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Summary 

Malignant Pleural Mesothelioma (MPM) is an aggressive disease related to asbestos exposure, 
which incidence is expected to increase in the future, and with no effective therapeutic options. 
We have performed unsupervised analyses of publicly available RNAseq data for 297 MPM. We 
found that the molecular profile and the prognosis of this disease is better explained by a 
continuous model rather than by the current WHO classification into the epitheloid, biphasic and 
sarcomatoid histological types. The main source of variation of this continuum was explained by 
the immune and vascular pathways, with strong differences in the expression of pro-angiogenic 
genes and immune checkpoint inhibitors across samples. These data may inform future 
classifications of MPM and may also guide personalised therapeutic approaches for this disease. 
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Significance 
Malignant Pleural Mesothelioma (MPM) is an aggressive disease with no effective therapeutic 
options. Unsupervised transcriptomic analyses of 297 MPM unveiled the vascular and the 
immune systems as key players in the prognosis of this disease, and identified potential 
therapeutic approaches for this disease targeting these pathways. 
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Introduction 
Malignant Pleural Mesothelioma (MPM) is a deadly disease, with most patients dying within 2 
years after diagnosis. MPM is related to asbestos exposure, but a long latency (30-40 years) is 
observed between the exposure to asbestos and the development of disease (1). As the period of 
peak asbestos use is yet to exceed the latency window, and since asbestos is still being used in 
many low and middle-income countries, the incidence of this disease is expected to increase 
significantly in the future (2). There are three major histological types, each of them with 
different prognosis: epitheloid (the most frequent one, with a median survival rate of 12-24 
months after diagnosis), biphasic (characterised by an epitheloid and a sarcomatoid component, 
with a median survival rate of 12 months), and sarcomatoid (with a median survival rate of 6 
months) (3). Only MPMs of the epitheloid type are currently considered for surgical resection 
depending on the staging characteristics; however, a subset of those patients selected to undergo 
surgery do not benefit from this treatment. Identifying these patients remains an unmet need (4). 
Ultimately, MPM becomes refractory to all conventional treatment modalities, including 
chemotherapy, radiotherapy, and surgery. In the case of anti-angiogenic therapies, although 
strong pre-clinical data are supporting the role of angiogenesis in this disease, the available 
phase-II and phase-III clinical trials have only shown modest activity in these patients (5). In a 
recently published Clinical Practice Guideline for the treatment of MPM, the ASCO-convened 
Expert Panel concluded that, although still immature to make treatment recommendations, 
preliminary data from ongoing clinical trials suggested that immunotherapy might be a 
promising approach for this disease (6). However, PD(L)1 expression by immunohistochemistry 
has turned to be a poor predictive marker of response to PD(L)1 inhibitors, while concerns have 
been raised about potential toxicities of immunotherapies in patients with mesothelioma (7). In 
fact, in the recently completed non-comparative randomized phase II clinical trial MAPS2, in 
which patients with MPM who had relapsed after one or two lines of pemetrexed and platinum 
chemotherapy were randomly allocated to receive the PD1-inhibitor nivolumab or nivolumab 
plus the CTLA4 inhibitor ipilimumab, the authors found no correlation between PD(L)1 
expression and overall or progression-free survival (8). These data highlight the urgent need to 
discover novel predictive markers that could help pinpoint the group of patients who would 
benefit the most from these treatments. 

 
Results  

The prognosis of MPM fits with a continuum model 
In order to unveil the main variations in gene expression of MPM, we performed an 
unsupervised analysis of 297 MPM transcriptomes from two public databases (9 and TCGA) 
using Principal Component Analysis (PCA). The two main axes of gene expression variation 
(PC1 and PC2; Fig. 1a, left panel) explained 12% and 8% of the variation, respectively. The 
first axis was significantly associated (p=1.44x10-24; Table S1) with the reported histological 
type (provided in the related manuscripts), with epithelioid samples having the largest mean 
coordinates, biphasic samples having intermediate mean coordinates, and sarcomatoid samples 
having the smallest mean coordinates (Fig. 1a, left panel; Table S1). Interestingly, samples 
from a same histological type and samples from different histological types were similarly 
distant (mean ratio of within- to between-type distances on PC1 of 0.66), indicating that, despite 
association between PC1 and histological types, the variance in gene expression is not solely 
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explained by histology. Actually, the density of samples along PC1 appears continuous (Fig. S1), 
indicating that MPM presents a continuum of expression profiles on PC1, rather than distinct and 
compact groups. In addition, we found that the percentage of sarcomatoid component in a given 
sample based on pathological reports was significantly correlated with PC1 (r = -0.74, 
p<2.2x10-16; Fig. S2). PC2 to PC10 were not significantly associated with histological types 
(Table S1).  

