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Abstract 

We have extended a previous spiking neural network model of prefrontal cortex with fast Hebbian 

plasticity to include also interactions between short-term and long-term cortical memory stores. We 

investigated how prefrontal cortex could bind, maintain and update multi-modal long-term memory 

representations by simulating three cortical patches in macaque brain, corresponding to networks in 

prefrontal cortex together with visual and auditory temporal cortical areas. 

Our simulation results demonstrate how simultaneous, brief multi-modal memory cues could build a 

temporary joint memory representation linked via prefrontal cortex. The latter can then activate 

spontaneously and thereby reactivate the associated long-term representations. Cueing one long-

term memory item rapidly pattern-completes the associated un-cued item via prefrontal cortex. The 

short-term memory network flexibly updates as new stimuli arrive thereby gradually over-writing 

older representations. In a wider context, this working memory model suggests a novel explanation 

for the ‘neural binding problem’, a long-standing and fundamental issue in cognitive neuroscience. 

Introduction  

By working memory (WM) we typically understand a flexible but volatile kind of memory capable of 

holding a small number of items over shorter time spans. It brings task relevant information in long-

term memory (LTM) on-line and enables acting beyond the immediate here and now. WM is a key 

component in cognition and is often affected early on in neurological and psychiatric conditions, e.g. 

Alzheimer’s disease and schizophrenia1. Prefrontal cortex (PFC) has repeatedly been implicated as a 

key neural substrate for WM in humans and non-human primates2,3. 

For thirty years the prevalent theory of WM has been that of persistent activity in PFC recurrent 

networks, proposed by Goldman-Rakic and colleagues4,5 and supported by computational models6,7. 

Although there is solid support for delay activity in PFC during WM, recent experimental 

observations, especially of the intermittent and bursty nature of this activity8,9 and “activity silent 

working memory”10 have cast doubt on persistent activity as the main neural mechanism underlying 

WM.  
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Alternative theories and models of WM have favored Hebbian synaptic plasticity as a key underlying 

neural mechanism. Early computational models employing non-spiking neural units demonstrated a 

proper WM function11–15, but required rapid induction and expression of plasticity, judged 

incompatible with contemporary experimental observations on long-term potentiation (LTP). In 

2008, Mongillo et al.16 proposed a “synaptic working memory theory” and demonstrated a spiking 

network model of cortex that displayed WM maintenance in the form of self-sustained bursty 

activity. This model relied on non-Hebbian forms of synaptic plasticity and met the timing 

constraints. However, its synaptic weight changes are independent of postsynaptic activity and can 

thus only facilitate already encoded memory items, which precludes encoding of novel memories. 

Building on an earlier abstract model18, we recently modeled a human word-list learning task using a 

spiking short-term memory (STM) model of PFC employing fast Hebbian synaptic plasticity19. We 

demonstrated our model’s capability to encode novel items, to quantitatively reproduce key 

characteristics of human cued and non-cued recall, and to reproduce several important network 

dynamic features of memory replay and recall.  To function in this context, synaptic plasticity needs 

to operate on a time-scale of a few hundred milliseconds and recent experiments have demonstrated 

the existence of such fast forms of Hebbian synaptic plasticity, e.g. short-term potentiation (STP) 20–

22, which lends credibility to this type of mechanism. 

The new WM theory presented here builds on this previous work but extends it in a new direction by 

integrating STM in PFC with multi-modal LTM in parieto-temporal cortical areas. Fast Hebbian 

synaptic plasticity is a critical player also in this dynamic interaction. We implement this theory in a 

spiking neural network model and demonstrate how WM emerges as a tight co-operation between 

STM and LTM. This allows for one-shot encoding, maintenance and recall of memory representations 

as well as flexible updating of which ones are currently facilitated or on-line. Interestingly, this novel 

theory and model also unifies WM with the classical phenomenon of “neural binding” and suggests 

an explanation for fundamental perceptual and cognitive processes like feature binding and role 

binding. 
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Results 

Figure 1. Schematic of modeled connectivity within and across representative STM and LTM areas in macaque. The model organizes cells 

into grids of nested hypercolumns (HC) and minicolumns (MC), sometimes referred to as macro columns, and “functional columns” 

respectively. STM features 25 HC, whereas LTMa and LTMb both contain 16 simulated HC. Each network spans several hundred mm² and 

the simulated columns constitute a spatially distributed subsample defined by conduction delays. Pyramidal cells in the simulated 

supragranular layers form connections both within and across columns. STM features an input layer 4 that shapes the input response of 

cortical columns, whereas LTM is instead stimulated directly to cue the activation of previously learned long-term memories. Additional 

corticocortical connections are sparse (<1% connection probability) and implemented with terminal clusters and specific laminar 

connection profiles. The connection schematic illustrates laminar connections realizing a direct supragranular forward-projection, as well 

as a common supragranular back-projection. Layer 2/3 recurrent connections in STM and corticocortical backprojections feature fast 

Hebbian plasticity. For an in-depth model description, including the columnar microcircuits, please refer to Online Methods and 

Supplementary Figure 1. 

Our model is particularly concerned with the study of multi-modal memory binding and interactions 

across the cortical hierarchy. To this end, we simulate three cortical patches with significant 

biophysical detail: an STM and two LTM networks (LTMa, LTMb), representing PFC and temporal 

visual and auditory cortical areas respectively (Figure 1). The computational network model used 

here represents a detailed modular cortical microcircuit architecture in line with previous models23,24. 

In particular, the current model is built upon a recent STM model19. The sub-sampled associative 

cortical layer 2/3 network of that model was sub-divided into layers 2, 3A, and 3B and extended with 

an input layer 4 and corticocortical connectivity to LTM stores in temporal cortical regions. This large, 

composite model synthesizes many different kinds of cortical data and produces complex output 

dynamics. We specifically focus on the dynamics of memory specific subpopulations in the 

interaction of STM and LTM stores. 

We introduce the operation of the corticocortical model in several steps. First, we take a brief look at 

background activity and active memory states in isolated cortical networks of this kind to familiarize 

the reader with some of its dynamical properties. Second, we describe the effect of memory 

activation on STM with and without plasticity. Third, we add the plastic backprojections from STM to 

LTM and monitor the encoding and maintenance of several memories in the resulting STM-LTM loop. 

We track the evolution of acquired cell assemblies with shared pattern-selectivity in STM and show 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 25, 2018. ; https://doi.org/10.1101/334821doi: bioRxiv preprint 

https://doi.org/10.1101/334821
http://creativecommons.org/licenses/by/4.0/


4 
 

their important role in WM maintenance (a.k.a. delay activity). We then demonstrate that the 

emerging WM network system stays plastic and capable of updating its maintained set of memories. 

Finally, we simulate multi-modal memory binding and analyze its dynamical correlates. We explore 

temporal characteristics of network activations and cross-cortical delays during WM encoding, 

maintenance, and cue-driven associative recall of memory pairs associated in this manner.  

 
Figure 2. Basic Network behavior in spike rasters and population firing rates. A: Global oscillations in the alpha/beta range 
characterize the ground state of both STM (top) and LTM (bottom) in the absence of attractor activity. The underlying spike 
raster shows layer 2/3 activity of one MC from each HC (separated by grey horizontal lines) in the simulated network. B: Cued 
LTM memory activations express as fast oscillation bursts, organized into a theta-like cycle of activation. The underlying spike 
rasters shows layer 2/3 activity of the activated MC in each HC, revealing spatial synchronization. The brief stimulus is a 
memory specific cue. C: LTM-to-STM forward dynamics as shown in population firing rates of STM and LTM activity following 
LTM-activation through a 50 ms targeted stimulus at time 0. LTM-driven activations of STM are characterized by a feedforward 
delay (FF). Shadows indicate the standard deviation of 100 peri-stimulus activations in LTM (blue) and STM with plasticity 
(orange) and without plasticity (dark orange, dashed). Horizontal bars indicate the activation half-width (Online Methods). Onset 
is denoted by vertical dashed lines. The LTM stimulus and activation of plasticity is denoted underneath. D: Subsampled spike 
raster of STM (top) and LTM (middle) during forward activation of the untrained STM by five different LTM memory patterns, 
triggered via specific memory cues in LTM at times marked by the vertical dashed lines. Bottom spike raster shows LTM layer 
2/3 activity of one selective MC per activated pattern (colors indicate different patterns). Top spike raster shows layer 2/3 activity 
of one HC in STM. STM spikes are colored according to each cells dominant pattern-selectivity (based on the memory pattern 
correlation of individual STM cell spiking during initial pattern activation). Bottom: The five LTM stimuli and modulation of STM 
plasticity. 

