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State-of-the-art techniques allow researchers to record large numbers of spike trains parallel for many hours. With
enough such data, we should be able to infer the connectivity among neurons. Here we develop a computationally
realizable method for reconstructing neuronal circuitry by applying a generalized linear model (GLM) to spike cross-
correlations. Our method estimates interneuronal connections in units of postsynaptic potentials and the amount of
spike recording needed for verifying connections. The performance of inference is optimized by counting the esti-
mation errors using synthetic data from a network of Hodgkin-Huxley type neurons. By applying our method to rat
hippocampal data, we show that the numbers and types of connections estimated from our calculations match the results
inferred from other physiological cues. Our method provides the means to build a circuit diagram from recorded spike
trains, thereby providing a basis for elucidating the differences in information processing in different brain regions.

I. INTRODUCTION

Over the past decade it has become possible to record
from much larger numbers of neurons than in the past
(Wilson and McNaughton, 1993; Nicolelis et al., 2003;
Smith and Kohn, 2008; Schwarz et al., 2014; Mitz et al.,
2017), even though this number is still a mere shadow
of the total number of neurons present. The premise be-
hind collecting these large data sets is that it will lead
to improvements in correlating neuronal activity with spe-
cific sensations, motion, or memory, and possibly including
their adaptation and learning (Brown, Kass, and Mitra, 2004;
Hatsopoulos, Joshi, and O’Leary, 2004; Pillow et al., 2008;
Ohiorhenuan et al., 2010; Stevenson and Kording, 2011).

Having such large data sets leads to difficulties in han-
dling the data and interpreting the results. There are
two approaches to handling the data. In the first, re-
searchers have developed methods to reduce dimension-
ality while minimizing the loss of information (Yu et al.,
2009; Churchland et al., 2012; Cunningham and Byron,
2014; Williamson, Sahani, and Pillow, 2015; Kobak et al.,
2016).

The second approach, which we take here, is to use all of
the data to carry out mesoscopic neuroanatomy, that is, to re-
veal the fine neuronal circuitry in which neural circuit compu-
tation is carried out. From the high channel count recordings,
one should be able to estimate interneuronal connectivity by
quantifying the degree to which firing from a given neuron
is influenced by the firing of neurons from which the index
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neuron is receiving input (Perkel, Gerstein, and Moore, 1967;
Toyama, Kimura, and Tanaka, 1981; Reid and Alonso,
1995; Okatan, Wilson, and Brown, 2005; Fujisawa et al.,
2008; Stevenson et al., 2009; Chen et al., 2011;
Kim et al., 2011; Mishchencko, Vogelstein, and Paninski,
2011; Ito et al., 2011; Stetter et al., 2012;
Kobayashi and Kitano, 2013; Zaytsev, Morrison, and Deger,
2015; Gerhard, Deger, and Truccolo, 2017). For this purpose,
we develop an analytical tool that estimates interneuronal
connectivity in measurement units of postsynaptic potentials
(PSPs). In this study we also investigate how much data is
needed to reliably estimate the connections between pairs
of neurons; that is, we attempt to use data to reconstruct
the connectional map among the recorded neurons. The
method is evaluated for its accuracy in estimating connections
using synthetic data generated by simulating a network of
Hodgkin-Huxley (HH)-type neurons. Finally, we apply this
method to spike trains recorded from rat hippocampus. For
the experimental data, we compare our estimates of whether
an innervating connection is excitatory or inhibitory with the
results obtained by manually analyzing other physiological
information such as spike waveforms, autocorrelograms, and
mean firing rate.

II. RESULTS

A. Estimating interneuronal connections

To estimate interneuronal connectivity between each pair
of neurons, we obtain the cross-correlation (CC) by collecting
spike times of a neuron measured relative to every spike of a
reference neuron (Figure 1A). We explore the CC for evidence
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FIG. 1. Estimating interneuronal connections.
(A) Connectivity between neurons is estimated by fitting a generalized linear model (GLM) to the cross-correlation (CC). Ji j represents a
coupling from the j-th neuron to the i-th neuron. Excitatory and inhibitory neurons are depicted as triangles and circles, and their synaptic
connections are colored magenta and cyan, respectively. Surrounding neurons may induce large-scale fluctuations in the CC (green). (B)
Interneuronal connectivity is visualized by the Hinton diagram, in which excitatory and inhibitory connections are represented, respectively by
magenta and cyan squares of the sizes (area) proportional to the postsynaptic potential (PSP) wi j . (C) Distributions of excitatory postsynaptic
potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) of a simulated network.

of a mono-synaptic impact of a few milliseconds using the
generalized linear model (GLM). Here, interneuronal connec-
tivity is detected by fitting a coupling filter, while slow, large
scale wavy fluctuations that are often present in recorded spike
trains are absorbed by adapting the slow part of the GLM
(METHODS).

B. Criterion for the presence of connections

An interneuronal connection is considered significant when
the estimated parameter falls outside the confidence interval of
a given p value for the null hypothesis that the connection is
absent. If the parameter remains within the confidence inter-
val, the state of the connection is undetermined (METHODS).

The number of pairs considered to be connected will de-

pend on the p value and on the strength of the correlation. Our
method estimates connections as if they were all direct, mak-
ing all but certain that strong indirect influences will be con-
verted into purported direct connections. Neurophysiologists
often try to avoid these so-called false positives by shifting the
p value to small values, that is, moving p to very stringent lev-
els. However, being conservative about false positives means
that existing connections important for information process-
ing will be missed, thereby producing many false negatives.