To further investigate the robustness of the histological type classification from a 
molecular standpoint, we evaluated whether a machine-learning procedure (Random Forest 
algorithm) could correctly predict from the gene expression data the histological types diagnosed 
by a reference pathologist (Fig. 1b). We identified a subset of 57% of epithelioid and 50% of 
sarcomatoid samples that were correctly classified (i.e., the predicted classification matched that 
of the pathologists). Consistently with the unsupervised analysis, these correctly classified 
samples lied at the extremes of the range of expression profiles (lowest and highest coordinates 
on PC1; Fig. 1a, right panel). Both epithelioid and sarcomatoid samples that were unclassified 
or incorrectly classified were situated close to the biphasic samples in PC1, with the biphasic 
samples being the most difficult to classify. Overall, these results suggest that the current 
classification into histological types—well known to be challenging for pathologists—is not 
robust enough, which is coherent with a continuum model for MPM phenotypes. 

Finally, we compared four survival models using different phenotypes as predictor 
variables: (i) a model based on the three histological types (Fig. 1c and 1d) that serves as 
reference, (ii) a continuous model based on the pathology report only (no molecular data) with 
the percentage of sarcomatoid as a continuous phenotype variable (Fig. 1e and 1f), (iii) a model 
based on the molecular data using PC1 as a continuous “molecular” phenotype variable (Fig. 1g 
and 1h), and (iv) a model based on the molecular data using PC1 and PC2 as continuous 
variables (Fig. 1i and 1j). Consistently with many reports, patients with epitheloid tumours had a 
better survival than those having biphasic and sarcomatoid tumours (Fig. 1c and d). 
Nevertheless, the two models that best predicted survival were the models based on molecular 
data, with the model including both PC1 and PC2 providing the best fit (ΔBIC < -14 compared to 
the reference model, indicating very strong statistical evidence; Fig. 1k). Interestingly, the model 
with the percentage of sarcomatoid as a continuous variable was also a better predictor of 
survival than the 3-group histological classification (ΔBIC < -4, indicating positive statistical 
evidence; Fig. 1i). In summary, all continuous models, whether based on a continuous molecular 
phenotype or a continuous phenotype derived from pathological observations, provided a more 
accurate prognosis than the 3-group WHO classification (3). Indeed, the median survival 
decreased steadily as a function of the three continuous variables considered: the percentage of 
sarcomatoid (Fig. 1f), PC1 (Fig. 1h), and PC2 (Fig. 1j). 
 

Prognostic and predictive value of the immune and vascular systems in MPM 
Survival analysis revealed that PC2 was also associated with survival with a similar prognostic 
value as PC1 (Fig. 1i), while not being associated with histological type or percentage of 
sarcomatoid (Table S2). In order to understand the associations between PC1 and PC2 and 
survival, we performed a gene-set enrichment analysis (GSEA) on the genes significantly 
correlated with PC1 and PC2 (Table S3). We found that the top 10 Gene Ontology (GO) terms 
significantly associated with PC1 were all part of the angiogenesis pathway (p=2x10-16; Fig. 2a 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/334326doi: bioRxiv preprint 

https://doi.org/10.1101/334326
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

and Table S4) or pathways directly related to it (Fig. S3). Together, the genes in the 
angiogenesis and related pathways accounted for 20% of the variation of PC1, and 2.2% of the 
total variation in gene expression, suggesting that differences in the level of angiogenesis is the 
main source of variation captured by PC1. The top 11 GO terms significantly associated with 
PC2 (Table S3) were all associated with the immune response (p=3x10-76 to p=2x10-37; Fig. 
2a, right panel; Table S4). Together, the genes in these 11 immune response related pathways 
accounted for 13% of the variation of PC2, and 1.1% of the total variation in gene expression, 
suggesting that differences in the immune response is the main source of variation captured by 
PC2. In order to assess the importance of tumour infiltrating lymphocytes in driving the gene 
expression variation captured by PC2, we quantified the proportion of immune cells per MPM 
sample using expression deconvolution (see Materials and Methods). We found that the 
proportion of B cells, macrophages M2, CD8+ T cells, CD4+ regulatory T cells, and dendritic 
cells were significantly associated with PC2. In particular, the proportion of CD8+ T cells 
presented the strongest variation across samples, with samples enriched for these cells being 
overrepresented in the low-PC1-high-PC2 region (Fig. 2a, left panel; Fig. S4). Taken together, 
the first two axes of variation characterized by the immune and vascular systems led to samples 
with high-PC1 and high-PC2 coordinates (Region A in Fig. 2a, middle panel) presenting the 
best survival (median of 33.4 months), and samples with low-PC1 or low-PC2 coordinates 
(Region C in Fig. 2a, middle panel) the worst (median of 12.3 months) (Fig. 2b).  