Background activity and Activated memory  

In the untrained network, fluctuations in membrane voltages manifest a ground state with low-rate, 

irregular, asynchronous spiking that transitions into a global oscillation in the alpha/beta range at 

medium input levels (Figure 2-A). This is largely an effect of fast feedback inhibition from local basket 

cells (Supplementary Figure 1), high connection density within MCs, and low latency local spike 

transmission.25  If the network has been trained with structured input so as to encode memory (i.e. 

attractor states), a specific cue (Online Methods) can trigger memory item reactivations accompanied 

by fast oscillations modulated by an underlying slow oscillation in the theta range 26,27 (Figure 2-B). 
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The spiking activity of memory activations (a.k.a. attractors) is short-lived due to neural adaptation 

and synaptic depression. When unspecific background excitation is very strong, this can result in a 

random walk across stored memories.   

LTM-to-STM Forward Dynamics  

We now consider cued activation of several memories embedded in LTM. Each HC in LTM features a 

selectively coding MC for any given memory pattern that activate synchronously in theta-like cycles 

containing several fast oscillation bursts (Figure 2-B). Five different LTM memory patterns are 

triggered by brief cues, accompanied by an upregulation of STM plasticity, see Figure 2-D (bottom).  

To indicate the spatio-temporal structure of evoked activations in STM, we also show a simultaneous 

subsampled STM spike raster (Figure 2-D top). STM activations are sparse (ca 5%), yet nearby cells (in 

the same MC) often fire together (even during background activity, Figure 2-A). The distributed, but 

patchy character of the STM response to memory activations (Figure 2-D top) is shaped by branching 

forward-projections from LTM layer 3B cells, which tend to activate close-by cells. STM input layer 4 

receives half of these corticocortical connections and features very high fine-scale specificity in its 

projections to layer 2/3 pyramidal neurons, which furthers recruitment of local clusters with shared 

selectivity. STM cells initially fire less than those in LTM because the latter received a brief, but 

strong activation cue and feature strong recurrent weights between cells in embedded memory 

patterns. STM spikes in Figure 2-D are colored according to the cells dominant memory pattern 

selectivity, which reveals that STM activations are mostly non-overlapping as well. Although MC 

activity is not exclusive to any given input pattern (unlike the strictly orthogonal LTM patterns), 

nearby cells often have similar pattern selectivity. This is not only an effect of competition via basket 

cell feedback inhibition, but also a result of short-term dynamics, such as neural adaptation and 

synaptic depression. Neurons that were recently activated by a strong, bursting input from LTM are 

refractory and thus less prone to spike again for some time thereafter (𝜏𝑟𝑒𝑐  and 𝜏𝐼𝑤
, Supplementary 

Table 1), further reducing the likelihood of activating overlapping STM activation patterns. Figure 2-C 

shows a peri-stimulus population firing rate of both networks (mean across 100 trials with five 

triggered memories each). There is a bottom-up response delay between stimulus onset at t=0 and 

LTM activation, as well as a substantial forward delay (which we will scrutinize in more detail later 

on). Oscillatory activity in STM is lower than LTM mostly because the untrained STM lacks strong 

recurrent connections, is thus less excitable than LTM in our model, and therefore does not trigger its 

basket cells as quickly (the main drivers of fast oscillations in our model). STM oscillations and burst 

amplitude speed up within a few seconds as new cell assemblies become stronger (e.g. Figure 3-A 

and Supplementary Figure 2).  As seen in Figure 2-B, bursts of co-activated MCs in LTM can become 

asynchronous during activation. Dispersed forward axonal conduction delays further decorrelate this 

gamma-like input to STM. Activating strong plasticity in STM (𝜅 = 𝜅𝑝,  Online Methods and 

Supplementary Table 1) has a noticeable effect on the amplitude of stimulus-locked oscillatory STM 

activity after as little as 100 ms (cf. Figure 2-C, STM). 
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Multi-item Working Memory 

Figure 3. Encoding and feedback-driven reactivation of LTM. A: Firing rates of pattern-specific subpopulations in STM and LTM during 

encoding and subsequent maintenance of five memories (the first pattern is often not maintained). Just as in the plasticity-modulated 

stimulation phase shown in Figure 2D, five LTM memories are cued via targeted 50 ms stimuli (shown underneath). Plasticity of STM and its 

backprojections is again elevated six-fold during the initial memory activation. Thereafter, a strong noise drive to STM causes spontaneous 

activations and plasticity induced consolidation of pattern-specific subpopulations in STM (lower plasticity, 𝜅 = 1). Backprojections from 

STM cell assemblies help reactivate associated LTM memories. B: Updating of WM. Rapid encoding and subsequent maintenance of a 

second group of memories following an earlier set. The LTM Spike raster shows layer 2/3 activity of one LTM HC (MCs separated by grey 

horizontal lines), the population firing rate of pattern-specific subpopulations across the whole LTM network is seen above. Underneath we 

denote LTM stimuli and the modulation of plasticity in STM and its backprojections. C: STM-to-LTM loop dynamics during a spontaneous 

reactivation event. STM-triggered activations of LTM memories are characterized by a feedback delay and a second peak in STM after LTM 

activations. Horizontal bars at the bottom indicate activation half-width (Online Methods). Onset is denoted by vertical dashed lines. 

In Figure 2-D, we showed emerging pattern-specific subpopulations in STM from feedforward input. 

Modulated STM plasticity allows for the quick formation of rather weak STM cell assemblies from 

one-shot learning. When we include plastic STM backprojections, these assemblies can become an 

index of sorts for specific memories. Their recruitment is temporary, but they can act as top-down 

control signals for memory maintenance and retrieval, as we will see now. By enabling 

backprojections, we can track multiple activated memories in the closed STM-LTM loop. In Figure 3-

A, we show network activity following targeted activation of five LTM memories (Spike raster in 

Supplementary Figure 2). Under an increased unspecific noise-drive (𝑟𝑊𝑀𝑏𝑔
𝐿23 , Supplementary Table 

2), STM cell assemblies, formed during the brief plasticity-modulated stimulus phase (cf. Figure 2D) 

may activate spontaneously. These brief bursts of activity are initially weak and different from the 

theta-like cycles of repeated fast bursting seen in LTM attractor activity. 

 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 25, 2018. ; https://doi.org/10.1101/334821doi: bioRxiv preprint 

https://doi.org/10.1101/334821
http://creativecommons.org/licenses/by/4.0/


7 
 

STM recurrent connections remain plastic (𝜅 = 1) throughout the simulation, so each reactivation 

event further strengthens memory-specific cell assemblies in STM. As a result, there is a noticeable 

ramp-up in the strength of STM pattern-specific activity over the course of the delay period (cf. 

increasing burst length and amplitude in Figure 3-A, or Supplementary Figures 3, 5). STM 

backprojections are also plastic and thus acquire memory specificity from STM-LTM co-activations, 

especially during the initial stimulation phase. Given enough STM cell assembly firing, their sparse 

but potentiated backprojections can trigger associated memories. Weakly active assemblies may fail 

to do so. In the example of Figure 3-A,  we can see a few early STM reactivations that are not 

accompanied (or quickly followed) by a corresponding LTM pattern activation (of the same color) in 

the first two seconds after the plasticity-modulated stimulation phase. When LTM is triggered, there 

is a noticeable feedback delay (Figure 3-C), which we will scrutinize later on. 

Cortical feedforward and feedback pathways between LTM and STM form a loop, so each LTM 

activation will again feed into STM, typically causing a second peak of activation in STM 40 ms after 

the first (Figure 3-C). The forward delay from LTM to STM, we originally observed in the stimulus-

driven input phase (Figure 2-C) is still evident here in this delayed secondary increase of the STM 

activation following LTM onset, which also extends/sustains the STM activation and helps stabilize 

memory-specific STM cell assemblies and their specificity. This effect may be called auto-

consolidation and it is an emergent feature of the plastic STM-LTM loop in this model. It happens on 

a timescale governed by the unmodulated plasticity time constant (𝜅 = 𝜅𝑛𝑜𝑟𝑚𝑎𝑙,  𝜏𝑝 = 5 𝑠, 

Supplementary Table 1). After a few seconds, the network has effectively stabilized and typically 

maintains a small set of 3-4 activated long-term memories. The closed STM-LTM loop thus 

constitutes a functional multi-item WM. 

A crucial feature of any WM system is its flexibility, and Figure 3-B highlights an example of rapid 

updating. The maintained set of activated memories can be weakened by stimulating yet another set 

of input memories. Generally speaking, earlier items are reliably displaced from active maintenance 

in our model if activation of the new items is accompanied by the same transient elevation of 

plasticity  (𝜅𝑝/𝜅𝑛𝑜𝑟𝑚𝑎𝑙 , Supplementary Table 1) used during the original encoding of the first five 

memories (Corresponding spike rasters and population firing rates are shown in Supplementary 

Figures 3, and 4). 

