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Abstract 

Due to their fundamentally different biology, archaea are consistently overlooked in conventional 

16S rRNA gene amplicon surveys. Herein, we evaluate different methodological set-ups to detect and 

quantify archaea signatures in human samples (nose, oral, appendix, stool, and skin)  using amplicon 

sequencing and quantitative PCR.  

With our optimized protocol, we were able to increase the detection of archaeal RSVs from one 

(using a so-called “universal” approach) to 81 RSVs in a representative sample set. Moreover, we 

confirmed the presence of about 5% archaeal signatures in the human gut, but found, unexpectedly, 

an almost 1:1 ratio of archaeal to bacterial 16S rRNA genes in appendix and nose samples. This 

finding indicates a high prevalence of archaeal signatures in body regions thus far not analyzed for 

the presence of archaea using appropriate methods. 

In order to assess the archaeome diversity and archaeal abundance, a specific archaea-targeting 

methodology is required, for which we propose two standard procedures. These methodologies 

might not only prove useful for analyzing the human archaeome in more detail, but could also be 

used for other holobionts’ samples. 
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Introduction 

The importance of microbial communities to human and environmental health motivates 

microbiome research to uncover their diversity and function. While the era of metagenomics and 

metatranscriptomics has begun, 16S rRNA gene amplicon sequencing still remains one of the most 

used methods to explore microbial communities, mainly due to the relatively low cost, the number of 

available pipelines for data analysis, and the comparably low computational power required.  

It has been recognized that methodological issues in sample processing can significantly influence the 

outcome of microbiome studies, affecting comparability between different studies (Clooney et al., 

2016; de la Cuesta-Zuluaga and Escobar, 2016) or leading to an over-and under-estimation of certain 

microbial clades (Eisenstein, 2018; Eloe-Fadrosh et al., 2016). For better comparability among 

different studies, standard operational procedures for sampling, storing samples, DNA extraction, 

amplification and analysis were set-up (e.g. the Earth Microbiome Project (Gilbert et al., 2014) and 

the Human Microbiome Project (Methé et al., 2012)). This includes the usage of so-called “universal 

primers” (Caporaso et al., 2012; Klindworth et al., 2013; Walters et al., 2016), to maximally cover the 

broadest prokaryotic diversity.  

The human microbiome consists of bacteria, archaea, eukaryotes and viruses. The overwhelming 

majority of microbiome studies is bacteria-centric, but in recent years, awareness on eukaryotes (in 

particular fungi) and viruses has increased (Halwachs et al., 2017; Seed, 2014; Zou et al., 2016). 

However, most microbiome studies still remain blind for the human archaeome (Eisenstein, 2018; 

Moissl-Eichinger et al., 2018). A few of the underlying reasons for the under-representation of 

archaea in microbiome studies are (i) primer mismatches of the “universal primers” (Raymann et al., 

2017), (ii) the sometimes too low abundance of the archaeal DNA in the studied samples, (iii) 

improper DNA extraction methods, and (iv) the incompleteness of the 16S rRNA gene reference 

databases. This is not only leading to an insufficient taxonomy assignment (unclassification) of 

archaea, but also, in the worst case, to the removal of archaeal signatures from the retrieved 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2018. ; https://doi.org/10.1101/334748doi: bioRxiv preprint 

https://doi.org/10.1101/334748
http://creativecommons.org/licenses/by-nc-nd/4.0/


datasets (Ding and Schloss, 2014; Fischer et al., 2016). Moreover, the clinical interest on archaea is 

minor, due to the fact that there are no known or proved archaeal pathogens yet (Gill et al., 2006).  

Nevertheless, (methanogenic) archaea are part of the commensal microorganisms inhabiting the 

human body, being regularly detected in the oral cavity and the gastrointestinal tract (Chaudhary et 

al., 2015; Gaci et al., 2014; Horz and Conrads, 2011; Nkamga et al., 2017); in the latter they 

sometimes even outnumber the most abundant bacterial species (14%, (Tyakht et al., 2013);). Most 

human archaea studies use either cultivation or qPCR methods (Grine et al., 2017; Koskinen et al., 

2017; van de Pol et al., 2017; Wampach et al., 2017) and only a few, 16S rRNA gene-based archaea-

centric studies are available (Koskinen et al., 2017; Moissl-Eichinger et al., 2017). These new studies 

have shown that archaea are also present in the human respiratory tract (Koskinen et al., 2017) and 

on human skin in considerable amounts (Moissl-Eichinger et al., 2017; Probst et al., 2013). 

Furthermore, Koskinen et al. (2017) have shown for the first time that archaea reveal a body site 

specific pattern, similar to bacteria: the gastrointestinal tract being dominated by methanogens, the 

skin by Thaumarchaeota, the lungs by Woesearchaeota, and the nose archaeal communities being 

composed of mainly methanogens and Thaumarchaeota. Altogether, this indicates a substantial 

presence of archaea in some, or even all, human tissues. 

As a logic consequence of our previous studies, we have started to optimize the detection and 

quantification methods of archaea as human commensals. We tested, in silico and experimentally, 27 

different 16S rRNA gene targeting primer pair combinations suitable for NGS amplicon sequencing, to 

detect the archaeal diversity in samples from different body sites, including respiratory tract (nose 

samples), digestive tract (oral samples, stool and appendix specimens), and skin. Furthermore, we 

optimized qPCR protocols for quantifying the archaeal 16S rRNA gene to assess the bacteria/archaea 

ratios. Our results culminate in a proposed standard operating procedure for archaea diversity 

analysis and quantification in human samples. 
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Material and methods 

Ethics statement 

Research involving human material was performed in accordance with the Declaration of Helsinki 

and was approved by the local ethics committees (the Ethics Committee at the Medical University of 

Graz, Graz, Austria). (Bacterial) microbiome studies of some of the samples used in this study have 

already been published elsewhere (oral, nose, skin samples: (Klymiuk et al., 2016; Koskinen et al., 

2018; Santigli et al., 2016). Details of the ethics approvals obtained are shown there. Appendix 

samples and stool samples have been obtained covered by the ethics votes: 25-469 ex12/13, and 27-

151 ex 14/15.  

Selection of samples and DNA extraction 

Five representative samples types from various body sites including the respiratory tract (nose 

swabs), the digestive tract (oral biofilm, appendix biopsy and stool samples) and skin swabs were 

selected for the comparison of amplification-based protocols. All samples underwent pre-screening 

for archaea-positive qPCR and NGS signals with previously described protocols (Koskinen et al., 

2017). 

 The nose swabs were obtained from healthy volunteers and were taken from the olfactory mucosa 

located at the ceiling of the nasal cavity using ultra minitip nylon flocked swabs (Copan, Brescia, Italy; 

n=7) (Koskinen et al., 2018). The oral samples have been obtained by standardized protocol for paper 

point sampling (Santigli et al., 2017) from healthy volunteers who participated in a microbiome study 

investigating the subgingival biofilm formation in children (n=7) (Santigli et al., 2016). Appendix 

samples have been obtained from collaboration partners at the Department of Pediatric and 

Adolescent Surgery and the Institute of Pathology, both Medical University of Graz (appendix 

specimens were obtained during pediatric appendectomies from either acute or ulcerous 

appendicitis; n=6). Stool samples have been obtained from healthy adult volunteers (n=5), and from 

one patient with above average methane production after metronidazole treatment (n=1; this 
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sample was used for comparing different amplification protocols). Skin samples were obtained from 

healthy adult volunteers from either the back (n=1; this sample was used for comparing different 

amplification protocols) or the left forearm, using BD Culture SwabsTM (Franklin Lakes, New Jersey, 

USA; n=7). 