We extracted the genes for which expression was significantly correlated with PC1 and 
PC2 and that belonged to the Gene Ontology (GO) categories “angiogenesis” (GO:0001525) and 
“immune response” (GO: 0006955), respectively. By doing so we identified 60 genes associated 
with angiogenesis and 172 genes associated with the immune response (Table S4). Among the 
60 angiogenic genes, we found 4 for which there are FDA-approved inhibitors—PDGFRB, 
VEGFR1, VEGFR2, and VEGFR3—as well as the VEGFR3-ligand VEGFC (Table S4). In the 
case of PC1, there was a positive correlation with VEGFR2 and a negative correlation with 
PDGFRB, VEGFR1, VEGFR3, and VEGFC gene expression levels (Fig. 2c; Table S3; Fig. S6). 
The fact that the region with the largest amount of CD8+ T cells was part of the low survival 
region suggests that the immune cells cannot efficiently control tumour progression. To gain 
some insights into this observation, we further investigated the 172 genes (from GO: 0006955) 
involved in the immune response (Table S4) and found the immune checkpoint inhibitors (ICI) 
PDL1 and CTLA4 (Fig. 2c and d; Table S3). Similarly, other ICI (10) (TIM3, VISTA, and 
LAG3) were significantly correlated with PC2 (Fig. 2d; Fig. S6). Moreover, we found a 
significant association between PC2 and ICI genes (Pearson correlation test of all genes showed 
a false discovery rate < 0.05). The expression of the ICI was positively correlated with PC2 (Fig. 
2d; Table S3). Because the expression of VISTA was also positively correlated with PC1 (Table 
S3) while the expression of the other ICI was negatively correlated with this axis (Table S3), the 
direction of the strongest variation in the expression of VISTA is actually orthogonal to that of the 
other ICI when considering both PC1 and PC2 (Fig. 3, middle panel). 

Interestingly, we can obtain a good approximation of the general behaviour of the MPM 
continuum model using only the expression of the above-mentioned pro-angiogenic genes 
(PDGFRB, VEGFR1, VEGFR2, VEGFR3, and VEGFC) and immune-checkpoint inhibitors 
(PD(L)1, CTL4A, TIM3, VISTA, and LAG3) (Fig. S5a and b). Indeed, we found that the first two 
axes of the PCA obtained using only the expression of these genes were significantly correlated 
with those of the PCA based on the entire transcriptome (Pearson correlation test p<2.2x10-16 
for both axes; Fig. S5c and d). In addition, among these genes, VISTA expression was the only 
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one associated with better survival (p=0.005; Hazard ratio of 0.73, CI [0.59,0.91]; Fig. S5e), and 
TIM3 with worse survival (p<0.001; Hazard ratio of 1.61, CI [1.24,2.10]; Fig. S5e). In order to 
check whether the impact on survival of other genes from the 11-gene panel was hidden because 
of their correlation with the expression of VISTA or TIM3 (a statistical effect known as 
collinearity), we fitted a survival model with 9 genes only—excluding VISTA and TIM3—and 
found that VEGFR2 was then significantly associated with survival (p=0.005; Hazard ratio of 
1.31, CI [1.00,1.71]; Fig. S5f); further removing VEGFR2 from the model did not unveil 
additional genes significantly associated with survival (Fig. S5g). We conclude that both VISTA 
and VEGFR2 are associated with survival, with VISTA being a better predictor of it. Note that the 
association between the expression of the 11 genes and survival still held when we restricted the 
analyses to epithelioid samples (Fig. S5h-j), suggesting that the association between VISTA, 
VEGFR2, TIM3, and survival is not driven solely by the association of the expression of these 
genes and the histological types. 