In line with earlier results19, cued activation can usually still retrieve previously maintained items. The 

rate of decay for memories outside the maintained set depends critically on the amount of noise in 

the system, which erodes the learned associations between STM and LTM neurons as well as STM 

cell assemblies. We note that such activity-dependent memory decay is substantially different from 

time-dependent decay, as in Mi et al.29. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 25, 2018. ; https://doi.org/10.1101/334821doi: bioRxiv preprint 

https://doi.org/10.1101/334821
http://creativecommons.org/licenses/by/4.0/


8 
 

Multi-modal, Multi-item Working Memory 

Figure 4. Population firing rates of networks and memory-specific subpopulations during three different modes of network activity : 

Top-Half: Exemplary activation of three memories (blue, green, red respectivly) in STM (1st row), LTMa (2nd row), and LTMb (3rd row) during 

three different modes of network activity: The initial binding of pairs of LTM memory activations in STM (left column), WM Maintenance 

through STM-driven activations of bound LTM memory pairs (middle column), and cue-driven associative recall of previously paired stimuli 

(right column). Bottom-Half: Multi-trial peri-stimulus activity traces from the three cortical patches across 100 trials (495 traces, as each 

trial features 5 activated and maintained LTM memory pairs and very few failures of paired activation). Shaded areas indicate a standard 

deviation from the underlying traces. Vertical dashed lines denote mean onset of each network’s activity, as determined by activation half-

width (Online Methods), also denoted by a rectangle underneath the traces. Error bars indicate a standard deviation from activation onset 

and offset. Mean peak activation is denoted by a triangle on the rectangle, and shaded arrows denote targeted pattern stimulation of a 

network. As there are no external cues during WM maintenance (aka delay period), we use detected STM activation onset to average firing 

rate traces of 5168 STM-paced LTM-reactivations across trials and reactivation events. White arrows annotate feedforward (FF) and 

feedback (FB) delay, as defined by respective network onsets. 

Next, we explore the ability of the closed STM-LTM loop system to flexibly bind co-active pairs of 

long-term memories from different modalities (LTMa and LTMb respectively). As both LTM 

activations trigger cells in STM via feedforward projections, a unique joint STM cell assembly with 

shared pattern-selectivity is created. Forward-activations include excitation and inhibition and 

combine non-linearly with each other (see Online Methods) and with prior STM content. Figure 4 

illustrates how this new index then supports WM operations, including delay maintenance through 

STM-paced discrete co-activation events and cue-driven associative pair completion. The three 

columns of Figure 4 illustrate three fundamental modes of the closed loop system: stimulus driven 

binding, WM maintenance, and associative recall. The top three rows show sampled activity of a 

single trial (see also Supplementary Figures 5,6), whereas the bottom row shows multi-trial 

averages. 

During stimulus-driven binding, we co-activate memories from both LTM’s. As before, when we used 

only one LTM network, this involves brief 50 ms cues that trigger activation of corresponding 

memory patterns. The multi-trial (and multi-pattern) average of peri-stimulus activations reveals a 45 

± 7.3 ms attractor activation delay, followed by a 43 ± 7.8 ms feedforward delay (about half of which 
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is explained by the spatial distance between LTM and STM) from the onset of the two LTM 

activations to the onset of the input-specific STM response (Figure 5 top-left and bottom-left). 

During WM maintenance, a 10 s delay period, paired LTM memories reactivate together. Onset of 

these paired activations is a lot more variable than during cued activation, mostly because the driving 

STM cell assemblies are of variable size and strength, which has an impact on the wider feedback 

delay distribution, with mean 41.5 ± 15.3 ms.  

Following the maintenance period, we test the memory system’s ability for associative recall. To this 

end, we cue LTMa, again using a targeted 50 ms cue for each memory, and track the systems 

response across the STM-LTM loop. We compute multi-trial averages of peri-stimulus activations 

during recall testing (Figure 4 bottom-right). Following cued activation of LTMa, STM responds with 

the related joint cell assembly as the input is strongly correlated to learned inputs from the 

simultaneous activation with LTMb earlier on. Similar to the mnemonic function of an index, the 

completed STM pattern then triggers the associated memory in LTMb through its backprojections. 

STM activation now extends far beyond the transient activity of LTMa because both the STM 

recurrent connectivity and then the STM-LTMb backprojection re-excite it. Temporal overlap 

between associated LTMa and LTMb memory activations peaks around 125 ms after the initial 

stimulus to LTMa. 

We collect distributions of feedforward and feedback delays during associative recall (Figure 5). To 

facilitate a more immediate comparison with biological data we also computed the Bottom-Up and 

Top-Down response latency of the model in analogy to Tomita et al.30. Their study explicitly tested 

widely held beliefs about the executive control of PFC over ITC in memory retrieval. To this end, they 

identified and recorded neurons in ITC of monkeys trained to memorize several visual stimulus-

stimulus associations. They employed a posterior-split brain paradigm to cleanly disassociate the 

timing of the bottom-up (contralateral stimuli) and top-down response (ipsilateral stimuli) in 43 

neurons significantly stimulus-selective in both conditions and observed that the latency of the top-

down response (178 ms) was longer than that of the bottom-up response (73 ms). 

Our simulation is analogous to this experimental setup with respect to some key features, such as 

the spatial extent of memory areas (about 289 mm²) and inter-area distances (40 mm cortical 

distance between PFC and ITC). These measures heavily influence the resulting connection delays 

and time needed for information integration. In analogy to the posterior-split brain experiment our 

model’s LTMa and LTMb are unconnected. The display of a cue in one hemi-field in the experiment 

corresponds to the LTMa-sided stimulation of an associated memory pair in the model. This 

arrangement forces any LTM interaction through STM (representing PFC), and allows us to treat the 

cued LTMa memory activation as a Bottom-up response, whereas the much later activation of the 

associated LTMb representation is related to the Top-down response in the experimental study. 

Figure 5 shows the distribution of these latencies in our simulations, where we also marked the 

mean latencies measured by Tomita et al. The mean of our bottom-up delay (72.9 ms) matches the 

experimental data (73 ms), whereas the mean of the broader top-down latency distribution (155.2 

ms) is a bit lower than in the monkey study (178 ms). Of these 155.2 ms, only 48 ms are explained by 

the spatial distance between networks, as verified by a fully functional alternative model with 0 mm 

distance between networks. 
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Figure 5. Distributions of key delays in the trained 

system during associative recall, averaged over 100 

trials with 5 paired stimuli each: Top-Left: Feedforward 

delays distribution, as defined by the temporal delay 

between LTMa onset and STM onset (as shown in 

Figure 4, Bottom-right). Top-Right: Bottom-up delay 

distribution, as defined by the temporal delay between 

stimulation onset and LTMa peak activation. The red 

line denotes the mean bottom-up delay, as measured 

by Tomita et al.30. Bottom-Left: Feedback delays 

distribution, as defined by the temporal delay between 

STM onset and LTMb onset (measured by half-width, as 

shown in Figure 4, Bottom-right). Bottom-Right: Top-

Down delay distribution, as defined by the temporal 

delay between stimulation onset and LTMb peak 

activation. The red line denotes the mean bottom-up 

delay, as measured by Tomita et al.30.  

 

 

 

 

Discussion  

We have presented a novel theory for WM and the design and evaluation of a spiking neural network 

WM model featuring STM (PFC) and LTM components (parieto-temporal cortex) as well as fast 

Hebbian synaptic plasticity. We demonstrated how single memory items can be encoded by one-shot 

learning and how PFC rapidly enhances synaptic connections intrinsically as well as those targeting 

LTM representations, which are thereby “brought on-line”. The PFC cell assembly serves as a 

temporary index into LTM in a similar manner as suggested by the “Hippocampal Indexing Theory” 

for the relation between hippocampus and neocortex in episodic memory and memory 

consolidation17,31. When a pair of LTM items are bound together by being simultaneously indexed in 

this manner, activating one will also activate the other indirectly via PFC with a short latency. We 

further demonstrated that this kind of WM is readily updated such that as new items are encoded, 

old ones are gradually over-written. 

Recall dynamics in the model presented is in most respects identical to our previous cortical 

associative memory models32. Any activated memory item, whether randomly or specifically 

triggered, is subject to known and previously well characterized associative memory dynamics, such 

as pattern completion, rivalry, bursty reactivation dynamics, oscillations in different frequency bands, 

etc.28–30. Moreover, sequential learning and recall could readily be incorporated in the model33. This 

could for example support encoding of sequences of items in WM rather than unrelated single ones, 

resulting in a reactivation dynamic reminiscent of the “phonological loop”34.  

The Case for Hebbian Plasticity 

The underlying mechanism of our model is fast Hebbian plasticity, not only in the intrinsic PFC 

connectivity, but also in the projections from PFC to LTM stores. The former has some experimental 

support20,21,35,36 whereas the latter remains a prediction of the model. Dopamine D1 receptor (D1R) 
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activation by dopamine (DA) is strongly implicated in reward learning and synaptic plasticity 

regulation in the basal ganglia37. In analogy we propose that D1R activation is also critically involved 

in the synaptic plasticity intrinsic to PFC and in projections to LTM stores, which would also explain 

prominent WM effects of PFC DA level manipulation38,39. In our model, 𝜅 represents the level of DA-

D1R activation, which in turn regulates its synaptic plasticity. We typically increase kappa 4-8 fold 

temporarily in conjunction with LTM stimulation and WM encoding, in a form of attentional gating. 