In all cases, the genomic DNA was extracted by a combination of mechanical and enzymatic lysis. 

However, depending on the sample type, different protocols were chosen: for the stool samples 

around 200mg of sample has been used for DNA extraction using the E.Z.N.A. stool DNA kit according 

to the manufacturer’s instruction. The DNA from the appendix samples was obtained using the 

AllPrep DNA/RNA/Protein Mini Kit (QIAGEN), small pieces of cryotissue were homogenized before 3 

times for 30s at 6500rpm using the MagNALyzer ® instrument (Roche Molecular Systems) with buffer 

RTL and β-mercaptoethanol (according to the manufacturer’s instructions). For the nose and skin 

samples from the forearm, the DNA was extracted using the FastDNA Spin Kit (MP Biomedicals, 

Germany) according to the provided instructions. The DNA from the oral samples and from the skin 

samples from the back were isolated using the MagnaPure LC DNA Isolation Kit III (Bacteria, Fungi; 

Roche, Mannheim, Germany) as described by Santigli et al. (Santigli et al., 2016) and Klymiuk et al. 

(Klymiuk et al., 2016). 

NOTE: Sample set 1 (one representative sample from each body site) was used to initially evaluate 

the primers and methods, whereas sample set 2 (7 nose samples, 7 oral samples, 6 appendices, 7 

skin samples) was then used for assessing the archaeal diversity and quantity, based on the chosen, 

optimized protocol. 

16S rRNA gene primer selection and pre-analysis in silico evaluation 

Different primer pairs targeting the archaeal 16S rRNA gene region have been selected from recent 

publications (Klindworth et al., 2013; Koskinen et al., 2017). The main criteria for selection were: a. 

specificity for archaea in-silico, b. low or no amplification of eukaryotic DNA, and c. amplicon length 

between 150 to 300bp, suitable for NGS such as Illumina MiSeq. In addition, three “universal” primer 
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pairs (Caporaso et al., 2012; Klindworth et al., 2013; Walters et al., 2016) were tested in parallel to 

determine their efficiency in detecting archaea in human samples. Full information on the selected 

primer pairs is given in Table 1. In silico evaluation of the selected primer pairs has been performed 

using the online tool TestPrime1.0 (Klindworth et al., 2013) and the non-redundant SILVA database 

SSU132 (Quast et al., 2013). Two of the primers were also tested using TestProbe 3.0 (Klindworth et 

al., 2013) and the SILVA database SSU132 to assess their individual coverage for the archaeal domain.   

Table 1. Primer selection and results of the pre-analysis in silico evaluation of all primer pairs used. 
Coverage of archaea, bacteria and eukarya is given in percentages, depending on whether no or one 
mismatch was allowed. Designated “universal” primers (primer pairs 10-12) are indicated in bold 
letters. 

 0 mismatch 1 mismatch 

Primer pair Name 

Primer name, 
according to 

(Klindworth et al., 
2013) 

Sequence (5' -> 3') 

Archaea Bacteria Eukarya Archaea Bacteria Eukarya 

1 
  

344F S-D-Arch-0344-a-S-20 ACGGGGYGCAGCAGGCGCGA 
46.1% 0.0% 0.0% 68.6% 0.0% 0.0% 

915R S-D-Arch-0911-a-A-20 GTGCTCCCCCGCCAATTCCT 

2 
  

349F S-D-Arch-0349-a-S-17 GYGCASCAGKCGMGAAW 
71.8% 0.0% 0.0% 87.8% 0.0% 0.0% 

915R S-D-Arch-0911-a-A-20 GTGCTCCCCCGCCAATTCCT 

3 
  

344F S-D-Arch-0344-a-S-20 ACGGGGYGCAGCAGGCGCGA 
51.5% 0.0% 0.0% 73.0% 0.0% 0.0% 

1041R S-D-Arch-1041-a-A-18 GGCCATGCACCWCCTCTC 

4 
  

349F S-D-Arch-0349-a-S-17 GYGCASCAGKCGMGAAW 
71.2% 0.0% 0.0% 90.0% 0.0% 0.0% 

1041R S-D-Arch-1041-a-A-18 GGCCATGCACCWCCTCTC 

5 
  

519F  S-D-Arch-0519-a-S-15 CAGCMGCCGCGGTAA 
79.3% 0.0% 0.0% 93.7% 0.0% 0.0% 

1041R S-D-Arch-1041-a-A-18 GGCCATGCACCWCCTCTC 

6 
  

344F S-D-Arch-0344-a-S-20 ACGGGGYGCAGCAGGCGCGA 
48.3% 0.0% 0.0% 71.3% 0.0% 0.0% 

806R S-D-Arch-0786-a-A-20 GGACTACVSGGGTATCTAAT 

7 
  

349F S-D-Arch-0349-a-S-17 GYGCASCAGKCGMGAAW 
75.2% 0.0% 0.0% 91.1% 0.0% 0.0% 

806R S-D-Arch-0786-a-A-20 GGACTACVSGGGTATCTAAT 

8 
  

519F  S-D-Arch-0519-a-S-15 CAGCMGCCGCGGTAA 
85.6% 6.8% 0.0% 95.2% 90.9 0.1% 

806R S-D-Arch-0786-a-A-20 GGACTACVSGGGTATCTAAT 

9 
  

349F S-D-Arch-0349-a-S-17 GYGCASCAGKCGMGAAW 
79.3% 0.0% 0.0% 92.8% 0.0% 0.1% 

519R S-D-Arch-0519-a-A-16 TTACCGCGGCKGCTG 

10 
  

519F  S-D-Arch-0519-a-S-15 CAGCMGCCGCGGTAA 
88.9% 88.8% 0.6% 95.3% 95.4% 1.2% 

785R S-D-Bact-0785-b-A-18 TACNVGGGTATCTAATCC 

11 
515F 515F-original GTGCCAGCMGCCGCGGTAA 

52.9% 86.8% 0.0% 94.6% 95.0% 0.3% 
806uR 806R-original GGACTACHVGGGTWTCTAAT 

12 
515FB 515F-modified GTGYCAGCMGCCGCGGTAA 

85.7% 87.7% 0.0% 95.4% 95.1% 1.4% 
806RB 806R-modified GGACTACNVGGGTWTCTAAT 
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PCR and library preparation  

For archaea-targeting PCR, a nested approach was chosen to increase the specificity for archaea and 

to avoid the formation of primer dimers caused by the tag, necessary for Illumina sequencing, 

attached to the primers (Koskinen et al., 2017; Peng et al., 2015). 

In addition to the nested approach, a standard PCR was performed with three different universal 

primer pairs, and one archaeal primer pair for comparative reasons, and to test if a universal 

approach is capable to cover archaea in human samples in sufficient depth. All primer combinations 

(in total 27) used for the PCR reactions are provided in Table 2.  

For the first PCR, each reaction was performed in a final volume of 20 µl containing: TAKARA Ex Taq® 

buffer with MgCl2 (10 X; Takara Bio Inc., Tokyo, Japan), primers 500 nM, BSA (Roche Lifescience, 

Basel, Switzerland) 1 mg/ml, dNTP mix 200 µM, TAKARA Ex Taq® Polymerase 0.5 U, water 

(Lichrosolv®; Merck, Darmstadt, Germany), and DNA template (1-50 ng/µl). 