To examine the influences of false positives and false neg-
atives reflect the level of conservatism used for estimating
connections, we applied our inference model to spike trains
obtained from a network of HH neurons, in which the true
anatomical connectivity is known. We studied at what values
the level of conservatism for the p value seemed to balance
the conflicting demands optimally.
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FIG. 2. Selecting the p value.
(A) The connection matrices are estimated with different levels of conservatism against making false positives (FPs) represented by the
p values. In each connection matrix, x-axis indicates reference (index) neurons. The connection matrix is divided into four quadrants,
representing inhibitory-excitatory, excitatory-excitatory, excitatory-inhibitory, and inhibitory-inhibitory zones. The numbers of FP and false
negative (FN) connections for excitatory and inhibitory categories are depicted below the matrices. (B) The Matthews correlation coefficient
(MCC) is plotted against the p value. The MCC takes a maximum at an intermediate level of cautiousness given by p = 0.001.

Our simulation used a network of 1,000 HH neurons con-
sisting of 800 excitatory and 200 inhibitory neurons (Figure
1B). In the simulation, excitatory neurons innervated 12.5%
of other neurons with excitatory postsynaptic potentials
(EPSPs). These excitatory connections were log-normally
distributed (Song et al., 2005; Teramae, Tsubo, and Fukai,
2012; Ikegaya et al., 2013; Buzsáki and Mizuseki, 2014)
(Figure 1C). Inhibitory neurons innervated 25% of other neu-
rons with inhibitory postsynaptic potentials (IPSPs) randomly.
These inhibitory connections were normally (Gaussian) dis-
tributed (Hoffmann et al., 2015). We simulated the network
for a period representing 5,400 s (90 min) with step sizes of
0.01 and 0.001 ms for excitatory and inhibitory neurons, re-
spectively (METHODS).

To illustrate the performance of estimating connections,
we sampled 20 neurons out of the entire population. Fig-
ure 2A shows the estimated connection matrices obtained us-
ing different p values. The connection matrix is divided into
four quadrants representing connections between inhibitory-
excitatory, excitatory-excitatory, excitatory-inhibitory, and
inhibitory-inhibitory neurons. True connections for the 2nd
and 3rd quadrants are excitatory, and those of the 4th and
1st quadrants are inhibitory. For p = 0.01, too many false
connections were assigned to pairs of neurons; there were 15
false connections or false positives out of 318 unconnected
pairs (4.7%) in this sample. At the other extreme, all false
positives can be excluded by decreasing the p value (down to
p = 10−24). In the latter case most existing connections are
lost, and a large number of false negatives arise; 59 among 62
existing connections (95%) are missed in this example. The
numbers of false positives and false negatives for excitatory
and inhibitory categories are shown below for the connection
matrices, indicating that the total number of false positives
and false negatives may be minimized between these extreme
cases.

To balance the false positives and false negatives si-
multaneously, we selected the p value that maximized
the Matthews correlation coefficient (Matthews, 1975;
Kobayashi and Kitano, 2013). The p value was set to p =
0.001 (Figure 2B). Although false connections remain, the
neuronal circuit was most accurately reconstructed with p =
0.001. We adopted p = 0.001 throughout the following anal-
yses.

C. Duration of spike recording

The necessary duration of spike recording can be estimated
even without fitting the statistical model to the spike trains.
This is because the distribution of the connection parameter
for the null hypothesis is obtained solely in terms of the obser-
vation interval (T ) and the firing rates of the pre- and postsy-
naptic neurons (λpre and λpost) (METHODS). The confidence
interval of the connection parameter (J) is

J± =±c/
(
T τλpreλpost

)1/2
, (1)

where τ is the timescale of synaptic impact, which is chosen
by maximizing the model likelihood: τ = 0.004 s for the sim-
ulation data and τ = 0.001 s for the rat hippocampal data. The
coefficient c is given as 5.16 for p = 0.001.

The connection parameter J is related to the post-synaptic
potential (PSP), w mV. We approximate it with the linear re-
lation

J = aw. (2)

Here, the coefficient a is determined using synthetic data as
a = 0.39 for the EPSP and a = 1.57 for IPSP. By combining
this with equation (1), the necessary duration of spike record-
ing needed to determine the likely presence of a connection of
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TABLE I. Duration of spike recording required for verifying interneuronal connections, for the case of synaptic timescale τ = 0.001 s, which
was selected for rat hippocampal data. The red letters represent the cases for which more than 2 h were required.

Firing rates EPSP: 5 mV EPSP: 1 mV EPSP: 0.5 mV IPSP: 1 mV IPSP: 0.5 mV
(10, 10) Hz T > 2 min T > 30 min T > 2 h T > 2 min T > 7 min
(10, 5) Hz T > 3 min T > 1 h T > 4 h T > 4 min T > 10 min
(5, 5) Hz T > 7 min T > 2 h T > 8 h T > 7 min T > 30 min
(10, 1) Hz T > 20 min T > 5 h T > 20 h T > 20 min T > 1 h
(5, 1) Hz T > 30 min T > 10 h T > 40 h T > 40 min T > 2 h
(1, 1) Hz T > 3 h T > 50 h T > 200 h T > 3 h T > 10 h

PSP is given as

T >
c

τλpreλposta2w2 . (3)

To make reliable inference, in addition to the above relation, it
is also necessary to have collected a sufficiently large number
of spikes during the interaction time window on the order of a
few milliseconds. Here we require (METHODS):

T λpreλpost > 10/τ [1/s]. (4)

Table I shows the results of several cases of firing rates and the
assumed PSPs using the p = 0.001. Unsurprisingly, to detect
a weak connection for a low firing neuron requires gathering
data for a long period of time. Figure 3A shows the connec-
tions estimated with different observation time windows, il-
lustrating weak connections become visible as the recording
duration increases.