Larger modulation limits WM capacity to 1-2 items, while less modulation diminishes the strength of 

cell assemblies beyond what is necessary for reactivation and LTM maintenance. 

When the synaptic plasticity WM hypothesis was first presented and evaluated, it was based on  

synaptic facilitation16,26. However, such non-Hebbian plasticity is only capable of less specific forms of 

memory. Activating a cell assembly, comprising a subset of neurons in an untrained STM network, 

would merely facilitate all outgoing synapses from active neurons. Likewise, an enhanced elevated 

resting potential resulting from intrinsic plasticity would make the targeted neurons more excitable. 

In either case, there would be no coordination of activity specifically within the stimulated cell 

assembly. Thus, if superimposed on an existing LTM, such forms of plasticity may well contribute to 

WM, but are by themselves not capable of supporting encoding of novel memory items or the multi-

modal binding of already existing ones. In our previous paper19 we showed that fast Hebbian 

plasticity in the form of STP20 allows such one-shot encoding of new STM items. In the current 

extended model, by also assuming the same kind of plasticity in backprojections from PFC to parieto-

temporal LTM stores, PFC can also bind and bring on-line previously unassociated LTM items across 

multiple modalities. 

Our implementation of a fast Hebbian plasticity reproduces a remarkable aspect of STP: it decays in 

an activity-dependent manner35,36. Its decay is not noticeably time-dependent, and silence preserves 

synaptic information. The typically detrimental effects of distractors on performance in virtually all 

kinds of WM tasks suggest an activity-dependent update, as does the duration of “activity-silent 

WM” in recent experiments10. Although we used the BCPNN learning rule to reproduce these effects, 

we expect that other Hebbian learning rules allowing for neuromodulated fast synaptic plasticity 

could give comparable results.  

Experimental support and Testable predictions 

Our model is built from available relevant microscopic data on neural and synaptic components as 

well as modular structure and connectivity of the targeted cortical areas in macaque monkey. When 

challenged with specific stimulus items, the network so designed generates a well-organized 

macroscopic dynamic working memory function, which can be interpreted in terms of manifest 

behavior and validated against cognitive experiments and data. 

Unfortunately, the detailed neural processes and dynamics of our new model are not easily 

accessible experimentally and it is therefore quite hard to find direct and quantitative results to 

validate it. Yet, in analyzing our resulting bottom-up and top-down delays, we drew an analogy to a 

split-brain experiment30 because of its clean experimental design (even controlling for subcortical 

pathways) and found remarkably similar temporal dynamics in our highly subsampled cortical model. 

The timing of inter-area signals also constitutes a testable prediction for multi-modal memory 

experiments. Furthermore, reviews of intracranial recordings conclude that theta band oscillations 

play an important role in long-range communication during successful retrieval43. With respect to 
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theta band oscillations in our model, STM leads the rest of cortex during maintenance, engages bi-

directionally during recall (due to the STM-LTM loop), and lags during stimulus-driven encoding and 

LTM activation, reflecting experimental observations44. These effects can be explained by our model 

architecture, which imposes delays due to the spatial extent of networks and their distances from 

each other. Fast oscillations in the gamma band, while often theta-nested, are strongly linked to local 

processing and activated memory items in our model, also matching experimental findings43. Local 

frequency coupling is abundant with significant phase-amplitude coupling (e.g. Figure 2B), and was 

well characterized in related models27. 

The most critical requirement and thus prediction of our theory and model is the presence of fast 

Hebbian plasticity in the PFC back-projections to parieto-temporal memory areas. Without such 

plasticity, our model cannot explain STM-LTM binding. This is likely to co-exist with neuromodulatory 

control over that plasticity, likely with DA and D1R activation involvement. Since the STP decays with 

activity a high noise level could be an issue since it could shorten WM duration (see The Case for 

Hebbian Plasticity). The evaluation of this requirement is hampered by little experimental evidence 

and a general lack of experimental characterization of the synaptic plasticity in long-range 

corticocortical projections.  

Our model also makes specific predictions about corticocortical long-range connectivity. For 

example, as few as six active synapses (see Online Methods) onto each coding pyramidal neuron is 

sufficient to transfer specific memory identities across the cortical hierarchy and to support 

maintenance and recall.  

Finally, our model suggests the occurrence of a double peak of frontal activation in executive control 

of LTM memories (see STM activity during WM Maintenance in Figure 4). The first one originates 

from the top-down control signal itself, and the second one is a result of corticocortical reentry and a 

successful activation of an associated item in LTM. As such, the second peak should also be 

correlated to successful memory maintenance or associative recall. 

  

Figure 6. Feature binding and variable binding via PFC. A: Feature Binding: When a red triangle followed by a blue star is shown and 

attended, these shape-color bindings are formed by fast Hebbian plasticity via PFC to form a composite cell assembly. It supports pattern 

completion meaning that stimulation with shape will trigger the color representation and vice versa. B: Name-Object binding: Initially the 

representation of “parrot” exists in LTM comprising symbolic and sub-symbolic components. When it is for the first time stated that 

“Charlie is my parrot”, the name “Charlie” is bound reciprocally by fast Hebbian plasticity via PFC to the parrot representation, thus 

temporarily extending the composite “parrot” cell assembly. Pattern completion now allows “Charlie” to trigger the entire assembly and 

“flying” or the sight of Charlie to trigger “Charlie”. If important enough or repeated a couple of times this association could consolidate in 

LTM. 
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The Binding Problem 

The classical so called binding problem refers to the brain’s ability to temporarily connect features or 

items previously not connected by earlier experience and learning45. The fast Hebbian plasticity 

proposed here as a mechanism for WM offers without any modification an additional plausible 

neural mechanism that solves the binding problem. For instance, visual feature binding refers to the 

instant association of for example shape and color of multiple objects without mixing them up during 

recall (Figure 6-A). Suggested neural mechanisms include temporal binding by synchronization46 or 

feature integration47. As an alternative solution, the theory presented here suggests that the joint 

index to LTM areas formed in PFC/STM during presentation of respective stimulus pairs, serves to 

bind shape and color in a specific manner thus avoiding any confusion. Filling roles with instances, as 

in “Charlie is my parrot”, is a second form of variable-value binding (Figure 6-B). This and other forms 

of neural binding underlie even more complex functions in human cognition including logical 

reasoning48. Here as well, the joint STM index provides effective binding and its flexible updating 

prevents confusion in a case when the name of the boss is also Charlie.  That PFC may be involved in 

the binding process is supported by the observation that temporary PFC inactivation in humans 

affects feature binding49, and that successful feature binding requires attention50, i.e. that the 

attentional gate is opened allowing for enhanced plasticity via dopaminergic innervation. Gamma 

band oscillations, frequently implicated when binding is observed, are also a prominent output of our 

model51. 

Conclusions 

Our simulations have demonstrated the versatile WM properties of a spiking neural network model 

composed of integrated STM and LTM components and we have partly connected them to existing 

experimental data. Although our model is still quite abstract, it nevertheless offers a biologically 

plausible mechanistic understanding of WM and of neural binding, which connects microscopic 

processes with macroscopic observations and function in a way that only computational models can 

do. While we applied this model to macaque, it is quite generic and we expect model findings to 

apply also to mammals including humans, commensurate with changes in key parameters (cortical 

distances, axonal conductance speeds, etc.). 

WM dysfunction has an outsized impact on mental health, intelligence, and quality of life. Progress in 

mechanistic understanding of function and dysfunction is therefore very important for society. Our 

hope is that our new computational model, which reproduces several important aspects of human 

WM, will trigger many more targeted experiments aimed to evaluate and improve it. More adequate 

models and clarity can help position future research and development appropriately even in the 

clinical and pharmaceutical realm. 
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Online Methods  

Neuron Model 

We use an integrate-and-fire point neuron model with spike-frequency adaptation52 which was 
modified41 for compatibility with a custom-made BCPNN synapse model in NEST through the addition 
of the intrinsic excitability current 𝐼𝛽𝑗

. The model was simplified by excluding the subthreshold 

adaptation dynamics. Membrane potential 𝑉𝑚 and adaptation current are described by the following 
equations: 

𝐶𝑚
𝑑𝑉𝑚

𝑑𝑡
= −𝑔𝐿(𝑉𝑚 − 𝐸𝐿) + 𝑔𝐿Δ𝑇𝑒

𝑉𝑚−𝑉𝑡
Δ𝑇 − 𝐼𝑤(𝑡)−𝐼𝑡𝑜𝑡(𝑡) + 𝐼𝛽𝑗

+ 𝐼𝑒𝑥𝑡  (1) 

𝑑𝐼𝑤(𝑡)

𝑑𝑡
=

−𝐼𝑤(𝑡)

𝜏𝐼𝑤

+ 𝑏𝛿(𝑡 − 𝑡𝑠𝑝)  (2) 

The membrane voltage changes through incoming currents over the membrane capacitance 𝐶𝑚. A 
leak reversal potential 𝐸𝐿 drives a leak current through the conductance 𝑔𝐿, and an upstroke slope 
factor Δ𝑇 determines the sharpness of the spike threshold 𝑉𝑡. Spikes are followed by a reset of 
membrane potential to 𝑉𝑟. Each spike increments the adaptation current by 𝑏, which decays with 
time constant 𝜏𝐼𝑤

. Simulated basket cells feature neither the intrinsic excitability current 𝐼𝛽𝑗
 nor this 

spike-triggered adaptation. 