After the first PCR, the resulting amplicons were purified to remove primer remnants. This 

purification was performed with three different kits to compare the different yields and efficiencies, 

namely MinElute PCR Purification kit (Qiagen; Hilden, Germany), Monarch® PCR & DNA Cleanup Kit 

(5 μg) (New England Biolabs GmbH; Ipswich, USA), or innuPREP DOUBLEpure Kit (Analytik Jena, 

Germany) as indicated in Table 2. The purified PCR product was eluted in 10 µl water (Lichrosolv®; 

Merck, Darmstadt, Germany).  

Two µl of the resulting, purified PCR products were transferred into a subsequent 2nd PCR containing 

the following mixture: TAKARA Ex Taq® buffer with MgCl2 (10 X; Takara Bio Inc., Tokyo, Japan), 

primers 500 nM, BSA (Roche Lifescience, Basel, Switzerland) 1 mg/ml, dNTP mix 200 µM, TAKARA Ex 

Taq® Polymerase 0.5 U, and water (Lichrosolv®; Merck, Darmstadt, Germany) up to a volume of 25 

µL.  
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Table 2 displays all primer pair combinations used for the first and the second PCR of the nested 
approach and the “universal” PCR. If not indicated otherwise (in brackets), the first PCR was followed 
by a purification of the PCR product by the MinElute PCR Purification kit (QIAGEN) kit.  n.a.: not 
applicable. 
 

 PCR # 
Primer combination 

1st PCR 
Primer combination 

2nd PCR 

PCR21 

349F-915R 

Illu 349F-Illu519R 

PCR22 Illu 519F-Illu785R 

PCR23 Illu 519F-Illu806R 

PCR31 

344F-1041R 

Illu 349F-Illu519R 

PCR33 Illu 519F-Illu785R 

PCR34 Illu 519F-Illu806R 

PCR41 

349F-1041R 

Illu 349F-Illu519R 

PCR42 Illu 519F-Illu785R 

PCR43 Illu 519F-Illu806R 

PCR61 

349F-806R 

Illu 349F-Illu519R 

PCR62 Illu 519F-Illu785R 

PCR63 Illu 519F-Illu806R 

PCR71 
519F-1041R 

Illu 519F-Illu785R 

PCR72 Illu 519F-Illu806R 

PCR81 
519F-806R 

Illu 519F-Illu785R 

PCR82 Illu 519F-Illu806R 

PCR91 344F-519R Illu 349F-Illu519R 

PCRQ1 
344F-915R  
(QIAGEN) 

Illu 349F-Illu519R 

PCRQ3 Illu 519F-Illu785R 

PCRQ4 Illu 519F-Illu806R 

PCRM1 
344F-915R  

(NEB Monarch)  

Illu 349F-Illu519R 

PCRM3 Illu 519F-Illu785R 

PCRM4 Illu 519F-Illu806R 

PCRA1 
344F-915R  

(Analytik Jena) 

Illu 349F-Illu519R 

PCRA3 Illu 519F-Illu785R 

PCRA4 Illu 519F-Illu806R 

PCRQ5 
344F-806R  
(QIAGEN) 

Illu 349F-Illu519R 

PCRQ6 Illu 519F-Illu785R 

PCRQ7 Illu 519F-Illu806R 

PCRM5 
344F-806R  

(NEB Monarch)  

Illu 349F-Illu519R 

PCRM6 Illu 519F-Illu785R 

PCRM7 Illu 519F-Illu806R 

PCR8-Uni 

n.a. 

Illu 515F-Illu806uR 

PCR9-Uni Illu 515FB-Illu806RB 

PCR10 Illu 519F-Illu806R 

PCR11-Uni Illu 519F-Illu785R 

 

 0 

 1 

 2 
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The PCR cycling conditions are listed in Table 3, according to the primer pairs used. For all primer 

pairs, annealing temperatures were either determined experimentally by gradient PCR or adopted 

from literature information. 

 

Table 3: PCR conditions. For denaturation, annealing and elongation the corresponding time and 

temperature is given. 

 

Sample set 2 was amplified using the primer combination 344F-1041R/519F-806R (Table 2). For the 

first PCR, each reaction was performed in a final volume of 20 µl as described above. After the first 

PCR, the PCR products were purified using Monarch® PCR & DNA Cleanup Kit (5 μg; New England 

Biolabs GmbH). For the second PCR, the final volume was 25 µl, as described above, only the volume 

of the DNA template varied: 2 µl purified PCR product for stool and nose samples, 4 µl for all other 

samples.  

 

Next generation sequencing, bioinformatics and statistical analyses 

Amplicons were sequenced at the ZMF Core Facility Molecular Biology in Graz, Austria, using the 

Illumina MiSeq platform (Klymiuk et al., 2016). The MiSeq amplicon sequence data was deposited in 

the European Nucleotide Archive under the study accession number PRJEB27023.  

Target Archaea (16S rRNA gene) “Universal” (16S rRNA gene) 

(Nested) PCR, round 1° 1° 2° 1° 1° 
Primer pair 344F / 915R 

349F / 915R 
344F / 806R 
349F / 806R 
519F / 806R 

344F / 1041R 
349F / 1041R 
519F / 1041R 

All Illumina 
tagged primer 
pairs 

Illu519F /Illu806R 
Illu519F/Illu785R 

Illu515F/Illu806uR 
Illu515FB/Illu806RB 

 

Initial denaturation 2’, 95°C 5’, 95°C 5’, 95°C 5’, 95°C 3’, 94°C 

Denaturation 30'', 96°C (first 10 
cycl.), 25'' 94°C 

30'', 94°C 40'', 95°C 40'', 95°C 45”, 94°C 

Annealing 30'', 60°C 45'', 56°C 2’, 63°C 2’, 63°C 1’, 50°C 

Elongation 1’, 72°C 1’, 72°C 1’, 72°C 1’,72°C 1’ 30”, 72°C 

Final elongation 10’, 72°C 10’, 72°C 10’, 72°C 10’, 72°C 10’, 72°C 

No. of cycles 25 25 30 40 40 
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The data processing of the obtained MiSeq sequence data was performed using the open source 

package DADA2 (Divisive Amplicon Denoising Algorithm; (Callahan et al., 2016)) as described 

previously (Mora et al., 2016). Shortly, the DADA2 turns paired-end fastq files into merged, denoised, 

chimera-free, and inferred sample sequences called ribosomal sequence variants (RSVs). The 

taxonomic affiliations were determined using SILVA v128 database as the reference database (Quast 

et al., 2013). In the resulting RSV table, each row corresponds to non-chimeric inferred sample 

sequence with a separate taxonomic classification. RSV tables are given in Supplementary Tables 1 

(a-c) and 2 (available on request).  

Negative controls (extraction controls and no-template controls) were included during PCR 

amplification. The RSVs overlapping the negative controls and samples were either subtracted or 

completely removed from the data sets. RSVs detected in the negative controls are provided in 

Supplementary Table 3 (available on request). 

