 

4 

(44) 

4 

(44) 

Central EU Early 

Neolithic 

2

6 

17 

(65) 

14 

(54) 

4 

(15) 

18 

(69) 
4 (15) 5 (19) 

14 

(54) 

18 

(69) 

Central EU Late 

Neolithic Bronze 

5

7 

16 

(28) 

17 

(30) 

19 

(33) 

19 

(33) 
13 (23) 21 (37) 

25 

(44) 

21 

(37) 

Central EU Mid 

Neolithic 

Chalcolithic 

6 2 (33) 
3 

(50) 
0 (0) 3 (50) 3 (50) 3 (50) 

2 

(33) 

2 

(33) 

Central Northern 

EU Late 

Neolithic Bronze 

2

0 

18 

(90) 

9 

(45) 
0 (0) 6 (30) 0 (0) 5 (25) 

4 

(20) 

6 

(30) 
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Central Western 

EU Mesolithic 
3 

3 

(100) 

2 

(67) 
0 (0) 

3 

(100) 
0 (0) 0 (0) 

1 

(33) 

3 

(100) 

Italy Mid 

Neolithic 

Chalcolithic 

4 
4 

(100) 

3 

(75) 
0 (0) 1 (25) 1 (25) 0 (0) 

1 

(25) 

1 

(25) 

Jordan Bronze 3 
3 

(100) 

2 

(67) 
0 (0) 0 (0) 2 (67) 3 (100) 

1 

(33) 

2 

(67) 

Levant 

Epipaleolithic 

Neolithic 

1

9 
7 (37) 

6 

(32) 
0 (0) 9 (47) 8 (42) 7 (37) 

4 

(21) 

7 

(37) 

Russia 

Chalcolithic 
3 2 (67) 

3 

(100

) 

0 (0) 1 (33) 0 (0) 2 (67) 
1 

(33) 

1 

(33) 

Russia Early Mid 

Bronze 

1

9 

19 

(100) 

15 

(79) 
0 (0) 

10 

(53) 
0 (0) 18 (95) 

10 

(53) 

14 

(74) 

Russia Late 

Chalcolithic 
9 6 (67) 

6 

(67) 
0 (0) 5 (56) 0 (0) 1 (11) 

3 

(33) 

3 

(33) 

Russia Mesolithic 3 2 (67) 
2 

(67) 
0 (0) 2 (67) 0 (0) 1 (33) 

2 

(67) 

2 

(67) 

Russia Mid Late 

Bronze 

2

2 

15 

(68) 

16 

(73) 
0 (0) 7 (32) 0 (0) 0 (0) 

4 

(18) 

6 

(27) 

Spain Early 

Neolithic 
6 4 (67) 

5 

(83) 
0 (0) 

6 

(100) 
4 (67) 4 (67) 

4 

(67) 

5 

(83) 

Spain Mid 

Neolithic 

Chalcolithic 

1

8 
7 (39) 

6 

(33) 
0 (0) 7 (39) 5 (28) 3 (17) 

5 

(28) 

5 

(28) 

Sweden 

Mesolithic 
8 

8 

(100) 

8 

(100

) 

0 (0) 7 (88) 4 (50) 1 (13) 
6 

(75) 

7 

(88) 
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Sweden Mid 

Neolithic 
4 

4 

(100) 

1 

(25) 

1 

(25) 
2 (50) 1 (25) 0 (0) 

4 

(100) 

2 

(50) 

Turkey Neolithic 
2

4 

23 

(96) 

18 

(75) 
0 (0) 

12 

(50) 
3 (13) 6 (25) 

8 

(33) 

11 

(46) 

  76±25 
61±

23 
3±9 

50±2

7 
21±23 33±32 

42±2

2 

50±2

3 
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Table 2 

Accuracy of inferring hybrid individuals using the PD aAIMs. The parental populations 

and the number of hybrids generated from them are shown. Each hybrid was represented by 

three datasets: CSS, PD aAIMs, and a random SNP set. The average genetic distances (d) 

between the admixture components of these datasets per population are shown.  

 

Parental 

population 

A 

Parental 

population 

B 

# 

Hybrids 

𝑑(CSS, PD)തതതതതതതതതതതതതത 𝑑(CSS, 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑡)തതതതതതതതതതതതതതതതതതതതതതതതതത 𝑑(PD, 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑡)തതതതതതതതതതതതതതതതതതതതതതതതത 

Britain Iron 

Saxon 

Britain Iron 

Saxon 

6 
0.026 0.212 0.208 

Britain Iron 

Saxon 

Russia Late 

Chalcolithic 

9 
0.009 0.610 0.601 

Britain Iron 

Saxon 

Sweden 

Mesolithic 

9 
0.051 0.344 0.337 

Britain Iron 

Saxon 

Turkey 

Neolithic 

9 
0.003 0.428 0.431 

Britain Iron 

Saxon 

Spain Early 

Neolithic 

9 
0.108 0.221 0.241 

Russia Late 

Chalcolithic 

Russia Late 

Chalcolithic 

6 
0.009 0.443 0.448 

Russia Late 

Chalcolithic 

Sweden 

Mesolithic 

9 
0.062 0.578 0.561 

Russia Late 

Chalcolithic 

Turkey 

Neolithic 

9 
0.063 0.661 0.633 

Russia Late 

Chalcolithic 

Spain Early 

Neolithic 

9 
0.101 0.520 0.491 

Sweden 

Mesolithic 

Sweden 

Mesolithic 

6 
0.000 0.384 0.384 
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Sweden 

Mesolithic 

Turkey 

Neolithic 

9 
0.055 0.567 0.522 

Spain Early 

Neolithic 

Sweden 

Mesolithic 

9 
0.108 0.402 0.377 

Turkey 

Neolithic 

Turkey 

Neolithic 

6 
0.001 0.627 0.626 

Spain Early 

Neolithic 

Turkey 

Neolithic 

9 
0.092 0.483 0.493 

Spain Early 

Neolithic 

Spain Early 

Neolithic 

6 
0.041 0.197 0.172 
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Supporting Information Legends 

Elhaik et al 2018 – Supp – Figures S1-S11 and Tables S1-S4 

Additional file 1.zip – Genotype data of the aDNA samples 

Additional file 2.zip – aAIMs candidates used in all analyses 

Additional file 3.zip – Genotype file of the putative ancient ancestral populations  
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