Based on the expression profiles of the above-mentioned genes, we artificially defined 
three extreme groups of MPM samples (Fig. 3). The first group (hot/ICI+/Angio+) would be 
characterized by “hot” tumours (i.e., highly infiltrated with T lymphocytes), enriched for non-
epitheloid types, and with high expression of pro-angiogenic genes (VEGFR1, VEGFR3, and 
PDGFRB) and immune checkpoint inhibitors (PD(L)1, CTLA4, TIM3, and LAG3) (Fig. 3a). The 
characteristics of this group are in line with published data suggesting that PD(L)1 expression by 
immunohistochemistry is correlated with non-epitheloid histology and poor survival (11). The 
second group (VEGFR2+/VISTA+) is composed of less lymphocyte-infiltrated tumours than the 
first one (Fig. S4), enriched for the epitheloid type, and with high expression levels of VEGFR2 
and VISTA (Fig. 3b). The third and last group (cold/Angio+) is represented by “cold” tumours 
(i.e., devoid of immune effector cells), enriched for the non-epithelial types, and with high 
expression of pro-angiogenic genes (VEGFR1, VEGFR3, and PDGFRB) (Fig. 3c).  
 

Discussion  
Recently an ASCO Expert Panel recommended that mesothelioma should be reported as 
epithelial, sarcomatoid, or biphasic, because these subtypes have a clear prognostic significance 
(6). The data showed here challenge this WHO classification of MPM into these three major 
histological types (3) as a major driver of the prognosis and criteria to make therapeutic 
decisions. The present data suggest a continuous model of the sarcomatoid content as a better 
predictor of survival, and a model based on the molecular data with PC1 and PC2 as continuous 
variables, as the preferred one. These data may have strong relevance for future classifications of 
MPM. This classification may help identify more efficiently than the 3-group histological 
classification, the patients that would benefit the most from surgical resection based, for 
example, on their low percentage of sarcomatoid content. Although this information would be 
useful in the management of MPM, this may actually concern a limited number of patients since 
surgical resection is rare in this disease. MPM being refractory to chemotherapy and 
radiotherapy, the major translational interest is the identification of novel and promising 
therapeutic options, especially for the sarcomatoid and biphasic types. Several recent reviews 
have nicely summarized how the tumour-associated blood and lymphatic vasculature play an 
important role in avoiding tumour destruction, as well as the therapeutic opportunities to 
overcome this immune blockage (12-15). Recent data from ongoing clinical trials presented in 
the iMig 2018 conference hold in Ottawa (Canada) pointed that, while immunotherapy remains 
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promising in the treatment of a subset of mesothelioma patients, there is an urgent need to 
identify novel and better predictive markers of response (16).  

In this study we found a role for the immune and vascular systems in MPM that might 
not only have a prognostic value, but also allow stratification of patients for the most relevant 
therapeutic options. We have identified three distinct groups of samples, whose transcriptomic 
characteristics may have a predictive value for response to immunotherapy and anti-angiogenic 
drugs. Two of these groups (hot/ICI+/Angio+ and VEGFR+/VISTA+) might benefit from a 
double therapy, low-dose anti-angiogenic therapy followed by immunotherapy. This approach 
has been suggested based on the observation that, while traditional high-dose anti-angiogenic 
therapy destroys tumour vessels leading to further hypoxia and inhibition of immune cell 
recruitment, low-dose anti-angiogenic therapy seems to induce transient vascular normalization 
of the aberrant tumours vessel network, reduce hypoxia, facilitate tumour infiltration of CD8+ T 
lymphocytes and potentiate cancer immunotherapy (14, 15). PD(L)1 inhibitors might work as a 
subsequent immunotherapy for the hot/ICI+/Angio+ group; however, this group also has high 
expression of other immune checkpoint inhibitors (CTL4A, TIM3, LAG3). Of note, expression of 
TIM3 was the only one of these genes correlated with worse survival. Anti-TIM3 neutralising 
antibodies are in clinical development offering the possibility of combining PD(L)1 inhibitors 
with anti-TIM3. The situation might be different for the VEGFR2+/VISTA+, on which anti-
VISTA inhibitors might work after the low-dose anti-angiogenic therapy. VISTA may function 
to restrict T cell immunity at different stages compared to PD(L)1. It has been shown that anti-
VISTA immunotherapy can reduce tumour growth in multiple pre-clinical models (17). An anti-
human VISTA antibody is currently in phase I clinical trial for evaluation in patients with non-
small cell lung cancer among other cancers. VISTA expression was correlated with better survival 
in our dataset. Finally, the cold/Angio+ group might benefit from anti-VEGFR3 inhibitors. Upon 
activation by VEGFRC, VEGFR3 has a role in lymphangiogenesis, which is an important feature 
in MPM (18). It has been shown in cellular models that activation of VEGFR3 on natural killer 
cells by VEGFC can lead to immunosuppression and that the treatment with the VEGFR3-
selective tyrosine-kinase inhibitor MAZ51 counterbalanced this effect (19). It has also been 
proven by immunohistochemistry that VEGFR3 is expressed in MPM of different subtypes, 
supporting its putative role as a potential therapeutic target in this disease (20).  