Processing of sequencing data was performed using the in-house Galaxy set-up (Klymiuk et al., 2016) 

and subsequent statistical analyses were performed in R version 3.4.3 (R Core Team, 2013). Alpha 

diversity was calculated using the Shannon diversity. In order to identify differences between the 

archaeal diversity, Wilcoxon Rank Test was performed. The diversity of the archaeal communities 

within sample set 2 was determined using two diversity matrices (Shannon and richness). Analysis of 

variance (ANOVA) was performed to test for differences in the archaeal diversity based on the body 

location. Principal Coordinates Analysis (PCoA) based on Bray-Curtis distances was used to visualize 

differences between the samples from different body site. Redundancy discrimination analysis (RDA) 

was used to analyze the association between archaeal community composition and the body site 

location. RDA, alpha diversity and PCoA analysis were performed using Calypso Version 8.62 

(Zakrzewski et al., 2016). The RSV tables obtained were used to summarize taxon abundance at 

different taxonomic levels. The taxonomic profiles obtained at the genus level were used to generate 

bar graphs for all samples.  
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A phylogenetic tree was constructed with the obtained archaeal RSVs from the universal approach, 

the archaeal primer pair 519F-806R, and from the archaeal specific primer pair combination 344F-

1041R/519F-806R. The alignment was performed using the SILVA SINA (Pruesse et al., 2012) and the 

5 most closely related available sequences (neighbors) were downloaded together with the aligned 

sequences. All sequences were cropped to the same length and used to construct a tree based on 

maximum-likelihood algorithm using MEGA7 (Kumar et al., 2016), using a bootstrap value of 500. The 

Newick output was further processed with iTOL interactive online platform (Letunic and Bork, 2007).  

Quantitative PCR 

To determine the optimal qPCR approach for assessing the absolute number of archaeal 16S rRNA 

gene copies in relevant samples, three different procedures were tested, two based on SYBR, one on 

TaqMan chemistry. In addition, two bacteria targeting approaches, one based on SYBR, one on 

TaqMan chemistry, were evaluated in parallel to determine the ratio of bacteria: archaea in these 

samples.  

The used primers are given in Table 4 and the in silico evaluation results thereof are given in Table 5. 

 

Table 4: Primers used for qPCR: approach, target, primer names, primer sequences, and according 
references. 

Approach and 
target 

Name Primer name, 
according to 

(Klindworth et al., 
2013) 

Sequence (5’-3’) Reference 

SYBR 
(Archaea) 

344aF S-D-Arch-0344-a-S-20 ACGGGGYGCAGCAGGCGCGA (Raskin et al., 1994) 

517uR S-*-Univ-0517-a-A-15 GWATTACCGCGGCKGCTG (Amann et al., 1995) 

SYBR 
(Archaea) 

806aF S-D-Arch-0787-a-S-20 ATTAGATACCCSBGTAGTCC (Raskin et al., 1994) 

958aR S-D-Arch-0958-a-A-19 YCCGGCGTTGAMTCCAATT (DeLong, 1992)  

TaqMan 
(Archaea) 

349aF S-D-Ar-0349-aS17_F GYGCASCAGKCGMGAAW (Takai and Horikoshi, 2000) 

806aR S-D-Arch-0786-a-A-20 GGACTACVSGGGTATCTAAT (Takai and Horikoshi, 2000) 

516aF Arch516F_FAM TGYCAGCCGCCGCGGTAAHACCVGC (Takai and Horikoshi, 2000) 

SYBR 
(Bacteria) 

338bF S-D-Bact-0337-a-S-20 ACTCCTACGGGAGGCAGCAG (el Fantroussi et al., 1999) 

517uR S-*-Univ-0517-a-A-15 GWATTACCGCGGCKGCTG (Amann et al., 1995) 

TaqMan 
(Bacteria) 

331bF S-D-Bact-0340-a-S-19 TCCTACGGGAGGCAGCAGT (Hunter et al., 2002) 

797R S-D-Bact-0781-a-A-26 GGACTACCAGGGTATCTAATCCTGTT (Hunter et al., 2002) 

528R Bact_HEX CGTATTACCGCGGCTGCTGGCAC (Hunter et al., 2002) 
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Table 5: In silico evaluation of qPCR primers and TaqMan probes. 

 0 mismatch 1 mismatch 

Name 
Primer name according to  
(Klindworth et al., 2013) 

Sequence (5' -- 3') 
Archaea Bacteria Eukarya Archaea Bacteria Eukarya 

344aF S-D-Arch-0344-a-S-20 ACGGGGYGCAGCAGGCGCGA 

28.9% 0.0% 0.0% 71.2% 0.0% 0.0% 
517uR S-*-Univ-0517-a-A-15 GWATTACCGCGGCKGCTG 

806aF S-D-Arch-0787-a-S-20 ATTAGATACCCSBGTAGTCC 

45.6% 0.0% 0.0% 81.8% 0.0% 0.0% 
958aR S-D-Arch-0958-a-A-19 YCCGGCGTTGAMTCCAATT 

349aF S-D-Ar-0349-aS17_F GYGCASCAGKCGMGAAW 

75.2% 0.0% 0.0% 91.1% 0.0% 0.0% 
806aR S-D-Arch-0786-a-A-20 GGACTACVSGGGTATCTAAT 

338bF S-D-Bact-0337-a-S-20 ACTCCTACGGGAGGCAGCAG 

0.0% 90.5% 0.0% 0.0% 94.9% 0.1% 
517uR S-*-Univ-0517-a-A-15 GWATTACCGCGGCKGCTG 

331bF S-D-Bact-0340-a-S-19 TCCTACGGGAGGCAGCAGT 

0.0% 75.3% 0.0% 0.0% 82.8% 0.0% 
797R S-D-Bact-0781-a-A-26 GGACTACCAGGGTATCTAATCCTGTT 

Bact 528R_HEX (probe) CGTATTACCGCGGCTGCTGGCAC 0.0% 79.1% 0.0% 0.4% 95.8% 0.8% 

Arch 516F_FAM (probe) TGYCAGCCGCCGCGGTAAHACCVGC 84.5% 0.0% 0.0% 96.2% 0.0% 1.2% 

 

For SYBR-based qPCR, the reaction mix contained: 1x SsoAdvanced™ Universal SYBR® Green 

Supermix (Bio-Rad, Hercules, USA), 300 nM of forward and reverse primer, gDNA template, water 

(Lichrosolv®; Merck, Darmstadt, Germany). For TaqMan-based qPCR, the reaction mix contained: 1x 

SsoAdvanced™ Universal Probes Supermix (Bio-Rad, Hercules, USA), 800 nM of forward and reverse 

primer, 200 nM of FAM-marked probe for archaea and HEX-marked probe for bacteria, gDNA 

template, water (Lichrosolv®; Merck, Darmstadt, Germany). 

The qPCR was performed using the CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad, 

Hercules, USA). The qPCR conditions used are given in Table 6.  
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Table 6: Quantitative PCR conditions. For denaturation, annealing and elongation the corresponding 
time and temperature is given. n.a.: not applicable. 

 

Crossing point (Cq) values were determined using the regression method within the Bio-Rad CFX 

Manager software version 3.1. Absolute copy numbers of bacterial and archaeal 16S rRNA genes 

were calculated using the Cq values and the reaction efficiencies based on standard curves obtained 

from defined DNA samples from Nitrososphaera viennensis and Escherichia coli (Probst et al., 2013). 

The qPCR efficiency and R2 values of the standard curves can be found in Table 6 (last two columns) 

and were in range of 92.5% to 106.40% and the R2 values were between 0.837 and 0.983, the 

archaeal TaqMan approach having a low R2 value of only 0.837.  