Besides external input 𝐼𝑒𝑥𝑡 (Stimulation Protocol) neurons receive a number of different synaptic 
currents from its presynaptic neurons in the network (AMPA, NMDA and GABA), which are summed 
at the membrane accordingly: 

𝐼𝑡𝑜𝑡𝑗
(𝑡) = ∑ ∑ 𝑔𝑖𝑗

𝑠𝑦𝑛(𝑡) (𝑉𝑚𝑗
− 𝐸𝑖𝑗

𝑠𝑦𝑛
) = 𝐼𝑗

𝐴𝑀𝑃𝐴(𝑡) + 𝐼𝑗
𝑁𝑀𝐷𝐴(𝑡) + 𝐼𝑗

𝐺𝐴𝐵𝐴(𝑡)

𝑖𝑠𝑦𝑛

           (3) 

Synapse Model 

Excitatory AMPA and NMDA synapses have a reversal potential 𝐸𝐴𝑀𝑃𝐴 = 𝐸𝑁𝑀𝐷𝐴, while inhibitory 
synapses drive the membrane potential toward 𝐸𝐺𝐴𝐵𝐴. In addition to BCPNN learning (next Section), 
plastic synapses are also subject to synaptic depression (vesicle depletion) according to the Tsodyks-
Markram formalism53: 

𝑑𝑥𝑖𝑗
𝑑𝑒𝑝

𝑑𝑡
=

1−𝑥𝑖𝑗
𝑑𝑒𝑝

𝜏𝑟𝑒𝑐
− 𝑈𝑥𝑖𝑗

𝑑𝑒𝑝 ∑ 𝛿(𝑡 − 𝑡𝑠𝑝
𝑖 − 𝑡𝑖𝑗𝑠𝑝 )          (4) 

The fraction of synaptic resources available at each synapse 𝑥𝑖𝑗
𝑑𝑒𝑝

 is depleted by a synaptic utilization 

factor (𝑈) with each spike transmission and recovers with 𝜏𝑟𝑒𝑐 back towards its maximum value of 1. 

Every presynaptic input spike (at 𝑡𝑠𝑝
𝑖  with transmission delay 𝑡𝑖𝑗) thus evokes a transient synaptic 

current through a change in synaptic conductance that follows an exponential decay with time 

constants 𝜏𝑠𝑦𝑛 depending on the synapse type (𝜏𝐴𝑀𝑃𝐴 ≪   𝜏𝑁𝑀𝐷𝐴). 

 𝑔𝑖𝑗
𝑠𝑦𝑛(𝑡) = 𝑥𝑖𝑗

𝑑𝑒𝑝(𝑡)𝑤𝑖𝑗
𝑠𝑦𝑛

𝑒−
𝑡−𝑡𝑖−𝑡𝑖𝑗

𝜏𝑠𝑦𝑛 𝐻(𝑡 − 𝑡𝑠𝑝
𝑖 − 𝑡𝑖𝑗)          (5) 

𝐻(·) denotes the Heaviside step function, and  𝑤𝑖𝑗
𝑠𝑦𝑛

 is the peak amplitude of the conductance 

transient, learned by the following Spike-based BCPNN Learning Rule.  
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Spike-based BCPNN Learning Rule 

Plastic AMPA and NMDA synapses are modeled to mimic short-term potentiation (STP)20 with a 

spike-based version of the Bayesian Confidence Propagation Neural Network (BCPNN) learning 

rule41,54. For a full derivation from Bayes rule, deeper biological motivation, and proof of concept, see 

Tully et al. (2014) and the earlier STM model implementation19.  

Briefly, the BCPNN learning rule makes use of biophysically plausible local traces to estimate 

normalized pre- and post-synaptic firing rates, as well as co-activation, which can be combined to 

implement Bayesian inference because connection strengths and MC activations have a statistical 

interpretation13,17,41. Crucial parameters include the synaptic activation trace Z, which is computed 

from spike trains via pre- and post-synaptic time constants 𝜏𝑧𝑖

𝑠𝑦𝑛
, 𝜏𝑧𝑗

𝑠𝑦𝑛
, which are the same here but 

differ between AMPA and NMDA synapses: 

𝜏𝑧𝑖
𝐴𝑀𝑃𝐴 = 𝜏𝑧𝑗

𝐴𝑀𝑃𝐴 = 5𝑚𝑠,   𝜏𝑧𝑖
𝑁𝑀𝐷𝐴 = 𝜏𝑧𝑗

𝑁𝑀𝐷𝐴 = 100𝑚𝑠        (6) 

The larger NMDA time constant reflects the slower closing dynamics of NMDA-receptor gated 

channels. All excitatory connections are drawn as AMPA and NMDA pairs, such that they feature 

both components. Further filtering of the Z traces leads to rapidly expressing memory traces 

(referred to as P-traces) that estimate activation and coactivation: 

𝜏𝑝

𝑑𝑃𝑖

𝑑𝑡
= 𝜅(𝑍𝑖 − 𝑃𝑖),          𝜏𝑝

𝑑𝑃𝑗

𝑑𝑡
= 𝜅(𝑍𝑗 − 𝑃𝑗),          𝜏𝑝

𝑑𝑃𝑖𝑗

𝑑𝑡
= 𝜅(𝑍𝑖𝑍𝑗 − 𝑃𝑖𝑗)    (7) 

These traces constitute memory itself and decay in a palimpsest fashion. STP decay is known to take 

place on timescales that are highly variable and activity dependent36; see Discussion – The case for 

Hebbian plasticity.  

We make use of the learning rule parameter 𝜅 (Equation 7), which may reflect the action of 

endogenous neuromodulators, e.g.  dopamine acting on D1 receptors, that signal relevance and thus 

modulate learning efficacy. It can be dynamically modulated to switch off learning to fixate the 

network, or temporarily increase plasticity (𝜅𝑝, 𝜅𝑛𝑜𝑟𝑚𝑎𝑙 , Supplementary Table 1 ). In particular, we 

trigger a transient increase of plasticity concurrent with external stimulation. 

Tully et al. 41 show that Bayesian inference can be recast and implemented in a network using the 

spike-based BCPNN learning rule. Prior activation levels are realized as an intrinsic excitability of each 

postsynaptic neuron, which is derived from the post-synaptic firing rate estimate pj and implemented 

in the NEST neural simulator55 as an individual neural current Iβj
with scaling constant βgain   

Iβj
= βgain log(Pj)    (8) 

 Iβj
 is thus an activity-dependent intrinsic membrane current to the neurons, similar to the A-type K+ 

channel 56 or TRP channel 57. Synaptic weights are modeled as peak amplitudes of the conductance 

transient (Equation 5) and determined from the logarithmic BCPNN weight, as derived from the P-

traces with a synaptic scaling constant 𝑤𝑔𝑎𝑖𝑛
𝑠𝑦𝑛

.  

𝑤𝑖𝑗
𝑠𝑦𝑛

= 𝑤𝑔𝑎𝑖𝑛
𝑠𝑦𝑛

log
𝑃𝑖𝑗

𝑃𝑖𝑃𝑗
          (9) 
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In our model, AMPA and NMDA synapses make use of 𝑤𝑔𝑎𝑖𝑛
𝐴𝑀𝑃𝐴 and 𝑤𝑔𝑎𝑖𝑛

𝑁𝑀𝐷𝐴 respectively. The 

logarithm in Equations 8,9 is motivated by the Bayesian underpinnings of the learning rule, and 

means that synaptic weights 𝑤𝑖𝑗
𝑠𝑦𝑛

 multiplex both the learning of excitatory and di-synaptic inhibitory 

interaction. The positive weight component is here interpreted as the conductance of a 

monosynaptic excitatory pyramidal to pyramidal synapse (Supplementary Figure 1, plastic 

connection to the co-activated MC), while the negative component (Supplementary Figure 1, plastic 

connection to the competing MC) is interpreted as di-synaptic via a dendritic targeting and vertically 

projecting inhibitory interneuron like a double bouquet and/or bipolar cell58–61. Accordingly, BCPNN 

connections with a negative weight use a GABAergic reversal potential instead, as in previously 

published models19,23,41. Model networks with negative synaptic weights have been shown to be 

functionally equivalent to ones with both excitatory and inhibitory neurons with only positive 

weights62. 