D. Estimating PSPs

We believe that our method is of particular interest because
it couches the connections in terms of PSPs for the individ-
ual neuronal pairs. Figure 3B compares the estimated PSPs
(ŵ) against the true values (w) from the numerical simulation.
Here we represent ŵ = 0 if the connection is undetermined,
i.e., not significant. Thus, unconnected links (w = 0) that
were classified as undetermined (true negatives) are placed
at the origin. Points lying on the nonzero x-axis are exist-
ing connections that were not detected. Points lying on the
nonzero y-axis are the functional or virtual connections that
were estimated for unconnected pairs. The points in the 1st
and 3rd quadrants represent true positives, or existing connec-
tions whose signs were correctly inferred as excitatory or in-
hibitory, respectively. The points in the 2nd and 4th quadrants
are existing connections whose signs were misclassified.

The number of nonzero connections increases with the
recording duration. Existing connections with large PSP am-
plitude tend to be detected with the signs correctly identified
(points in the 1st and 3rd quadrants). There are also virtual
connections assigned for unconnected pairs (nonzero y-axis).
The number of such false positives is larger than the expected
number of statistical errors (Figure 2A). This implies that the
false connections may not be mere statistical fluctuations, but
rather that they may reflect the functional connectivity indi-
rectly connected via other unobserved neurons.

Figure 3C demonstrates the way individual connections
emerge by increasing the recording duration. Here the ab-
scissa is chosen as the observation window (T ) multiplied by
the firing rates of the pre- and postsynaptic neurons (λpre and
λpost) so that all data are organized into a unified formula (in-
equality (3)). The values of T , λpre, and λpost for the excitatory
connections tended to be smaller than those of inhibitory con-
nections, because the firing rates of excitatory neurons were
typically lower than those of inhibitory neurons.

E. Excitatory−inhibitory (E−I) dominance index

The probability of misassigning individual connectivity for
unconnected pairs was much higher than the statistical p-
value, because their firing is generally correlated with each
other due to indirect interactions through unobserved neurons.
Nevertheless, excitatory and inhibitory characteristics of indi-
vidual neurons can be inferred with a lower error rate, because
we can refer to multiple connections for each neuron.

We define an excitatory−inhibitory (E−I) dominance index
as

rei =
ne −ni

ne +ni
. (5)

where ne and ni represent the numbers of identified excita-
tory and inhibitory connections innervated from each neu-
ron, respectively. The E−I dominance indexes computed
for 2 networks of 80 neurons each are plotted against fir-
ing rates of neurons (Figure 4A). In this case, excitatory and
inhibitory characteristics of individual neurons were well-
identified based on E−I dominance indexes. Inhibitory
neurons typically exhibited higher firing rates in compar-
ison to excitatory neurons. The firing irregularity mea-
sured using the local variation (Lv) of interspike intervals
(Shinomoto, Shima, and Tanji, 2003; Mochizuki et al., 2016)
is plotted against firing rate. Spiking of inhibitory neurons
tended to be more regular (smaller Lv) than that of excitatory
neurons.

If we can record many spike trains in parallel for a long
time, many excitatory and inhibitory neurons may be correctly
identified according to rei > 0 and rei < 0, respectively. Figure
4B illustrates the manner in which the ratio of such correct
identification depends on the total number of spike trains and
the duration of observation.
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FIG. 3. Neuronal circuits reconstructed from different observation time windows.
(A) Interneuronal connections estimated from the observation time windows of 600, 1,800, and 5,400 s (10, 30, and 90 min) are plotted in
reference to true connectivity. In each connection matrix, x-axis indicates reference neurons. In the network graphs shown in the second
panel, excitatory and inhibitory neurons are depicted as triangles and circles, respectively. (B) Estimated postsynaptic potentials (PSPs) (ŵ)
plotted against true parameters (w) were computed for 100 neurons randomly selected from the simulation. Points in the 1st and 3rd quadrants
represent qualitatively correct inferences for excitatory and inhibitory connections (magenta and cyan, respectively). Points on the nonzero
y-axis represent the false positive connections for unconnected pairs. Points on the nonzero x-axis represent the false negatives. (C) Detection
status for connections of given PSPs with respect to the observation window (T ). Connections estimated as excitatory and inhibitory are colored
magenta and cyan, respectively, while undetermined ones are colored gray. Diagonal and vertical lines represent the theoretical formulas (3)
and (4), respectively.
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FIG. 5. Neuronal circuits reconstructed from real spike trains in vivo.
(A) Interneuronal connections estimated from spike trains recorded from the hippocampal CA1 area of a rat. Estimations were made with the
observation time windows of 600, 1,800, and 5,400 s (10, 30, and 90 min). In each connection matrix, x-axis indicates reference neurons. The
connection matrix is partitioned into groups of putative excitatory and inhibitory neurons defined manually according to other physiological
cues such as waveforms. (B) Cross-correlations of several pairs of neurons computed at different time windows. The slow part of the GLM
adapted to the data is depicted in green. The coupling filter is separately depicted in magenta, cyan, or gray, respectively, for the excitatory,
inhibitory, or undetermined, respectively. Corroborated connections are indicated by arrows. (C) E−I dominance index (rei) and the firing
irregularity (Lv) plotted against the firing rates for putative excitatory and inhibitory neurons. (D) Estimated connections among neurons in
CA1 and Entorhinal Cortex (EC). The connection matrix is partitioned into putative excitatory and inhibitory neurons in CA1 and EC. One EC
unit, whose excitatory or inhibitory characteristic was not determined by the manual analysis is put in the gap (gray) between excitatory and
inhibitory groups. In the network graph shown in the second panel, excitatory and inhibitory dominated connections are depicted in magenta
and cyan, while connections of mixed characteristics are depicted in gray.
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F. Real spike trains