Detection limits were defined based on the average Cq values of non-template controls (triplicates) 

and the corresponding standard curves of the positive controls. The detection limits were variable, 

depending on the primer pair used; herein, the detection limit is defined as the last positive signal 

before the signal of the negative control, in order to exclude false-positive results. For archaea 

detection the limit was 480 copies/µl when the primer pair 806aF-958aR was used and 7.46*104 

copies/µl with the primer pair 344aF-517uR, respectively, and 186 copies/µl for 349aF-806aR. For 

bacterial 16S rRNA genes, the detection limit was 6.45*103 copies/µl for the primer pair 338bF-517uR 

that was used for SYBR and 508 copies/µl for the primer pair 331bF-797R that was used for TaqMan.  

The archaeal (806aF-958aR) and bacterial (338bF-517uR) qPCR was then used to determine the 

absolute copy numbers of 16S rRNA genes for sample set 2. The crossing points (Cq) were 

determined using the single threshold in Bio-Rad CFX Manager software version 3.1. The absolute 

copy numbers were calculated as mentioned above. The qPCR efficiency was 108.6% for archaea, 

Target and primers QPCR conditions Standard curves 

Target 
gene  

primer 
forward/reverse 

Initial 
denaturation 

Denaturation Annealing Elongation 
No. 
of 

cycles 

Melting 
Curve 

Efficiency R2 

16S rRNA 
Bacteria 

 338bF-517uR 15', 95°C 15", 94°C 30", 60°C 40", 72°C 40 60-95°C 106.4 0.949 

331bF - 797R 
(Probe 528bR) 

10', 95°C 25", 95°C 2', 60°C 40 n.a. 94.9 0.97 

16S rRNA  
Archaea 
  

344aF-517uR 15', 95°C 15", 94°C 45", 60°C 30", 72°C 40 60-95°C 104.5 0.972 

806aF-957aR 15', 95°C 15", 94°C 30", 53°C 40", 72°C 40 60-95°C 101.5 0.983 

349aF-806aR 
(Probe 515aF) 

10', 95°C 25", 95°C 5', 60°C 40 n.a. 92.5 
0.837 
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and 90.9% for Bacteria, respectively and R2 values were 0.976 for archaea and 0.929 for Bacteria. The 

detection limits were 715 copies/µl for archaea, and 7.06E+04 copies/µl for Bacteria.  

All qPCR reactions have been performed in triplicates. Only samples with positive results in 2 out of 3 

or 3 out of 3 replicates were considered for further analysis.  
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Results 

Primer pairs were evaluated with respect to the following characteristics: i) high in silico specificity 

for archaeal 16S rRNA genes and an amplicon length of 150 to 300 bp, suitability for NGS and 

quantitative PCR, ii) in vitro capability to amplify diverse archaeal 16S rRNA genes from a variety of 

human specimens, and iii) in vitro suitability for qPCR with stringent requirements in efficiency and 

specificity.  

Besides archaea-specific primer pairs, two widely used “universal” primers (515F-806uR original; 

515FB-806RB modified; (Caporaso et al., 2012; Walters et al., 2016)) were evaluated all along to 

assess the potential of “universal” primers to display archaeal diversity associated with the human 

body.  

Most archaea-targeting primers reveal good coverage in silico  

A total of 12 different primer pairs were evaluated in silico (Table 1) using sample set 1. Most primer 

pairs showed high coverage for the archaeal domain ranging from 46% to 89% and revealed a high 

domain-specificity (8 of 12 primer pairs without matches outside of the archaeal domain). When one 

mismatch was allowed, the coverage increased to values from 68% to 95%.  

One designated archaeal primer pair was found to target additionally sequences of the bacterial and 

eukaryotic domain when one mismatch was allowed, namely primer pair 519F-806R, with a coverage 

of the bacterial domain > 90%.  

We further evaluated the detailed coverage of the primer pairs for specific archaeal phyla and genera 

of particular interest in human archaeome studies: Euryarchaeota, Thaumarchaeota, and 

Wosearcheota, as well as Nitrososphaera, Methanobrevibacter, Methanosphaera and 

Methanomassiliicoccus. For all subsequent in silico analyses we allowed one mismatch.  

All primer pairs revealed a high coverage for the Euryarchaeota phylum (in total >90%), for genera 

Methanobrevibacter (between 94.6% and 98.9%) and Methanomassiliicoccus (between 92.9% and 
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100%), while the coverage for Methanosphaera was below 90% for most primer pairs except for 

519F-806R and 349F-519R (Table 7).  

The coverage of the Thaumarchaeota phylum depended on the primer pair used. Most analyses that 

included the primer 344F showed a low in silico coverage for Thaumarchaeota (below 30%) while all 

other primer pair combinations revealed a high coverage of this phylum (>90%; Table 7). The 

coverage for Nitrososphaera in particular varied between 86.9% and 94.4%. The class Wosearchaeia 

showed variable coverage between 65.2% and 89.5%.  

Table 7: In silico analysis of the coverage of chosen primer pairs for specific archaeal taxa of interest. 
For primer full names and sequences, please refer to Table 1. 

primer 
pair Name 

Euryarchaeota Thaumarchaeota Nanoarchaeota 

total 
Methano- 

brevibacter 
Methano- 
sphaera 

Methano- 
massiliicoccus total Nitrososphaera (Wosearchaeia) 

1 
  

344F 
90.80% 95.30% 82.20% 100% 20.60% 87.60% 66.40% 

915R 

2 
  

349F 
91.50% 95.30% 84.20% 100% 92% 89.70% 70.30% 

915R 

3 
  

344F 
90.80% 94.60% 79.40% 100% 20.70% 89.00% 67.90% 

1041R 

4 
  

349F 
91.50% 94.60% 79.40% 100% 96.40% 92.30% 74.30% 

1041R 

5 
  

519F  
95% 97.80% 85.40% 92.90% 96.60% 90.60% 83% 

1041R 

6 
  

344F 
92.30% 95.50% 82.60% 100% 23.30% 88% 65.20% 

806R 

7 
  

349F 
93.20% 95.60% 84.20% 100% 96.50% 90.10% 72.90% 

806R 

8 
  

519F  
96.60% 98.90% 90% 95% 96.70% 89.50% 83.10% 

806R 

9 
  

349F 
93.60% 95.80% 90.70% 95% 98% 94.40% 83.10% 

519R 

10 
  

519F  
96.50% 98.60% 89.60% 95% 96.20% 87.80% 87.60% 

785R 

11 
  

515F 
96.20% 98.60% 89.60% 95% 94.70% 86.90% 89.50% 

806R 

12 

  

515FB 
96.20% 98.60% 89.60% 95% 96.50% 89% 89.50% 

806RB 
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As the archaeal primer 344F has often been used for detecting archaea in a variety of environmental 

samples (Fontana et al., 2016; Zhang et al., 2014), we took a closer look on its coverage capacity 

using the TestProbe 3.0 (Klindworth et al., 2013) and the SILVA database SSU132 (Quast et al., 2013).  

Overall, the primer revealed 73.2% coverage of the archaeal domain. The in silico results showed a 

high coverage of the Euryarchaeota phylum (93.8%) and the genera within, especially 

Methanobrevibacter with 96.1%, Methanosphaera with 89.9% and Methanomassiliicoccus with 

100%. It also revealed a good coverage for Wosearchaeia with 74.6%, but showed, despite a high 

coverage for the genus Nitrososphaera (93.6%), a generally low coverage of the Thaumarchaeota 

phylum with only 24%, indicating a potentially low capacity for studies with thaumarchaeotal 

diversity in focus. 