These data provide possible guidance for novel therapeutic approaches for the MPM. 
However, the groups here-mentioned are to some extent artificial and, as supported by the 
continuum model, defining the limits of the three groups would not be trivial and would need a 
well-designed study. With the easier access to clinical genomic platforms, the definition of those 
groups may also serve for personalized, precision-medicine approaches. In the meantime, it 
would be very useful to correlate the protein expression levels of the predictive markers here 
proposed with the response to the treatment in the context of samples already included in clinical 
trials assessing anti-angiogenic agents and immune checkpoint inhibitors. In addition, due to the 
limited data for samples of the sarcomatoid type, further studies are needed including larger 
number of samples of this specific type. 
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Methods 
 
Data 
Raw RNA-seq read files for 211 MPM samples (9) were retrieved from the European Genome-
Phenome Archive website, and RNA-seq data from 86 MPM samples (TCGA) were retrieved 
from the NIH Genomics Data Commons website.  

 
RNA-seq data processing 
The 297 raw reads files were processed in 3 steps. (i) Reads were scanned for a part of Illumina’s 
13bp adapter sequence ’AGATCGGAAGAGC’ at the 3’ end using wrapper Trim Galore v0.4.2 
(21) for software cutadapt v1.3 (22) with default parameters. (ii) Reads were mapped to 
reference genome GRCh38 (gencode version 24) using software STAR v2.5.2b (23) with 
recommended parameters (24, 25). (iii) In each sample, reads were counted for each gene of the 
comprehensive gencode gene annotation file using script htseq-count from software htseq v0.8.0 
(26). The bioinformatic workflow used for data processing—named RNAseq-nf—was written in 
the Nextflow language (27) to ensure scalability, portability, and reproducibility, and is freely 
available at IARC’s GitHub webpage (https://github.com/IARCbioinfo/RNAseq-nf). Data 
processing in this paper was performed with revision 9f2b2be020 of RNAseq-nf using nextflow 
version 0.24.3. 
 

Unsupervised analysis 
The raw read counts of the 297 samples were normalized using the variance stabilization 
transform (vst function from R package DESeq2 v1.14.1)(28); this transformation enables 
comparisons between samples with different library sizes and different variances in expression 
across genes. The genes that displayed the largest variance (6243 genes representing 50% of the 
total variance; Table S5) were then mean-centered and selected to perform Principal Component 
Analysis (PCA, function dudi.pca from R package ade4 v1.7-8) (29). There was no apparent 
batch effect in PC1 and PC2, as samples from both cohorts span the entire range of coordinates: 
samples from the Bueno et al. cohort range from -98 to 76 on PC1 and from -77 to 90 on PC2, 
while samples from the TCGA cohort range from -90 to 75 on PC1 and from -90 to 71 on PC2 
(see point shapes in Fig. 2a). For Fig. S5a-d, we performed a PCA following the same protocol, 
but using only the 11 genes from Fig. S5e (VEGFR1, VEGFR2, VEGFR3, VEGFC, PDGFRB, 
PD1, PDL1, CTLA4, TIM3, LAG3, and VISTA) instead of all the genes from the gencode 
annotation file. The axis rotation in Fig. S5b was performed using the Kabsch algorithm, which 
finds the rotation that minimizes the deviation between two sets of points, with the coordinates of 
samples in PC1 and PC2 from Fig. 1a as reference. 

 
PC interpretation 
We tested the statistical association between PC1 to PC10 and clinical variables using linear 
regression, with the PC coordinates as predicted variables, and sex (categorical variable with two 
levels: male and female), age (continuous variable), histological type (categorical variable with 
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four levels: biphasic, diffuse MPM NOS, epithelioid, and sarcomatoid), asbestos exposure 
(categorical variable with three levels: possible, yes, and no), and smoking status (categorical 
variable with four levels: yes, former, passive, no) as predictor variables. In order to find the 
variables that are significantly associated with each axis, we used a backward variable 
elimination algorithm, testing at each iteration if removing the variable with the largest p-value 
significantly reduced model fit using an F-test (R function dropterm from package MASS) (30). 
We used a 5% threshold for the significance of the F-test, correcting for multiple testing using 
the Bonferonni correction. Table S1 presents results from the full initial model and the final 
model with selected variables for PC1 to PC10. Importantly, only the first axis was significantly 
associated with histological types. Among the subsequent 9 axes, only PC6 was associated with a 
clinical variable (sex). Note that the F-test requires no missing values, so samples with missing 
values in one of the clinical variables were ignored at each iteration. Nevertheless, in order to 
optimize the power to find associations between PCs and clinical variable, once a variable has 
been dropped, the variable selection algorithm does use all the samples which had missing values 
in this variable only. Consequently, the number of samples and the degrees of freedom are the 
same for model comparison, but change across iterations and are thus different in the initial full 
model and the final reduced model in Table S1.  