We apply our method to spike trains recorded from the
hippocampal CA1 area of a rat while it was exploring a
square open field (Mizuseki et al. (2013): hc3 in CRCNS).
Figure 5A displays the connections obtained with different
observation time windows, demonstrating that more connec-
tions become visible as the recording duration increases, sim-
ilar to the results seen with synthetic data. The connection
matrix is divided into four quadrants according to the pu-
tative classification performed by manually analyzing wave-
forms, autocorrelograms, and mean firing rates (Skaggs et al.,
1996; Csicsvari et al., 1998; Mizuseki et al., 2009). We
observe that connections in the 3rd, 4th, and 1st quadrants
of the connectivity matrix representing excitatory-inhibitory,
and inhibitory-inhibitory, and inhibitory-excitatory zones, re-
spectively, are detected in a relatively short observation win-
dow. This is consistent with our formula (3) given that in-
hibitory neurons typically fire at high rates. Connections in
the 2nd quadrant, representing the excitatory-excitatory zone,
only appear after increasing the observation time window, and
the estimated connection pattern remains sparse; more con-
nections might have been identified if the observation period
had been even longer. However, the estimated connection pat-
tern is consistent with the finding using intracellular recording
in vitro that inter-pyramidal connections in the hippocampus
CA1 are sparse (Deuchars and Thomson, 1996).

Figure 5B shows CCs of several neuron pairs. The cross-
correlations became less noisy as the observation time is in-
creased, and some connections resolved (8-7, 13-3, 14-7, and
15-8). Some real spike trains exhibited large-scale wavy fluc-
tuations (13-11), which may suggest that these neurons are
under the influence of brain activity with lagged phases or
perhaps they were responding to some unidentified external
stimulus. Our method absorbs these fluctuations by adapting
the slow part of the GLM (demonstrated as green lines), and
succeeds in detecting a tiny synaptic impact by fitting cou-
pling filters (lines colored magenta, cyan, and gray, respec-
tively represent excitatory, inhibitory, and undetermined con-
nections).

In Figure 5C, we plotted the E−I dominance index (rei) and
the firing irregularity (Lv) against the firing rate. The E−I
dominance index is roughly consistent with the putative exci-
tatory and inhibitory neurons. The irregularity of the putative
excitatory neurons tended to be higher (larger Lv) than that
of inhibitory neurons, similar to what we observed with the
simulation data. The good separation of the putative excita-
tory and inhibitory neurons in these plots implies that we can
classify recorded cells into excitatory and inhibitory neurons
reliably without having to rely on their waveforms, because
the E−I dominance index, firing irregularity, and the firing
rate are obtained solely from the spike times.

We also attempted to analyze a set of spike trains recorded
simultaneously from multiple regions including CA1 and the
Entorhinal Cortex (EC). Figure 5D demonstrates a matrix of
estimated connections among excitatory and inhibitory neu-
rons in CA1 and EC. Though the number of inter-regional
connections was small in this sample data, our analysis

method is generally applicable to any set of spike trains, ir-
respective of the recorded areas.

III. DISCUSSION

We present a method for reconstructing neuronal circuitry
from multichannel extracellular neuronal recordings. This
method, based on a combination of the GLM and CC, can
balance the antagonistic demands for reducing false positives
and false negatives when estimating interneuronal connectiv-
ity. Our method is tolerant of the large variations in firing ac-
tivity that often occur in vivo. As a critical part of the method,
we show a framework for estimating the necessary duration
of the spike recordings so that any likely interneuronal con-
nections are detected. The duration is presented in terms of
the firing rates of the pre- and postsynaptic neurons, and the
presumed PSP.

It would be ideal to be able to estimate individual connec-
tions using intracellular or patch clamp recordings where the
postsynaptic current caused by presynaptic neuronal firing can
be measured, as is done with recordings from the rat cor-
tex (Yoshimura, Dantzker, and Callaway, 2005; Song et al.,
2005; Buzsáki and Mizuseki, 2014). While those methods
can reliably detect synaptic connections, they are limited be-
cause only a few neurons can be recorded simultaneously.