Another primer that we analyzed in more detail was primer 519F, also known as S-D-Arch-0519-a-S-

15. As the sequence of this primer (5’ - CAGCMGCCGCGGTAA - 3’) overlaps with the sequence of the 

“universal” primer S-*-Univ-0519-a-S-18 (5’ - CAGCMGCCGCGGTAATWC - 3’), we were interested to 

compare their coverages.  

As expected, the results from the in silico analysis indicated that the primer S-D-Arch-0519-a-S-15 

targets Bacteria (coverage 98%), archaea (coverage 98.2%) and Eukarya (coverage 96.4%). The 

universal primer S-*-Univ-0519-a-S-18 has a similar coverage and specificity for the three domains of 

life: Bacteria (coverage 97.5%), archaea (coverage 96.4%), and eukarya (coverage 95.6%). 

Considering our in silico results, the primer S-D-Arch-0519-a-S-15 cannot be used to target archaea 

specifically and should be re-named to S-D-Univ-0519-a-S-15.  

As most selected archaea-targeting primers revealed a good coverage of the archaeal domain in 

general, all primer pairs were used for subsequent wet-lab experiments. 
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Archaeal community composition varies according to the used primer pairs and universal primers fail 

to detect the archaeal diversity 

Herein we sought to identify the optimal primer pair for amplicon sequencing of the archaeomes in 

human samples. For this, we selected five representative sample types from different body sites: 

nose (upper nasal cavity), oral (subgingival sites), stool and appendix specimens, and skin (back) 

(sample set 1). The stool sample represented the positive control and served as a natural mock 

community.  

Next generation sequencing was performed, after a two-step nested PCR (for archaea) or a single-

step PCR (“universal” target). The nested PCR approach was selected based on the reasons given in 

the Materials and Methods section. In brief, the first PCR was intended to select the archaeal 

community of interest, the second to further amplify the archaeal signal.  

The results obtained after amplification, NGS and data analysis based on DADA2 algorithm (Callahan 

et al., 2016; Koskinen et al., 2017) are summarized in Supplementary Table 4 (a-c) (available on 

request), which includes the number of reads and observed ribosomal sequence variants (RSVs) 

obtained for all samples covering the three domains, Archaea, Bacteria, and Eukarya (plus 

unclassified taxa).  

The use of universal primers (primer pair 515F-806uR, 515FB-806RB and 519F-785R) in the PCR 

reaction resulted in reads that were classified mainly within the bacterial domain with almost no 

reads classified within the archaea, confirming our previous observations (Koskinen et al., 2017). In 

fact, when the two universal primer pairs (515F-806uR original and 515FB-806RB) were compared 

regarding the archaeal domain, only primer pair 515F-806uR allowed the detection of only one RSV 

being classified within the archaea and from only one sample, the stool sample (Supplementary 

Table 1a) (available on request).  

Universal primer pair 519F-785R yielded slightly better results, allowing the detection of three 

different archaeal RSVs from two different samples: Methanobrevibacter and Methanosphaera in the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 30, 2018. ; https://doi.org/10.1101/334748doi: bioRxiv preprint 

https://doi.org/10.1101/334748
http://creativecommons.org/licenses/by-nc-nd/4.0/


stool sample, and one RSV from the nose sample, classified within the Thaumarchaeota phylum. Very 

similar results (detection of the same methanoarchaeal signatures in the stool sample, and one 

thaumarchaeal signature in the oral sample instead of the nose sample) were obtained from primer 

pair 519F-806R, which was originally described to be archaea-specific, but revealed wide coverage of 

the bacterial and archaeal domain (>90%, when one mismatch allowed) in silico (see previous 

chapter). 

The obtained archaeal RSVs from the universal approaches were used to construct a phylogenetic 

tree to identify whether the universal primer pairs allow the detection of the same RSVs or closely 

related RSVs in the analyzed samples (Fig. 1). In addition, the RSVs obtained from the archaeal 

specific primer pair combination 344F-1041R/519F-806R were included for comparison. This 

approach allowed the detection of 20 RSVs in the nose, 19 RSVs in the oral, one RSV in the appendix, 

3 RSVs in the stool, and 39 RSVs in the skin sample.  For the stool sample, the RSVs obtained from the 

universal and archaeal specific approach grouped together in clades, either within 

Methanobrevibacter or Methanosphaera clade (Fig. 1). The RSV from the nose sample detected 

through the universal approach grouped separately to the RSVs identified using the archaeal specific 

primers. The oral RSV from the universal approach grouped also separately from the RSVs obtained 

with the archaeal specific primers, the archaeal specific primers did not detect any Thaumarchaeota 

in the oral sample, only RSVs that were grouped within Woesearchaeota.  
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Fig. 1: Phylogenetic tree based on the retrieved RSVs from the universal approach, archaeal approach 
with primer 519F-806R or from the PCR based on the primer pair combination 344F-1041R/519F-
806R as indicated in colors as an outermost circle (legend “Primer combinations”). The inner circle 
represents the body site from where the RSVs were identified (see legend). Reference sequences 
from the SILVA database are shown without label. The branches of the tree were colored according 
to the phyla, blue: Woesearchaeota, green: Euryarchaeota, and orange: Thaumarcheota. In the 
Euryarchaeota the different shades of green indicate the different clades, dark green: 
Methanosphaera, lighter green: Methanobrevibacter, green: Methanobacterium.  

Overall, 10 out of 24 primer pair combinations allowed the detection of archaeal signatures in all 

analyzed samples (Supplementary Table 1a; provided on request). But all 24 primer pair 

combinations were able to identify archaeal reads in at least one of the sample types analyzed, for 

example all primer pair combinations detected archaeal RSVs in the stool sample; the number of 

RSVs, however, varied according to the used primer pair combination from 1 RSV to 7 RSVs.   

Depending on the used primer pair, the archaeal community composition was found to be highly 

variable (Fig. 2). We observed that the detected variation in the archaeal composition was due to the 

used primer pair in the first PCR, the primer pair used to select the communities, while the second 
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PCR and primer pair enhanced the signal of the first PCR (Fig. 2). It shall be mentioned that for the 

second PCR only three different primer pairs have been used, 349F-519R, 519F-785R and the 519F-

806R, of which the first two primer pairs had been used before to explore archaeal communities in 

human samples (Koskinen et al., 2017) and in confined habitats (Mora et al., 2016).  

 

Fig. 2: Bar charts illustrating the diversity of archaeal communities on genus level in dependence of 
primer pair combinations. Primer combinations are illustrated via the colored bars above the 
columns (first primer pair), and by letters below the columns (second primer pair). In addition, 
information is given on the different purification kits that have been used between the two steps of 
the nested PCR. If no information is given next to the letter, MinElute PCR Purification kit (QIAGEN) 
has been used to purify the PCR product. 
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To further explore the influence of the primer pair selection on the archaeal community composition, 

the alpha diversity was calculated using the Shannon index (Fig. 3). For this analysis, we excluded the 

results obtained from the second primer pair 349F-519R as most samples herein (except stool 

samples) yielded less than 500 reads. To compare the alpha diversity within the results obtained we 

performed a Wilcoxon Rank Test to identify potential differences in the primer combination 

performances.  

The highest archaeal diversity could be detected with the primer combination 344F-1041R/519F-

806R (PCR34); this result was found to be significantly higher (p<0.05) compared to PCR 33 (344F-

1041R/519F-785R), PCR Q7 (344F-806R/519F-806R) and PCR M7 (344F-806R/519F-806R; see Table 2 

and Fig. 3), whereas no other significant differences could be detected. 