Code for the NEST implementation of the BCPNN synapse is openly available (see Simulation 

Environment). 

Axonal Conduction Delays 

We compute axonal delays 𝑡𝑖𝑗  between presynaptic neuron i and postsynaptic neuron j, based on a 

constant conduction velocity 𝑉 and the Euclidean distance between respective columns. Conduction 

delays were randomly drawn from a normal distribution with mean according to the connection 

distance divided by conduction speed and with a relative standard deviation of 15% of the mean in 

order to account for individual arborization differences. Further, we add a minimal conduction delay 

𝑡𝑚𝑖𝑛
𝑠𝑦𝑛 of 1.5 ms to reflect not directly modeled delays, such as diffusion of transmitter over the 

synaptic cleft, dendritic branching, thickness of the cortical sheet, and the spatial extent of columns:  

𝑡𝑖𝑗 =  
√(𝑥𝑖−𝑥𝑗)

2
+(𝑦𝑖−𝑦𝑗)

2

𝑉
+ 𝑡𝑚𝑖𝑛

𝑠𝑦𝑛  𝑚𝑠                   𝑡𝑖𝑗  ~ 𝑁(𝑡𝑖𝑗  , .15𝑡𝑖𝑗)         (10) 

 

 
Supplementary Figure 1. Local columnar 
connectivity within STM and LTM. Connection 
probabilities are given by the percentages, 
further details in Supplementary Tables 1 and 3. 
The strength of plastic connections develops 
according to the synaptic learning rule described 
in Spike-based Bayesian Learning. Dashed 
connections are not plastic in LTM (besides the 
STD of Equation 4), but already encode memory 
patterns previously learned through an LTP 
protocol, and loaded before the simulation using 
receptor-specific weights found in 
Supplementary Table 2.   
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STM Network Architecture 

We simulate nHC
STM = 25 HC on a grid with spatial extent of 17x17 mm. This spatially distributed 

network of columns has sizable conduction delays due to the distance between columns and can be 

interpreted as a spatially distributed subsampling of columns from the extent of dorsolateral PFC 

(such as BA 46 and 9/46, which also have a combined spatial extent of about 289 mm² in macaque). 

Each of the non-overlapping HCs has a diameter of about 640 µm, comparable to estimates of 

cortical column size63, contains 24 basket cells, and its pyramidal cell population has been divided 

into twelve functional columns (MC). This constitutes another sub-sampling from the roughly 100 MC 

per HC when mapping the model to biological cortex. We simulate 20 pyramidal neurons per MC to 

represent roughly the layer 2 population of an MC, 5 cells for layer 3A, 5 cells for layer 3B, and 

another 30 pyramidal cells for layer 4, as macaque BA 46 and 9/46 have a well-developed granular 

layer64. The STM model thus contains about 18.000 simulated pyramidal cells in four layers (although 

layers 2, 3A, and 3B are often treated as one layer 2/3).  

STM Network Connectivity 

The most relevant connectivity parameters are found in Supplementary Tables 1-3. Pyramidal cells 

project laterally to basket cells within their own HC via AMPA-mediated excitatory projections with a 

connection probability of 𝑝𝑃−𝐵, i.e. connections are randomly drawn without duplicates until the 

target fraction of all possible pre-post connections exist. In turn, they receive GABAergic feedback 

inhibition from basket cells (𝑝𝐵−𝑃) that connect via static inhibitory synapses rather than plastic 

BCPNN synapses. This strong loop implements a competitive soft-WTA subnetwork within each HC 65. 

Local basket cells fire in rapid bursts, and induce alpha/beta oscillations in the absence of attractor 

activity and gamma, when attractors are present and active.  

Pyramidal cells in layer 2/3 form connections both within and across HCs at connection probability 

𝑝𝐿23𝑒−𝐿23𝑒. These projections are implemented with plastic synapses and contain parallel AMPA and 

NMDA components, as explained in subsection Spike-based BCPNN Learning Rule. Connections 

across columns and areas may feature sizable conduction delays due to the implied spatial distance 

between them (Online Methods and Supplementary Table 1) 

Pyramidal cells in layer 4 project to pyramidal cells of layer 2/3, targeting 25% of cells within their 

respective MC only. Experimental characterization of excitatory connections from layer 4 to layer 2/3 

pyramidal cells have confirmed similarly high fine-scale specificity in rodent cortex66 and in-turn, full-

scale cortical simulation models without functional columns have found it necessary to specifically 

strengthen these connections to achieve defensible firing rates67. 

In summary, the STM model thus features a total of 16.2 million plastic AMPA- and NMDA-mediated 

connections between 18.000 simulated pyramidal cells in STM, as well as 67.500 static connections 

from 9.000 layer 4 pyramidals to layer 2/3 targets within their respective MC, and 604.800 static 

connections to and from 600 simulated basket cells. 
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LTM network 

We simulate two structurally identical LTM networks, referred to as LTMa, and LTMb. LTM networks 

may be interpreted as a spatially distributed subsampling of columns from areas of the temporal 

cortex commonly associated with auditory and visual LTM. For example Inferior Temporal Cortex 

(ITC) is often referred to as the storehouse of visual LTM68. Two such LTM areas are indicated in 

Figure 1.  

We simulate nHC
LTM = 16 HC in each area and nine MC per HC (further details in Supplementary 

Tables 1-3). Both LTM networks are structurally very similar to the previously described STM, yet 

they do not feature plasticity beyond short-term dynamics in the form of synaptic depression. Unlike 

STM, LTM areas also do not feature an input layer 4, but are instead stimulated directly to cue the 

activation of previously learned long-term memories (Stimulation Protocol). Various previous models 

with identical architecture have demonstrated how attractors can be learned via plastic BCPNN 

synapses18,19,23,41. We load each LTM network with nine orthogonal attractors (ten in the example of 

Figure 3-B, which features two sets of five memories each). Each memory pattern consists of 16 

active MCs, distributed across the 16 HCs of the network. We load-in BCPNN weights from a 

previously trained network (Supplementary Table 2), but thereafter set 𝜅 = 0 to deactivate plasticity 

of recurrent connections in LTM stores.  

In summary, the two LTM models thus feature a total of 7.46 million connections between 8.640 

pyramidal cells, as well as 13.608 static connections to and from 576 basket cells. 

Corticocortical Connectivity 

Our model implements supragranular feedforward and feedback pathways, as inspired by recent 

characterizations of such pathways by Markov et al.69 between cortical areas that are at a medium 

distance in the cortical hierarchy. The approximate cortical distance between Inferior Temporal 

Cortex (ITC) and dlPFC in macaque is about 40 mm and with an axonal conductance speed of 2 m/s,  

distributed conduction delays in our model (Equation 9) average just above 20 ms between these 

areas70–72. 

In the forward path, layer 3B cells in LTM project towards STM (Figure 1). We do not draw these 

connections one-by-one, but as branching axons targeting 25% of the pyramidal cells in a randomly 

chosen MC (the chance of any layer 3B cell to target any MC in STM is only 0.15%). The resulting split 

between targets in layer 2/3 and 4 is typical for feedforward connections at medium distances in the 

cortical hierarchy69 and has important functional implications for the model (LTM-to-STM Forward 

Dynamics). To increase the information contrast in the forward response and balance the total 

current delivered to STM we also branch off some inhibitory corticocortical connections as follows: 

for every excitatory connection within the selected targeted MC, an inhibitory connection is created 

from the same pyramidal layer 3B source cell onto a randomly selected cell outside the targeted MC, 

but inside the local HC. This is best understood as di-synaptic inhibition via a vertically projecting 

inhibitory interneuron like a double bouquet and/or bipolar cell58–61. Although we do not explicitly 

simulate such cells, such an interneuron would be local to an MC and targeted by incoming excitatory 

connections (same arrangement as Tully et al. 2014, 2016). Simultaneous inputs add in non-trivial 

ways, as excitation and inhibition from several inputs can interfere with each other. This way of 

drawing random forward-projections retains a degree of functional specificity due to its spatial 

clustering and yields patchy sparse forward-projections with a resulting inter-area connection 
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probability of only 0.0125% (648 axonal projections from L3B cells to STM layers 2/3 and 4 results in 

~20k total connections after branching as described above. 

Long feedback pathways across the cortical hierarchy are dominated by infra-granular projections 

(projections from large cells in layer 5 and 6), yet especially between association cortices and at short 

and medium range there are reciprocal projections from layer 3A cells to the cortical areas below69. 