With the recent increase in parallel high channel count
extracellular recordings from anaesthetized and behaving an-
imal subjects (Buzsáki, 2004; Jun et al., 2017), it is possible
to estimate the connection strength between a number of neu-
rons (Fujisawa et al., 2008; Bock et al., 2011; Gong et al.,
2015). Several strong analytical methods for estimating
connections from spike trains have been developed, including
the cross-correlation analysis (Perkel, Gerstein, and Moore,
1967; Toyama, Kimura, and Tanaka, 1981; Sakurai,
1996; Ventura, Cai, and Kass, 2005; Doiron et al.,
2016) and the GLM (Okatan, Wilson, and Brown, 2005;
Truccolo et al., 2005; Pillow et al., 2008; Chen et al.,
2011; Kim et al., 2011; Kobayashi and Kitano,
2013; Zaytsev, Morrison, and Deger, 2015;
Gerhard, Deger, and Truccolo, 2017). While CCs have
been used to estimate neuronal connectivity, the classical
cross-correlation analysis becomes unreliable when there
are large fluctuations in the data. One approach to solving
this problem has been to jitter the time stamps of spikes
(Amarasingham et al., 2012; Schwindel et al., 2014). An-
other approach has been to apply GLM to parallel spike
trains. However, the size of the computation increases as the
recording time increases. Because the number of neuronal
pairs increases by the square of the number of spike trains
(e.g., 10,000 pairs should be examined for 100 parallel spike
trains), computation for estimating individual connections of
each pair should be modest. Our analysis can be conducted
with a reasonable computation time with amounts of data that
can reasonably be collected, because our GLM analyzes the
CC for a time window of 100 ms rather than the entire spike
trains. Our GLM may also adapt to wavy fluctuations in CC,
making it tolerant to large-scale fluctuations that are often
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attendant on real spike trains in vivo.
Because recording time is limited, a possible restriction on

inferring connectivity might be that there is not enough data.
Even if a given neuron fired several times with each spike oc-
curring shortly after the firing of an index neuron, there still
might not be enough data to conclude that there is a synaptic
connection. Here we made estimates on the duration of spike
recordings needed so that any likely interneuronal connections
will be detected (cf. Table I).

When we applied our method to data recorded from the
rat hippocampus we identified connections for four types of
pairs, excitatory-excitatory, excitatory-inhibitory, inhibitory-
inhibitory, and inhibitory-excitatory, in numbers consistent
with those identified physiologically (Mizuseki et al., 2009),
supporting the efficacy of our method. Typically, the pyrami-
dal neurons have low background firing rates and interneurons
have higher firing rates. Our analysis (cf. inequality (3)) in-
dicates that the necessary recording duration is inversely pro-
portional to the product of the firing rates of the pre- and post-
synaptic neurons. Thus, connections between neurons firing
at high frequencies can be detected with a relatively short ob-
servation duration. For neurons with low firing rates, on the
other hand, data will have to be collected for much longer peri-
ods, and we expect that excitatory-excitatory connections will
be detected only if there is a relatively long recording period.
The consequences of this have been seen with experimental
data; for instance, synapses that connect with inhibitory in-
terneurons were frequently detected, and connections between
excitatory neurons were rarely detected (Barthó et al., 2004;
Fujisawa et al., 2008). The hippocampal data analyzed in this
study (Figure 5A) conforms to this pattern, and our analysis
provides insight into how this happens.

Our approach and method provide a means for estimating
a map of neuronal connections from high channel count si-
multaneous recordings. We presume, based on anatomical
differences, that these maps will have different structures in
different functional brain regions. Having a reliable technique
for estimating the maps offers the opportunity to identify these
different structures, thereby providing a basis for understand-
ing the differences in information processing that arises from
differences in anatomy and connected structures.

IV. METHODS

A. Estimating interneuronal connectivity

Here we describe our GLM analysis, the bases of validat-
ing connections and selecting a p value, and the method of
estimating the post-synaptic potential (PSP).

CC-GLM

To discover interneuronal connections between a pair of
neurons, we devise a GLM that detects short-term synaptic
impacts in the CC (as schematically depicted in Figure 1A

and as real cross-correlograms of rat hippocampal data in Fig-
ure 5B). We design the GLM describing the CC (which we
call CC-GLM) as

c(t) = exp(a(t)+ J12 f (t)+ J21 f (−t)), (6)

where t is the time from the spikes of the reference neuron,
and a(t) represents large-scale fluctuations produced outside
the pair of neurons. Ji j represents interneuronal connection
from the jth neuron to the ith neuron. The time profile of
the synaptic interaction is modeled as f (t) = exp(− t−d

τ ) for
t > d and f (t) = 0 otherwise, where τ is the typical timescale
of synaptic impact and d is the transmission delay. The con-
nection parameter Ji j of our CC-GLM can be derived from
a model of the original interaction process between neurons
(Supplementary Information A).

Given an underlying rate c(t), the probability for spikes
to occur at {tk} = {t1, t2, · · · , tN} is obtained theoretically as
Cox and Lewis (1966); Daley and Vere-Jones (2003),

p({tk}|θ) = ∏
k

c(tk)exp
[
−
∫ W

−W
c(t)dt

]
, (7)

where θ represents a set of parameters that characterize c(t).
To detect short-term synaptic impacts of a few ms hidden

in large-scale fluctuations, we make a(t) adapt to slow varia-
tion in the CC. We implement this by discretizing the tempo-
ral modulation a(t) at intervals of ∆t = 1 ms in a time win-
dow of 2W = 100 ms, which is represented by a set of pa-
rameters a⃗ = {a−M,a−M+1, · · · ,aM−1}. We assume that the
background activity is slowly modulated. This may be imple-
mented by providing a prior distribution that penalizes a large
gradient or (da/dt)2. In terms of discretized parameters, we
give the prior distribution:

p(θ) ∝ exp

[
− β

2∆t

M−2

∑
k=−M

(ak+1 −ak)
2

]
, (8)

where β is a hyperparameter representing the flatness of a(t);
a(t) is nearly constant if β is large, or is rapidly fluctuat-
ing otherwise. Here, the hyperparameter β is selected as
β = 1000 ms. For the connection parameters J12 and J21, we
assume uniform priors.