 

Fig. 3: Shannon index indicates the diversity received from different PCR approaches. The results 
have been plotted and grouped according to the first PCR used and the statistical significance (p-
value <0.05; Wilcoxon Rank Test) is indicated by *. p-value < 0.05 for: C (344F-1041R) vs B (344F-
1041R), C (344F-1041R) vs C (344F-806R QIAGEN) and C (344F-1041R) vs C (344F-806R BioLabs). 

According to the comparison of the alpha diversity of the archaeal communities between the 

different primer pair combinations, we recommend the use of the nested approach with the primer 
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pair 344F-1041R in the first PCR, followed by a second PCR with the primers 519F-806R for studying 

and exploring the archaeal communities in human samples.  

 

The primer combination with superior performance revealed a broad archaeal diversity in stool, 

appendix, nose, oral and skin samples 

To further test and validate the use of the primer pair combination 344F-1041R/519F-806R for 

studying the archaeal communities within human samples, we selected additionally samples from 

the same body sites: nose (n=5), oral (n=6), appendix (n=5), stool (n=5), and skin (n=7) (sample set 2).  

Our selected PCR approach allowed the detection of archaea in all samples investigated with an 

average of 102,366 reads and 8 observed RSVs for the nose, 56,480 reads and 35 observed RSVs for 

oral, 46,022 reads and 8 observed RSVs for the appendix, 93,948 reads and 4 observed RSVs for the 

stool sample, and 76,001 reads and 30 observed RSVs for the skin samples. 

 A summary of the number of archaeal, bacterial and eukaryotic reads/RSVs can be found in 

Supplementary Table 5 (provided on request). The results were plotted to indicate the archaeal 

communities present at genus level in the analyzed samples (Fig. 4).  
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Fig. 4: Bar chart displaying the different archaeal genera detected in different human samples using 
the superiorly performing primer combination 344F-1041R/519F-806R. 

 

We further characterized the archaeal community information with respect to alpha and beta 

diversity. Depending on the body site a significant difference (p-value < 0.05) could be shown for 

alpha (Shannon index and richness) and beta diversity (PCoA and RDA) (Fig 5). Our results confirm 

the findings that archaeal communities are body site specific (Koskinen et al., 2017).  

Notably, the stool samples revealed the overall lowest diversity of Archaea, with only 3-5 identified 

archaeal RSVs, while skin and oral samples contained a higher diversity, with 5 to 49 RSVs found in 

the skin samples and 14 to 49 RSVs in the oral samples.   
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Fig. 5: Alpha (a; Shannon index and richness) and beta diversity (b; PCoA and RDA) analyses of the 
obtained archaeal community information, based on primer combination 344F-1041R/519F-806R.  
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Optimization of quantitative PCR for determination of the archaea:bacteria ratio  

The ratio of archaea vs. bacteria in human tissues and samples is widely unknown and can only be 

inadequately assessed from amplicon-based studies or metagenomics. It was our goal to set-up a 

suitable qPCR-based methodology to determine the ratios of bacterial and archaeal 16S rRNA gene 

contents in diverse samples. 

Based on literature review, we selected three different set-ups for the quantification of archaeal 16S 

rRNA genes, and two different set-ups for the quantification of bacterial 16S rRNA genes. We 

included both chemistries, namely TaqMan and SYBR (Table 4). The same samples (sample set 1) that 

have been used for amplicon sequencing (nose, oral, appendix, stool and skin) have been tested for 

the different qPCR set-ups.  

In silico analyses of the qPCR primers indicate a low coverage for archaea when no mismatch is 

considered, below 50% for two of the primers, but when one mismatch is considered the coverage 

increases from 71.2% to 91.1%. The coverage of the bacterial primers ranged from 75.3% to 90.5% 

when zero mismatches were considered and from 82.8% to 95.8% when one mismatch was allowed 

(Table 5).  

For quantification of archaeal 16S rRNA genes, three different approaches were investigated, two 

SYBR approaches using two different primers pair: 806aF-958aR and 344aF-517uR, and one TaqMan 

approach using the primers pair 349aF-806aR and the probe (515F-FAM) (Hunter et al., 2002; Probst 

et al., 2013; Takai and Horikoshi, 2000). 

All primer combinations showed qPCR results within the set limits for efficiency (between 90% - 

110%). However, the SYBR protocols proved superior compared to the TaqMan approach, as this 

methodology allowed the quantification of archaeal signatures in only one out of five samples, 

namely the stool sample (Fig. 6a).  
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The SYBR 806aF-958aR allowed the quantification of archaeal 16S rRNA genes in 3 (stool, nose and 

appendix) out of 5 samples (Fig. 6a). However, no archaeal signatures could be detected in the oral 

and skin samples as signals were below the detection limit of 480 copies/µl. 

The SYBR approach based on primer pair 344aF-517uR allowed the quantification of archaea in 4 out 

of 5 samples (Fig. 6a), with visible bands on the electrophoresis gel for stool, nose and appendix 

samples. Due to the high detection limit, we consider that this approach does not allow the detection 

of archaeal signals in samples with low biomass and the results might be overestimated.  

Therefore, we suggest the use of the SYBR approach based on the primers pair 806aF-958aR for 

optimally detecting archaeal signatures within human samples. With this method we detected 

around 108 copies of archaeal genes in the stool sample, 105 copies in the nose sample and 106 

copies in the appendix sample. Moreover, it was the most conservative approach, with the lowest 

chance to overestimate the archaeal abundance.  

For the quantification of bacterial 16S rRNA genes, we used two different approaches, a SYBR 

approach using the primers pair: 338bF-517uR and a TaqMan approach using the primers pair: 

331bF-797R and the probe 528bR labeled with HEX. Both methods allowed an adequate 

quantification of the bacterial load in all samples (Fig. 6b). The highest bacterial load was found in the 

stool samples, with around 1011 copies/total DNA (200mg sample), followed by the nose samples 

containing around 107 copies/total DNA. The appendix bacterial load was around 106 copies/ total 

DNA, and the oral sample had the lowest bacterial load with only 105 copies/total DNA. For the skin 

samples the absolute number is reported on the area sampled since the DNA could not be quantified 

using the Qubit HS detection method (Fig. 6).  

Based on our experiments and their results, we propose to use primer pair 806aF-958aR for archaea-

targeted SYBR qPCR.  
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Fig. 6. Logarithmic values of total copies of 16S rRNA gene for a. archaea, b. bacteria per total DNA, 
except for the skin samples where the results are per area sampled. c. the results from bacterial SYBR 
qPCR based on 338bF-517uR and archaeal SYBR qPCR with primers 806aF-958aR are plotted.  The 
ratio between bacterial and archaeal 16S rRNA genes (determined on three technical replicates) 
varied depending on the sample. 
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Optimized quantitative PCR protocols reveal the presence of up to 50% archaeal signatures in certain 

human samples  

The selected qPCR approach for archaea has been further tested using a set of different human 

samples (sample set 2). We selected nose (n=5), oral (n=6), appendix (n=5) and stool (n=5) samples 

to determine the absolute number of archaeal 16S rRNA genes and to assess the ratio between 

bacterial and archaeal 16S rRNA genes. Skin samples could not be included in the experiment due to 

their low DNA content. 

For the archaeal qPCR we used the SYBR approach based on primer pair 806aF-958aR, and for the 

bacteria we used the SYBR qPCR approach with the primer pair 338bF-517uR.  