We found genes significantly correlated with PC1 and PC2 using a Pearson correlation 
test for each gene in the gencode annotation file, between its expression level (variance-
stabilized read counts) and the coordinates of samples along the PC. We selected the genes the 
most strongly associated with each PC using a cutoff of correlation 0.5 and correcting for 
multiple testing using the Benjamini-Hochberg procedure (Table S3). Gene set enrichment 
analysis (GSEA) was then performed on the gene lists from Table S3 using the STRING 
database (31) with the Gene Ontology (GO) pathways as reference for gene sets; results are 
presented in Table S4; STRING uses Fisher’s exact test to assess the significance of the 
enrichment. The proportion of variance explained by genes from the angiogenesis and related 
pathways were computed by extracting all genes in the pathways significantly associated with 
PC1 from Fig. S3 (421 genes in total), computing their variance in gene expression, and dividing 
either by the total variance in gene expression, or the variance explained by PC1. The proportion 
of variance explained by genes from the immune response and related pathways were computed 
by performing the same analysis on genes from the 11 top pathways associated with PC2 from 
Table S4. 

 
Supervised analysis 
We evaluated the ability to correctly classify samples into the three histological types (classes 
epitheloid, biphasic, and sarcomatoid) from molecular data using a Random Forest algorithm (R 
package Random Forest v. 4.6-14) (32). We used all genes from the gencode annotation file as 
initial features, and performed a recursive feature elimination (rfe function from R package caret 
v. 6.0-79) (33) in order to remove genes that add noise to the classification without improving 
accuracy. We used a 5-fold cross validation with stratified sampling in order to estimate the 
overall classification error; this allowed each sample class to be predicted once. Samples for 
which the first and second most likely predicted classes had a probability ratio below a threshold 
of 1.5 were put in the “unclassified” category. 
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Immune contexture quantification 
We quantified the proportion of cells that belong to each of 10 immune cell types (B cells, M1, 
M2, monocytes, neutrophils, NK cells, CD4+ T cells, CD8+ T cells, CD4+ regulatory T cells, 
and dendritic cells) using software quanTIseq (34). quanTIseq uses a rigorous RNA-seq 
processing pipeline in order to quantify the expression in a panel of genes identified as 
informative on immune cell types, and performs supervised expression deconvolution using the 
least squares with equality/inequality constrains (LSEI) algorithm (35) with a reference dataset 
containing expected expression levels for the 10 immune cell types. Importantly, contrary to 
alternative software CIBERSORT (36), quanTIseq also provides estimates of the total proportion 
of cells in the bulk sequencing that do and do not belong to immune cells. We tested the 
statistical association between immune cell proportions and PC1 and PC2 using permutations (R 
package lmPerm v.2.1.0) (37) 

 
Survival analysis 
Survival predictions were tested using Cox models, with different continuous and categorical 
predictor variables. For Fig.1c-k, in order to perform rigorous model comparisons, we only used 
the 199 samples for which all considered variables were available. In particular, because TCGA 
did not report the percentage of Sarcomatoid in samples estimated by pathologists, we only 
included samples from the Bueno et al. (9) cohort. We compared the model fit using their 
Bayesian Information Criterion (BIC). We interpret the BIC using the scale proposed by Kass 
and Adrian (38): when comparing two models, the model with the lowest BIC is favored, and a 0 
to 2 points difference between the models indicates weak evidence, a 2 to 6 indicates positive 
evidence, a 6 to 10 indicates strong evidence, and a difference of more than 10 points indicates 
very strong evidence. For the survival analyzes presented in Fig. 2a and b, we considered all 
samples from both cohorts. In order to find the regions with high and low survival, we 
subdivided the PCA into a 3 by 3 grid of equally sized regions, and fitted a Cox model with the 
region as a categorical variable with 9 levels, and the low-PC1/low-PC2 region as reference. We 
then found regions with statistically different survivals using recursive variable selection: we 
sequentially removed the least significant among all non-significant variables, until all remaining 
regions had statistically different survivals. For Fig. S5e-g, in order to obtain results that are 
comparable with that of Fig. 1, we performed a survival analysis using a Cox proportional 
hazards model with the same 199 samples as for Fig. 1c-k (i.e., samples with no missing data in 
the variables used in Fig. 2), but using the expression of the 11 genes from Fig. 2c-d as 
continuous predictor variables. Fig. S5h-j presents the same analysis as Fig. S5e-g, but including 
only the 130 epithelioid samples. 
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Figures legends 
 