The posterior distribution of a set of parameters θ =
{⃗a,J12,J21}, given the spike data {tk}, is obtained from Bayes’
rule as

p(θ |{tk}) =
p({tk}|θ)p(θ)

p({tk})
. (9)

The parameters are determined with the maximum a posteri-
ori (MAP) estimate, that is, by maximizing the posterior dis-
tribution or its logarithm:

log p(θ |{tk}) = ∑
k

logc(tk)−
∫ W

−W
c(t)dt

− β
2∆t

M−2

∑
k=−M

(ak+1 −ak)
2 + const. (10)

The maximization is performed efficiently using the
Levenberg–Marquardt method (Supplementary Information
B).
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Statistical test for determining connectivity

We determine the presence of an interneuronal connection
by disproving the null hypothesis that a connection is absent.
Namely, we conclude that a connection is likely present if the
estimated parameter is outside the confidence interval for the
null hypothesis; otherwise, the presence of a connection is
undetermined. The null hypothesis is that two neurons gener-
ate spikes at their baseline firing rates independently of each
other. According to Poisson statistics, the variance of the
number of spikes generated in a time interval ∆ after the spike
of a reference neuron is equal to its mean. The mean spike
number is obtained by multiplying the intensity c(0) by an
interval ∆,

n = c(0)∆. (11)

Assuming that the connection J is small, the average num-
ber of spikes caused by an interneuronal connection during an
interval ∆ is approximated as

δn = c(0)Jτ(1− e−∆/τ). (12)

The condition that the synaptic interaction produces a sig-
nificant impact in the CC is |δn| > αp

√
n, where αp is the

alpha-value representing a threshold for the normal distribu-
tion (αp = 2.58 for p = 0.01 and αp = 3.29 for p = 0.001). In
terms of the estimated connection parameter Ĵ, this condition
is given as

|Ĵ|> αp
∆1/2

τ(1− e−∆/τ)
· 1
(c(0))1/2 . (13)

Here, ∆1/2/(τ(1− e−∆/τ)) in the right-hand-side of this in-
equality is bounded from below by 1.57τ−1/2 (∆ = 1.26τ).
Thus we have the following inequality:

|Ĵ|> 1.57αp(τc(0))−1/2. (14)

The typical duration of spike recording needed for the con-
nectivity inference (inequality (3)) is obtained from equation
(14) by approximating c(0) = T λpreλpost, where T is the total
duration of recording.

Another requirement is that spike trains should contain a
sufficiently large number of spikes to make a reliable infer-
ence. A typical number of spikes contained in the CC in the
interaction time window is T λpreλpostτ . By requiring this to
be greater than 10, we obtain the inequality (4).

Selecting the p value

Although we obtained the confidence interval of the con-
nection parameter Ji j at a given p value above, the probabil-
ity of assigning spurious connectivity to anatomically discon-
nected pairs is higher than the given p value, because spike
trains are correlated. Such spurious connections or false-
positives may be reduced by decreasing the p value. However,
this operation may cause the vast majority of existing connec-
tions to be missed, thus producing a huge number of false-
negatives. Thus, the p value should be chosen so that these

conflicting demands (of reducing false positives and false neg-
atives) are optimally compromised.

As we can directly count false positives and false negatives
in simulation data, we may select a p value such that the per-
formance of the inference is maximized. As a measure for
assessing the performance of connectivity inference, we adopt
the Matthews correlation coefficient (MCC) (Matthews, 1975)
defined as

MCC =
NTPNTN −NFPNFN√

(NTP +NFP)(NTP +NFN)(NTN +NFP)(NTN +NFN)
,

where NTP, NTN, NFP, and NFN represent the numbers of true
positive, true negative, false positive, and false negative con-
nections, respectively.

Because there are excitatory and inhibitory connections, we
may obtain two coefficients for individual categories. To eval-
uate the quality of inference in terms of a single measure, here
we take the macro-average MCC that sets equal importance to
these categories (Yang, 1999; Sun and Lim, 2001):

MCC =
MCCE +MCCI

2
. (15)

In computing the coefficient for the excitatory category
MCCE , we classify connections as excitatory or other (dis-
connected and inhibitory); for the inhibitory category MCCI ,
we classify connections as inhibitory or other (disconnected
and excitatory).

Estimating PSPs from GLM connection parameters

We translate the GLM connection parameters Ji j into bio-
logical PSPs wi j mV. This relation is obtained by numerically
simulating a network of neurons interacting through known
connections {wi j} and by applying the GLM to their spike
trains to estimate the connection parameters {Ji j}. Regard-
ing synaptic connections wi j for which Ji j was verified in the
correct signs, we assume a linear relation as in equation (2):

Ji j = awi j.

The coefficients a is determined by applying regression anal-
ysis to the data. We obtained a = 0.39 for EPSP and 1.57 for
IPSP, respectively.

When we newly estimate connection parameters Ĵi j from
spike trains, they can be translated into PSPs using the rela-
tion:

ŵi j = Ĵi j/a. (16)

Figure 3B compares the estimated PSPs ŵi j with the original
PSPs values wi j of a model neural network.