The results are plotted in Fig. 7. The ratio between bacterial and archaeal 16S rRNA genes was 

determined using the average for each sample type. For stool samples the ratio was 20:1 (0.1 to 

21.3% archaeal signatures). For nose and appendix, the ratio was around 1:1 (21.8 to 70.7 % archaeal 

signatures for appendix, and 22.8 to 82.8% for nose), and for oral samples the ratio was 77:1 (0.3 to 

5.3 % archaeal signatures).  

 

Fig. 7: Logarithmic values of total copies of 16S rRNA gene archaea (red, primer pair 806aF-958aR) 
and bacteria (blue, primer pair 338bF-517uR) 
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Discussion 

Up to now, little it is known about the composition of the healthy human archaeome, or the real 

bacteria/archaea ratios in certain body parts. It is unknown, whether archaeal communities are 

affected by dysbiosis or human disease, or how we acquire these microorganisms after birth, 

although several studies have shown that archaea are present in the first year of life (Palmer et al., 

2007; Wampach et al., 2017). Additionally, it is largely unexplored, how archaeal communities 

interact/communicate with other commensal microorganisms inhabiting the human body. 

Furthermore, there still remains the most burning question, if there are really no archaeal pathogens. 

Facing these numerous unsolved mysteries, we argue that more studies are needed with respect to 

the human archaeome. For these, however, standardized protocols are required, which are effective 

enough to reliably assess archaeal diversity and abundance based on 16S rRNA gene signatures. 

To address the need for archaea-targeted amplicon method for NGS in human samples, we herein 

tested 12 different primers previously described in literature (Klindworth et al., 2013), in 27 primer 

pair combinations and evaluated their performance using in silico and experimental approaches on 

five different human sample types.  

Despite their overall good in silico results, the three universal primer pairs tested failed to assess the 

archaeal diversity in the experiments. Two of these primer pairs represent the most used universal 

primers for amplicon sequencing methods (Caporaso et al., 2012; Walters et al., 2016), resulting in 

the detection of one (515F-806uR) or zero archaeal RSVs (515FB-806RB) in five sample types that 

evidentially possessed a variety of archaeal signatures. This was particularly intriguing, as the 

presence of archaeal signatures in the appendix and nose sample was confirmed by qPCR, with a 

ratio of 1:1 and 8:1 bacteria: archaea, respectively (sample set 1).  

The reasons for the failure of the universal primers to detect Archaea are unclear; however, it seems 

bacterial signatures outcompete archaeal signatures, just due to slightly better primer matches, 

depending on the diversity within the sample. 
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Furthermore, an archaeal primer pair (519F-806R) that has been used before for amplicon 

sequencing (Siles et al., 2018) detected only a small proportion of the archaeal diversity in the 

analyzed samples, but the same primer pair performed better when used in a nested PCR together 

with the primer pair 344F-1041R for the first PCR.  

Nested PCR has been shown to improve sensitivity and specificity and are useful for suboptimal DNA 

samples (Bomberg et al., 2003; Vissers et al., 2009). Based on our experience in the past (Koskinen et 

al., 2017), other reports (De Vrieze et al., 2018), and due to the fact that all attempts to use Illumina-

tagged archaeal primers to directly identify archaeal 16S rRNA genes in human samples failed, we 

kept to this approach for the archaeal diversity assessment.  

We used a combination of an archaea-specific first PCR (9 different primer combinations) and two 

archaeal specific and one universal primer pair, resulting in 24 different approaches (Table 2). 

Notably, although the primer pair combinations 344F-915R/349F-519R and 344F-915R/519F-785R 

had been used earlier to detect archaeal signatures in human samples and confined environments 

(Koskinen et al., 2017) (Mora et al., 2016), our study revealed that when the second PCR contained 

the Illumina-tagged primers 349F-519R, almost no reads apart from the stool samples were retrieved 

(Suppl. Table 4a; available on request).  

Ten out of the 24 different primer combinations allowed the detection of archaeal signatures in all 

analyzed samples (sample set 1). The results of two of the primer pair combinations were 

outstanding regarding the number of reads and observed RSVs identified in each sample 

(Supplementary Table 4a; available on request), namely primer pair 344F-1041R/519F-806R and 

344F-1041R/519F-785R. The comparison of the alpha diversity (based on Shannon index) indicated 

that the archaeal diversity uncovered with the primer pair 344F-1041R/519F-806R was significantly 

higher than the one obtained with the primer pair combination 344F-1041R/519F-785R (Fig. 3), 

which was thus considered superior. 
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To further test and validate the use of the primer pair 344F-1041R/519F-806R, we selected 29 

samples from different body sites (nose, oral, appendix, stool, skin; sample set 2), resulting in overall 

85 archaeal RSVs from 6 different phyla. We were able to confirm body-site specificity through  PCoA 

and RDA analysis (Koskinen et al., 2017), with the gastrointestinal tract (stool and appendix samples) 

being dominated by euryarchaeal communities, the oral samples dominated by archaeal 

communities from the Euryarchaeota phylum but different from the ones found in the 

gastrointestinal tract and the nose dominated by Euryarchaeota and Thaumarchaeota signatures. 

The skin revealed a mix of Euryarchaeota, Thaumarchaeota, Aenigmarchaeota, and, in very low 

amounts also Crenarcheota, confirming previous results (Koskinen et al., 2017; Moissl-Eichinger et 

al., 2017; Tsai et al., 2016).  

According to the obtained results we recommend the use of the primer pair combination 344F-

1041R/519F-806R to identify and characterize archaeal communities within human samples, even 

though the second primer pair 519F-806R is a universal primer pair according to the in silico results. 

Although this led to retrieval of not only archaeal reads, but also reads classified within Bacteria and 

Eukarya which had to be filtered bioinformatically, this procedure proved superior to all the other 

primer pairs tested in identifying archaeal signatures in the analyzed samples.  

Another issue we addressed in this study is the need for a quantitative assay to determine the ratio 

of archaeal and bacterial signatures in human samples. Published qPCR methodology focuses on 

specific taxa, such as Methanobrevibacter, Methanosphaera and Methanomassiliicoccus (for more 

details see Table S1 in (Koskinen et al., 2017)), or has not yet been fully evaluated for various human 

samples (Hunter et al., 2002; Probst et al., 2013; Takai and Horikoshi, 2000). Our results revealed, 

that two qPCR approaches (SYBR 344aF-517uR and TaqMan 331bF-797R with probe 528bR) were 

unsuitable, due to the high detection limit, low efficiency, extraordinary long run times and potential 

over-estimation of the archaeal signatures. Therefore, we recommend the use of a SYBR approach 

based on primer pair 806aF-958aR, as this method allowed the quantification of archaeal 16S rRNA 
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genes in stool, appendix and nose samples, and had a low detection limit of 480 copies 16S rRNA 

genes/ µl. 

In conclusion, we have shown that the choice of the archaeal primer pair influences substantially the 

perspective of the obtained archaeal community in the analyzed samples. Therefore, for future 

comparisons between studies focused on exploring and characterizing the archaeal community in 

human samples using amplicon sequencing approach, it should be considered to make use of the 

same, standardized methodology. For this we recommend the use of a nested approach with the 

primer pair 344f-1041R for the first PCR, followed by a second PCR with the primer pair 519F-806R. 

Furthermore, for quantifying the number of archaeal 16S rRNA gene copies we recommend the use 

of the SYBR approach based on the primer pair 806aF-958aR.  

 

Conclusions 

The optimized and evaluated protocol for archaeal signature detection and quantification can now 

be used for all human samples and might also be useful for samples from other environments and 

holobionts, such plants or animals.  
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