In our model we draw sparse plastic connections from layer 3A cells in STM to layer 2/3 cells in LTM: 

branching axons target 25% of the pyramidal cells in a randomly chosen HC in LTM, again simulating 

a degree of axonal branching found in the literature73. Using this method, we obtain biologically 

plausible sparse and structured feedback projections with an inter-area connection probability of 

0.66%, which – unlike the forward pathway – do not have any built-in MC-specificity but may develop 

such through activity-dependent plasticity. More parameters on corticocortical projections can be 

found in Supplementary Table 3. On average, each LTM pyramidal cell receives about 120 

corticocortical connections from STM. Because about 5% of STM cells fire together during memory 

reactivation, this means that a mere 6 active synapses per target cell are sufficient for driving (and 

thus maintaining) LTM activity from STM (there are 96 active synapses from coactive pyramidal cells 

in LTM). 

Notably LTMa and LTMb have no direct pathways connecting them in our model since plasticity of 

biological connections are likely too slow (LTP timescale) to make a difference in WM dynamics. This 

arrangement also guarantees that any binding of long-term memories across LTM areas must be the 

result of interaction via STM instead. Corticocortical connectivity is very sparse, below 1% total 

network connectivity.  

Stimulation Protocol 

The term 𝐼𝑒𝑥𝑡 in Equation 1 subsumes specific and unspecific external inputs. To simulate unspecific 

input from non-simulated columns, and other areas, pyramidal cells are continually stimulated with a 

zero mean noise background throughout the simulation. In each layer, two independent Poisson 

sources generate spikes at rate 𝑟𝑏𝑔
𝑙𝑎𝑦𝑒𝑟

 , and connect onto all pyramidal neurons in that layer, via non-

depressing conductances ±𝑔𝑏𝑔
𝑙𝑎𝑦𝑒𝑟

 (Supplementary Table 2). To cue the activation of a specific 

memory pattern (i.e. attractor), we excite LTM pyramidal cells belonging to a memory patterns 

component MC with an additional excitatory Poisson spike train (rate 𝑟𝑐𝑢𝑒, length 𝑡𝑐𝑢𝑒, 

conductance 𝑔𝑐𝑢𝑒). As LTM patterns are strongly encoded in each LTM, a brief 50 ms stimulus is 

usually sufficient to activate any given memory.  

Spike Train Analysis and Memory Activity Tracking 

We track memory activity in time by analyzing the population firing rate of pattern-specific and 

network-wide spiking activity usually using a exponential moving average filter time-constant of 20 

ms. We do not use an otherwise common low-pass filter with symmetrical window, because we are 

particularly interested in characterizing activation onsets and onset delays. As activations are 

characterized by sizable gamma-bursts, a simple threshold detector can extract candidate activation 

events and decode the activated memory (which is trivial due to the orthogonal and known nature of 

LTM patterns). We measure onset and offset by thresholding each individual activation at half of its 

peak rate. In LTM, we further assess pattern completion by checking for component MC activation. 

Whenever targeted stimuli are used, we analyze peri-stimulus activation traces. When activation 
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onsets are less predictable, such as during free STM-paced maintenance, we extract activation 

candidates via a threshold detector trained at the 50th percentile of the cumulative distribution of the 

population firing rate signal.  

Simulation Environment 

We use the NEST simulator55 version 2.2 for our simulations, running on a Cray XC-40 Supercomputer 

of the PDC Centre for High Performance Computing. The custom-build spiking neural network 

implementation of the BCPNN learning rule for MPI-parallelized NEST is available on github: 

https://github.com/Florian-Fiebig/BCPNN-for-NEST222-MPI 

Supplementary Information 

Adaptation 
current 

b 86 
pA 

Depression time 
constant 

𝜏𝑟𝑒𝑐 500 
ms 

BCPNN 
AMPA gain 

𝑤𝑔𝑎𝑖𝑛
𝐴𝑀𝑃𝐴 3.93 

nS 
Adaptation 
time constant 

𝜏𝐼𝑤
 500 

ms 
AMPA synaptic 
time constant 

𝜏𝐴𝑀𝑃𝐴 5 ms BCPNN  
NMDA gain 

𝑤𝑔𝑎𝑖𝑛
𝑁𝑀𝐷𝐴 0.21 

nS 
Membrane 
Capacity 

𝐶𝑚 280 
pF 

NMDA synaptic 
time constant 

𝜏𝑁𝑀𝐷𝐴 100 
ms 

BCPNN bias 
current gain  

β
gain

 90 𝑝𝐴 

Leak Reversal 
Potential 

𝐸𝐿 -70 
mV 

GABA synaptic 
time constant 

𝜏𝐺𝐴𝐵𝐴 5 ms BCPNN lowest 
rate  

𝑓𝑚𝑖𝑛 0.2 Hz 

Leak 
Conductance 

𝑔𝐿 14 
pS 

AMPA Reversal 
Potential 

𝐸𝐴𝑀𝑃𝐴 0 mV BCPNN 
highest rate 

𝑓𝑚𝑎𝑥 20 Hz 

Upstroke 
slope factor 

Δ𝑇 3 
mV 

NMDA Reversal 
Potential 

𝐸𝑁𝑀𝐷𝐴 0 mV BCPNN lowest 
probability 

ε 0.01 

Spike 
Threshold 

𝑉𝑡 -55 
mV 

GABA Reversal 
Potential 

𝐸𝐺𝐴𝐵𝐴 -75 
mV 

BCPNN Spike 
event duration 

Δ𝑡 1 ms 

Spike Reset 
Potential 

𝑉𝑟 -80 
mV 

Dopaminergic 
Modulation 

𝜅𝑝 6.0 P-Trace time 
constant 

𝜏𝑝 5 s 

Utilization 
factor 

𝑈 .33 Regular 
Plasticity 

𝜅𝑛𝑜𝑟𝑚𝑎𝑙 1.0    

Supplementary Table 1. Neurons, synapses, and plasticity.  

 
STM patch size  

17 x 17 mm Axonal Conduction Speed 𝑉 2 
𝑚

𝑠
 

Simulated HC 𝑛𝐻𝐶
𝑆𝑇𝑀 25 Minimal conduction delay 𝑡𝑚𝑖𝑛

𝑠𝑦𝑛
 1.5 ms 

Simulated MC per HC  𝑛𝑀𝐶
𝑆𝑇𝑀 12 STM – LTM distance 𝑑𝑆𝑇𝑀−𝐿𝑇𝑀 40 mm 

   Background activity rate layer 4 𝑟𝑏𝑔
𝐿4 300 Hz 

   Background activity rate layer 2/3 𝑟𝑏𝑔
𝐿23 625 Hz 

LTM patch size  25 x 25 mm Attractor activity threshold 𝑟𝑏𝑔−𝑙𝑜𝑤
𝐿23  450 Hz 

Simulated HCs 𝑛𝐻𝐶
𝐿𝑇𝑀 16 Maintenance STM 

background activity rate layer 2/3 
𝑟𝑊𝑀𝑏𝑔

𝐿23  950 Hz 

Simulated MC per HC 𝑛𝑀𝐶
𝐿𝑇𝑀 9 Background conductance 𝑔𝑏𝑔  ±1.5 nS 

   Cue stimulus duration 𝑡𝑐𝑢𝑒 50 ms 

   Stimulation rate 𝑟𝑐𝑢𝑒 850 Hz 

Layer 2 pyramidal per MC 𝑛𝑀𝐶
𝑃𝑌𝑅−𝐿2 20 Cue stimulus conductance 𝑔𝑐𝑢𝑒  +1.5 nS 

Layer 3A pyramidal per MC 𝑛𝑀𝐶
𝑃𝑌𝑅−𝐿3𝐴 5 LTM Intra HC – Intra MC weight 𝑤𝐼𝑛𝑡𝑟𝑎𝑀𝐶

𝐼𝑛𝑡𝑟𝑎𝐻𝐶  3.36 𝑤𝑔𝑎𝑖𝑛
𝑠𝑦𝑛

 

Layer 3B pyramidal per MC 𝑛𝑀𝐶
𝑃𝑌𝑅−𝐿3𝐵 5 LTM Intra HC – Inter MC weight 𝑤𝐼𝑛𝑡𝑒𝑟𝑀𝐶

𝐼𝑛𝑡𝑟𝑎𝐻𝐶  -4.82 𝑤𝑔𝑎𝑖𝑛
𝑠𝑦𝑛

 

Layer 4 pyramidal per MC 𝑛𝑀𝐶
𝑃𝑌𝑅−𝐿4 30 LTM Inter HC –Coactive MC weight 𝑤𝐶𝑜𝑎𝑐𝑡𝑖𝑣𝑒𝑀𝐶

𝐼𝑛𝑡𝑒𝑟𝐻𝐶  3.08 𝑤𝑔𝑎𝑖𝑛
𝑠𝑦𝑛

 

Basket cells per MC 𝑛𝑀𝐶
𝑏𝑎𝑠𝑘𝑒𝑡 2 LTM Inter HC – Competing MC weight 𝑤𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑛𝑔𝑀𝐶

𝐼𝑛𝑡𝑒𝑟𝐻𝐶  -4.28 𝑤𝑔𝑎𝑖𝑛
𝑠𝑦𝑛

 