In our numerical simulation, synaptic connectivity is given
in terms of conductance. Thus we have to translate conduc-
tance into PSP. The translation rule is described in Supple-
mentary Information C.
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B. Synthetic data

We ran a numerical simulation of a network of 1,000
Hodgkin–Huxley (HH) type neurons interacting through fixed
synapses. Of them, 800 excitatory neurons innervate to
12.5 % of other neurons with EPSPs that are log-normally
distributed (Song et al., 2005; Teramae, Tsubo, and Fukai,
2012; Buzsáki and Mizuseki, 2014), whereas 200 inhibitory
neurons innervate randomly to 25 % of other neurons with
IPSPs that are normally distributed.

Neuron models

For excitatory pyramidal cells, we adopted HH type mod-
els developed by Destexhe and Paré (1999). The membrane
potential V obeys the equation:

Cpyr
m

dV
dt

=−IL − INa − IK − IM − Itot, (17)

where Cpyr
m is the membrane capacitance, IL = gpyr

L (V −EL) is
the leak current, INa = gpyr

Na m3h(V −Epyr
Na ) is the Na+ current,

IK = gpyr
K n4(V −Epyr

K ) is the delayed-rectifier K+ current, IM =

gpyr
M p(V −Epyr

K ) is the muscarinic potassium current, and Itot
is the total input current from the other neurons. The gating
variables x∈{m,h,n, p} are described by the kinetic equation:

dx
dt

= αx(V )(1− x)−βx(V )x, (18)

where αx and βx are the activation and inactivation functions,
respectively. The activation and inactivation functions and the
parameter values are summarized in Table II.

For inhibitory interneurons, we adopted HH type models
developed by Erisir et al. (1999). The membrane potential V
obeys the equation:

Cinh
m

dV
dt

=−IL − INa − IK1 − IK2 − Itot, (19)

where Cing
m is the membrane capacitance, IL = ginh

L (V −E inh
L )

is the leak current, INa = ginh
Na m3h(V −E inh

Na ) is the Na+ cur-
rent, IK1 = ginh

K1
n4

1(V −E inh
K ) and IK2 = ginh

K2
n2

2(V −E inh
K ) are the

delayed-rectifier K+ current due to Kv1.3 and Kv3.1-Kv3.2
conductance, respectively, and Itot is the total input current.
The gating variables x ∈ {m,h,n1,n2} follow the kinetic equa-
tion (18), with the activation and inactivation functions pre-
scribed by the original paper (Erisir et al., 1999). The param-
eter values are summarized in Table II.

Synaptic connections

Each neuron receives synaptic currents induced by the
firing of other neurons. Excitatory synaptic currents
are mediated by 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)
propanoic acid (AMPA) and N-methyl-D-aspartate (NMDA)
receptors, whereas inhibitory synaptic currents are mediated

TABLE II. Parameters for pyramidal neurons and interneurons

Neuron Models
Cpyr

m , Cinh
m [µF/cm2] 1.0, 1.0

gpyr
L , ginh

L [mS/cm2] 0.045, 0.1
gpyr

Na , ginh
Na [mS/cm2] 50.0, 112.0

gpyr
K , gpyr

M , ginh
Kv3, ginh

Kv1 [mS/cm2] 5.0, 0.07, 224.0, 0.224
Epyr

L , E inh
L [mV] -80.0, -70.0

Epyr
Na , E inh

Na [mV] 50.0, 55.0
Epyr

K , E inh
K [mV] -90.0, -97.0

S [cm2] 3.5×10−4

by γ-aminobutyric acid (GABA)-A receptors. The total input
current to the ith neuron is given by

Ii
tot = ∑

j: Pyramidal cells

(
Ii j
AMPA + Ii j

NMDA

)
+

∑
j: Interneurons

Ii j
GABA + Ibg. (20)

where Ii j
AMPA, Ii j

NMDA, and Ii j
GABA, respectively represent the

synaptic currents given by the AMPA, NMDA, and GABA
receptors, and Ibg represents the background current.

For AMPA-mediated current, we adopted the depressing
synapse model proposed by Tsodyks and Markram (1997)

Ii j
AMPA = gi j

AMPAw j(t)(Vi −EAMPA), (21)

τAMPA
ina

dw j(t)
dt

=−w j(t)

+UAMPAr j(t)∑
k

δ (t − t j
k −dAMPA), (22)

τAMPA
rec

dr j(t)
dt

=−r j(t)+1−w j(t), (23)

where gi j
AMPA is the maximal AMPA conductance, Vi is the

membrane potential of the postsynaptic neuron, t j
k is the kth

spike time of the pre-synaptic neuron, and dAMPA is the synap-
tic conduction delay. For each connection, the conduction de-
lay is drawn from a uniform distribution between 0 and 2 ms.
w j and r j represent the fraction of synaptic resources in the
effective and recovered states, respectively. The AMPA pa-
rameter values are summarized in Table III.

For NMDA-mediated current, we adopted the first-order ki-
netic equation proposed by Destexhe, Mainen, and Sejnowski
(1998)

Ii j
NMDA = gi j

NMDAr j(t) f (Vi)(Vi −ENMDA), (24)
dr j(t)

dt
= αNMDAT (t − tpre −dNMDA)(1− r j(t))

−βNMDAr j(t), (25)

f (Vi) =
(

1.0+0.28[Mg2+]e−0.062Vi
)−1

, (26)

where [Mg2+]= 1.0 mM is the extracellular magnesium con-
centration, tpre is the last spike time of the presynaptic neuron,
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dNMDA is the conduction delay drawn from a uniform distri-
bution between 0 and 2 ms, and T (t) represents the trans-
mitter concentration in the cleft. When a spike occurs in a
pre-synaptic neuron, a transmitter pulse is induced such that
T (t) = 1 mM for a short period (1 ms) and the concentration
returns to T (t) = 0. The NMDA parameter values are summa-
rized in Table III.