Fig. 1. Malignant Pleural Mesothelioma expression profiles follow a continuum model. a) 
Principal Component Analysis (PCA) of 297 transcriptomes. In the left panel, colors represent 
the three histological types, and the filled shapes below PC1 correspond to the kernel density 
estimates of the PC1 coordinates of each histological type. In the right panel, colors represent 
Random Forest predictions. Gray points represent unclassified samples, and circles around the 
gray points indicate which types were similarly likely: red for biphasic/sarcomatoid, and green 
for epithelioid/biphasic. There was only a single sample where epithelioid/sarcomatoid were 
similarly likely. b) Performance of machine learning to correctly classify the three histological 
types—epithelioid, biphasic, and sarcomatoid—based on whole transcriptomes, illustrated by the 
confusion matrix of a Random Forest classifier. c) Forest plot, Cox proportional hazards model 
with the histological type used as a discrete predictive variable with 3 levels: epithelioid, 
biphasic, and sarcomatoid. d) Kaplan-Meier plot of the model presented in (c). e) Forest plot, 
Cox proportional hazards model with the percentage of sarcomatoid used as a continuous 
predictive variable; the hazard reported correspond to the ratio of the hazard of a 100% 
sarcomatoid sample to the hazard of a 0% sarcomatoid sample. f) Median survival time (Kaplan-
Meier estimate) as a function of the percentage of sarcomatoid; the dashed line corresponds to 
the median survival for samples with 0,10,20,...,100% sarcomatoid; the solid line corresponds to 
the predicted median survival from the model in (e). g) Forest plot, Cox proportional hazards 
model based on molecular data, using coordinates of samples on PC1 as a continuous predictive 
variable; the hazard reported correspond to the ratio of the hazard of the two extrema of PC1, 
with the sample with the largest PC1 coordinate as reference. h) Median survival time (Kaplan-
Meier estimate) as a function of the coordinate in PC1, computed across 10 equally-spaced 
windows spanning the range of PC1 coordinates. i) Forest plot, Cox proportional hazards model 
based on molecular data, using coordinates of samples on PC1 and PC2 as continuous predictive 
variables; the hazards reported correspond to the ratio of the hazard of the two extrema of each 
PC, with the sample with the largest PC1 and PC2 coordinate as references, respectively. j) 
Median survival time (Kaplan-Meier estimate) as a function of the coordinate in PC2, computed 
across 10 equally-spaced windows spanning the range of PC2 coordinates. k) BIC differences of 
the three models presented in (e)-(f), (g)-(h), and (i)-(j), relative to the 3-class histological model 
from (c)-(d). Data used in (a)-(b) correspond to the n=211 samples from Bueno et al. (2016) and 
the n=86 transcriptomes from the TCGA MESO cohort (unpublished). Data used in (c)-(j) 
correspond to the n=199 samples from Bueno et al. (9) with RNAseq data and without missing 
percentage of sarcomatoid data. 
 

Fig. 2. Malignant Pleural Mesothelioma molecular profiles are shaped by angiogenesis and 
immune contexture. a) Principal Component Analysis (PCA) of 297 transcriptomes, where 
colors represent the three histological types (epithelioid, biphasic, sarcomatoid), and the 
overlayed colored polygons highlight regions with different survivals. The left panel represents 
the mean proportion of immune cells from 10 types in the bulk sequencing data, as a function of 
PC2 coordinates, computed using a moving average with a window size of 30. p-values of cell 
types whose proportion is significantly associated with PC2 are reported. The right panel 
represents the top five gene ontology terms (GO) most significantly associated with each PC. b) 
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Kaplan-Meier survival curve of the four regions highlighted in (a). c) Median (solid line) and 
95% quantiles (filled shapes) of the expression level, measured in normalized read counts, of 
angiogenesis-related genes significantly associated with PC1: VEGFR1, VEGFR2, VEGFR3, 
VEGFC, and PDGFRB. d) Median (solid line) and 95% quantiles (filled shapes) of the 
expression level of immune response-related genes significantly associated with PC2: PD1, 
PDL1, CTLA4, VISTA, TIM3, and LAG3. Values in (c)-(d) were computed using a moving 
average with a window size of 30.   
 