Supplementary Table 2. Network size, Conduction delay, Stimulation, LTM Preload BCPNN weights. Layer 4 

for not simulated in LTM. 
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Scope Source Target Type Symbol Value 

C
o

rt
ic

a
l 
A

re
a
 

Pyramidal Basket probability 𝑝𝑃−𝐵 0.7 

Pyramidal Basket condnductance (static) 𝑔𝑃−𝐵 +3.5 nS 

Basket Pyramidal probability 𝑝𝐵−𝑃 0.7 

Basket Pyramidal conductance (static) 𝑔𝐵−𝑃 -40 nS 

L23e L23e probability 𝑝𝐿23𝑒−𝐿23𝑒 0.2 

L23e L23e AMPA gain (BCPNN) 𝑤𝑔𝑎𝑖𝑛
𝐴𝑀𝑃𝐴 3.93nS 

L23e L23e NMDA gain (BCPNN) 𝑤𝑔𝑎𝑖𝑛
𝑁𝑀𝐷𝐴 0.21nS 

L4e L23e probability 𝑝𝐿4𝑒−𝐿23𝑒 0.25 

L4e L23e conductance (static) 𝑔𝐿4𝑒−𝐿23𝑒 25 nS 

F
e

e
d

 

fo
rw

a
rd

 LTM L3Ae STM MC probability  𝑝𝐿3𝐴𝑒−𝑀𝐶
𝐹𝐹  0.0015 

LTM L3Ae STM MC branching factor 𝑏𝐿3𝐴𝑒−𝑀𝐶
𝐹𝐹  0.25 

LTM L3Ae STM L23e conductance (static) 𝑔𝐿3𝐴𝑒−𝐿23𝑒
𝐹𝐹  ±7.2 nS 

LTM L3Ae STM L4e conductance (static) 𝑔𝐿3𝐴𝑒−𝐿4𝑒
𝐹𝐹  ±7.2 nS 

F
e

e
d

b
a

c
k
 STM PYR LTM PYR probability  𝑝𝑃−𝑃

𝐹𝐵  0.0066 

STM L3Be LTM HC branching factor 𝑏𝐿3𝐵𝑒−𝐻𝐶
𝐹𝐵  0.25 

STM L3Be LTM L23e AMPA gain (BCPNN) 𝑤𝐹𝐵
𝐴𝑀𝑃𝐴 7.07 nS 

STM L3Be LTM L23e NMDA gain (BCPNN) 𝑤𝐹𝐵
𝑁𝑀𝐷𝐴 0.4 nS 

Supplementary Table 3. Projections 

Model Robustness  

Because our model is quite complex and synthesizes many different components and processes it is 

beyond the scope of this work to perform a detailed parameter sensitivity analysis. However, from 

our extensive simulations we conclude that it is robust and degrades gracefully. Almost all uncertain 

parameters can be varied ±30% without breaking WM function. The model is dramatically sub-

sampled and scaling up would be possible. This could be expected to further improve overall 

robustness. Highly related modular cortical network models have been studied extensively 

elsewhere19,26,33,40,41, so here we prioritize novel aspects, namely the parameterization of 

corticocortical connectivity and spatial scale. 

In the feedback pathway, a mere 0.6% connectivity is sufficient to support LTM activation in 

maintenance and recall. As rigorous testing (not shown here) revealed, lower connectivity degrades 

WM capacity, unless we increase the total number of co-active STM cells by other means. Forward 

connectivity can be even lower (0.015% in this model), because terminal clusters in STM are smaller 

and provide more information contrast (see Online Methods). In both cases, our model uses these 

low density values, but they could be increased or decreased if single synaptic currents are 

reduced/increased respectivly. Somewhat peculiarly, we also found that we needed to increase the 

corticocortical conductance of the back-projections (𝑤𝐹𝐵
𝑠𝑦𝑛) by the same factor 1.8 (over the local 

conductance gain 𝑤𝑔𝑎𝑖𝑛
𝑠𝑦𝑛 ) as another detailed model account of macaque visual cortex42 to achieve 

functional WM at the stated long-distance connection probabilities. 

There is an upper, but no lower limit on corticocortical distances in our model. When conduction 

delays exceed 65 ms (130 mm), STM feedback can no longer activate the LTM network, because 

bursts desynchronize before they arrive. On the other hand, STM and LTM could even be adjacent as 

we briefly mentioned at the end of the result section. Additionally, there is a minimum spatial scale 

to each component network.  If we reduce the spatial extent (and thus the connection delays 
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between HCs) by 45%, theta-like oscillations degrade and break at 20%, when the largest inter-HC 

delays fall below 5 ms. Spiking activity of activated memories collapses into a single brief burst 

(Supplementary Figure 7, cf. Figure 2D, Supplementary Figure 6), which degrades learning and 

effective information transmission both within and across networks. Networks may be much smaller 

however, if this is compensated by slower axonal conductance velocities (<2 mm/ms). 
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Supplementary Figures 

 
Supplementary Figure 2. Encoding and feedback-driven reactivation of long-term memories. Subsampled spike raster of STM (top) and 
LTM (bottom during encoding and subsequent maintenance of five memories (the first pattern is often not maintained). During the initial 
plasticity-modulated stimulation phase, five LTM memories are cued via targeted 50 ms stimuli (shown underneath). Plasticity of STM and 
its backprojections is modulated during this initial memory activation. Thereafter, a strong noise drive to STM causes spontaneous 
activations and plasticity-induced consolidation of pattern-specific subpopulations in STM. Backprojections reactivate associated LTM 
memories. Top: STM spike raster shows layer 2/3 activity in a single hypercolumn (HC). Minicolumns (MC) are separated by grey horizontal 
lines. STM spikes are colored according to each cell’s dominant LTM pattern-correlation, similar to Figure 2D. Bottom: LTM spike raster 
only shows the activity of five coding MC in a single LTM HC, but indicates the activation of distributed LTM memory patterns. LTM spikes 
are colored according to the pattern-specificity of each cell. 
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Supplementary Figure 3. WM updating. Population firing rates of pattern-specific subpopulations in STM and LTM during encoding and 
subsequent maintenance of two sets of five LTM memories. After encoding and 10 s maintenance of the first set, WM contents are 
overwritten with the second set of memories, maintained thereafter in spontaneous reactivation events. Bottom: Input stimuli and 
modulation of plasticity. 

 
Supplementary Figure 4. WM updating. Subsampled spike raster of the layer 2/3 population in a Hypercolumn of STM (top) and LTM 
(bottom) respectively during encoding and subsequent maintenance of two sets of five LTM memories. STM spikes are colored according 
to each cells dominant pattern-selectivity. LTM Spikes are colored according to the pattern-specificity of each cell. After encoding and 10 s 
maintenance of the first set, WM contents are overwritten with the second set of memories, maintained thereafter. Plasticity is 
temporarily boosted during the initial activation of LTM attractors (see preceding figure). Strong noise drive to STM causes spontaneous 
reactivations and consolidation of pattern-specific subpopulations in STM following each stimulation period. 
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Supplementary Figure 5. Population firing rates of patter-specific subpopulations in the three networks, during the Feature binding task. 
Three memory pairs (blue, green, red respectivly) in STM (1st row), LTMa (2nd row), and LTMb (3rd row) during three different modes of 
network activity: The initial binding of pairwise LTM memory activations in STM (0 – 1 s), WM Maintenance (1 s – 10 s), and cue-driven 
associative recall of previously paired stimuli (11 s – 12 s). Bottom: Stimuli and modulation of plasticity. Note the cued recall of all five 
memories after 10sec of maintenance. 
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Supplementary Figure 6. Spiking activity in the three networks, during the multi-modal LTM binding task.  Subsampled spike raster of the 
layer 2/3 population in a Hypercolumn of STM (top), and five coding minicolumns in LTMa (2nd row) and LTMb (3rd row) respectively during 
plasticity-modulated stimulation (i.e. encoding), subsequent maintenance, and associative cued recall of five paired LTM patterns 
(orange,purple,blue,green,red). Minicolumns are separated by grey horizontal lines. STM spikes are colored according to each cells 
dominant memory pair-selectivity. LTM Spikes are colored according to the memory pair-specificity of each cell in slightly shifted hues to 
illustrate that LTMa and LTMb code for different, but associated memories. Bottom: Stimuli and modulation of plasticity. Note the cued 
recall of all five memories at the end. 

 

Supplementary Figure 7. Network activity during plasticity-
modulated stimulation with 20% spatial extent.   Subsampled spike 
raster of the layer 2/3 population in a Hypercolumn of STM (top), 
and five coding minicolumns in LTMa (2nd row) and LTMb (3rd row) 
respectively during plasticity-modulated stimulation (i.e. encoding) 
of five paired LTM patterns. Without sufficient conduction delays, 
memory activations collapse into very brief bursts (with the 
exception of the last pattern here) and STM cannot effectively 
activate from or subsequently encode such brief activations (cf. 
Figure 2D, and Supplementary Figure 6).  
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