For GABA-A-mediated current, we adopted the depressing
synapse model proposed by Tsodyks and Markram (1997)

Ii j
GABA = gi j

GABAw j(t)(Vi −EGABA), (27)

τGABA
ina

dw j(t)
dt

=−w j +

UGABAr j(t)∑
k

δ (t − t j
k −dGABA), (28)

τrec
dr j(t)

dt
=−r j(t)+1−w j(t). (29)

where dGABA is the conduction delay drawn from a uniform
distribution between 1 and 3 ms. The GABA parameter values
are summarized in Table III.

We ran a simulation of a network consisting of 800 pyrami-
dal neurons and 200 interneurons interconnected with a fixed
strength. Each neuron receives 100 excitatory inputs ran-
domly selected from 800 pyramidal neurons and 50 inhibitory
inputs selected from 200 interneurons.

The AMPA conductance (gi j
AMPA) is drawn indepen-

dently from a log-normal distribution (Song et al., 2005;
Teramae, Tsubo, and Fukai, 2012)

P(x) =
1√

2πσx
exp

(
− (logx−µ)2

2σ2

)
, (30)

where µ = −3.37 and σ = 1.3 are the mean and SD of the
natural logarithm of the AMPA conductance. The NMDA and
GABA conductances (gi j

NMDA and gi j
GABA) are sampled from

the normal distribution

P(x) =
1√

2πσ
exp

(
− (x−µ)2

2σ2

)
, (31)

where µ and σ are the mean and SD of the conductances. Pa-
rameters are µNMDA = 8.5× 10−4 mS/cm2, σNMDA = 8.5×
10−5 mS/cm2 and µGABA = 0.34 mS/cm2, σGABA = 0.27
mS/cm2 for the NMDA and GABA conductance, respectively.
If the sampled value is less than zero, the conductance is re-
sampled from the same distribution.

Because our model network is smaller than real cortical
networks, where each neuron receives inputs from the order
of 10,000 neurons (Braitenberg and Schüz, 1998), we added a
background current to represent inputs from many neurons, as
previously done by (Destexhe et al., 2001). The background
current is given as the sum of excitatory and inhibitory inputs:

Ibg = ge(t)(V −EAMPA)+gi(t)(V −EGABA), (32)

where the total excitatory and inhibitory conductance ge,i(t)
obey the Ornstein–Uhlenbeck process (Tuckwell, 1988), rep-
resenting random bombardments from a number of neurons.

dgx

dt
=−

gx(t)−gx,0

τx
+

√
2σ2

x

τx
ξ (t), (33)

where x represents excitatory (e) or inhibitory (i), gx and σx
are the mean and SD of the conductance, τx is the synaptic
time constant, and ξ (t) is the Gaussian white noise with zero
mean and unit variance. Parameters for the background inputs
are summarized in Table III.

TABLE III. Parameters for synaptic currents and background inputs.

Synaptic current
EAMPA, ENMDA, EGABA [mV] 0.0, 0.0, -75.0

τAMPA
ina , τGABA

ina [ms] 2.7, 10.0
τAMPA

rec , τGABA
rec [ms] 500, 500

UAMPA, UGABA 0.25, 0.25
αNMDA, βNMDA [ms−1] 0.5, 0.007

Background input current
ge,0, gi,0 [nS] 10.8, 51.3
σe, σi [nS] 2.85, 6.26
τe, τi [ms] 2.7, 10.5

Numerical simulation

Simulation codes were written in C++ and parallelized
with MPI programming. Simulations were conducted on a
computer cluster with 64 nodes, each consisting of 4 proces-
sors. The time step was 0.01 ms for excitatory (pyramidal)
neurons and 0.001 ms for inhibitory (inter) neurons. The neu-
ral activity was simulated up to 10,000 s. In practice, it took
about two weeks to perform the entire simulation. Simulation
codes are available upon request.

C. Experimental data

Spike trains were recorded from the hippocampal area of a
rat, while it was exploring an open square field. Experimen-
tal procedures, data collection, and spike sorting are as de-
scribed in detail in Mizuseki et al. (2009). All protocols were
approved by the institutional animal care and use committees
of Rutgers University and New York University. Hippocampal
principal cells and interneurons were separated on the basis
of their waveforms, auto-correlograms, and mean firing rates
(Skaggs et al., 1996; Csicsvari et al., 1998; Mizuseki et al.,
2009). All data used in this paper can be found in hc-
3 data sets at CRCNS (Mizuseki et al. (2013); CRCNS.org.
http://dx.doi.org/10.6080/K09G5JRZ).
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dependence of pyramidal cell–interneuron synapses in the hippocampus:
an ensemble approach in the behaving rat,” Neuron 21, 179–189 (1998).

Cunningham, J. P. and Byron, M. Y., “Dimensionality reduction for large-
scale neural recordings,” Nat. Neurosci. 17, 1500 (2014).

Daley, D. J. and Vere-Jones, D., An introduction to the theory of point pro-
cesses (Springer-Verlag, New York, 2003).

Destexhe, A., Mainen, Z. F., and Sejnowski, T. J., “Kinetic models of synap-
tic transmission,” Methods in neuronal modeling 2, 1–25 (1998).
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