Fig. 3. Characteristics and potential treatment strategy for the three Malignant Pleural 
Mesothelioma transcriptomic groups. a) Characteristics of the “hot/ICI+/Angio+” group. b) 
Characteristics of the “cold/Angio+” group. c) Characteristics of the “VEGFR+/VISTA+” group. 
In each panel, the expression level of clinically important genes strongly expressed in the group 
are highlighted at the top (interpolated heatmap), and the composition in histological types at the 
extremum of the group (black rectangles), relative to the PCA from Fig. 2, is highlighted at the 
bottom. The schematic location of the group in the Principal Component Analysis (PCA) plot 
from Fig. 2 is represented as a cartoon between all panels, where arrows correspond to clinically 
relevant genes; arrow direction represent the direction of largest variation in gene expression of 
each gene, and arrow length represent the strength of the correlation with PC1 and PC2. 

 
Supplementary Figures and Tables 

 
Fig. S1. Kernel density plot of the distribution of the 297 samples on PC1. The bandwidth is 
indicated below PC1. 
 

Fig. S2. Percentage of sarcomatoid as evaluated by the pathology report from Bueno et al. 
2016, as a function of the position on the PCA. Colors represent interpolated values of the 
percentage of sarcomatoid in the sample (white for 100%, red for 0%). 
 

Fig. S3. Gene ontology (GO) terms significantly associated with the genes that are 
significantly correlated with PC1. The network representation of GO terms is from the EMBL-
EBI QuickGO website (www.ebi.ac.uk/QuickGO). The rank in the GSEA (from smallest to 
largest p-value) and the number of genes correlated with PC1 that belong to this GO term are 
highlighted next to all GO terms that are significantly associated with PC1. 
Fig. S4. Quantification of the immune infiltration as a function of the position in the PCA. 
Panels (a) and (c) are copied from Fig. 2. Panel (b) corresponds to the same analysis as panel (c), 
but using PC1 instead of PC2.  

 
Fig. S5. The continuum model for MPM is well approximated by a gene panel of 11 
clinically-relevant pro-angiogenic and immune-checkpoint inhibitor genes. a) Panel copied 
from Fig. 1a for reference. b) PCA similar to that of panel a, but based on the sole expression of 
the 11 genes from Fig. 2c-d (VEGFR1, VEGFR2, VEGFR3, VEGFC, PDGFRB, PD1, PDL1, 
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CTLA4, TIM3, LAG3, VISTA). c) Correlation between PC1 from Fig. 1a and PC1 from the PCA 
based on the 11 genes. d) Correlation between PC2 from Fig. 1a and PC2 from the PCA based 
on the 11 genes. e) Forest plot of the Cox proportional hazards model using the expression of the 
11 genes as predictor variables, using the same 199 samples as in the survival analysis from Fig. 
1. f) Same as (e), but using only the 9 non-significant genes. g) Same as (f), but using only the 8 
non-significant genes. h) Forest plot of the Cox proportional hazards model using the expression 
of the 11 genes as predictor variables, restricted to the 130 epithelioid samples. i) Same as (h), 
but using only the 9 non-significant genes. j) Same as (i), but using only the 8 non-significant 
genes. 
 

Fig. S6. Associations between angiogenesis and immune checkpoint inhibitor genes and 
PC1 and PC2. (a) Correlation between the 60 genes from the GO angiogenesis pathway and 
PC1. (b) Correlation between the 6 immune checkpoint inhibitor genes (10) and PC1. (c) 
Adjusted p-value (Benjamin Hochberg correction) of the correlation presented in (a). (d) 
Adjusted p-value of the correlation presented in (b). (e) Correlation between the 60 genes from 
the GO angiogenesis pathway and PC2. (f) Correlation between the 6 immune checkpoint 
inhibitor genes and PC2. (g) Adjusted p-value of the correlation presented in (e). (h) Adjusted p-
value of the correlation presented in (f). 

 
Table S1. Summary of linear models with PC1-10 as predicted variables and clinical 
variables as predictor variables. 
 

Table S2. Cox proportional hazard model results with PC1-10 as predictor variables. 
 

Table S3. Genes significantly correlated with PC1 and PC2. 
 

Table S4. Gene set enrichment analysis results from the STRING database for genes 
significantly correlated with PC1 and PC2. 

 
Table S5. List of genes used in the PCA, and their variance among the 297 MPM samples.  
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