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ABSTRACT

We use a computational modelling approach to explore whether it is possible to infer a tumour’s cell
proliferative hierarchy, under the assumptions of the cancer stem cell hypothesis and neutral evolution.
We focus on inferring the symmetric division probability for cancer stem cells in our model, as this is
believed to be a key driving parameter of tumour progression and therapeutic response. Given the
advent of multi-region sampling, and the opportunities offered by them to understand tumour evolutionary
history, we focus on a suite of statistical measures of the phylogenetic trees resulting from the tumour’s
evolution in different regions of parameter space and through time. We find strikingly different patterns
in these measures for changing symmetric division probability which hinge on the inclusion of spatial
constraints. These results give us a starting point to begin stratifying tumours by this biological parameter
and also generate a number of actionable clinical and biological hypotheses including changes during
therapy, and through tumour evolution.

Introduction1

The cancer stem cell hypothesis (CSCH) posits that tumours are composed of a hierarchy of cells with2

varying proliferative capacities. Under this hypothesis, a subpopulation of ‘cancer stem cells’, also termed3

tumour initiating cells (TICs), are able to self-renew through symmetric division and also to differentiate4

into tumour cells resembling transit amplifying cells (TACs) through asymmetric division (see Fig 1A),5

giving rise to the entire diversity of cells within a tumour1. The CSCH provides a conceptual framework by6

which to understand many different aspects of cancer progression, including: the occurrence of functional7

heterogeneity despite genetically identical states2–4; resistance to chemotherapy5, 6 and radiotherapy7–9;8

recurrence10; and metastasis11. Despite its popularity, the CSCH has been the subject of continual debate9

and modification in order to maintain compatibility with experimental observations12–14.10

While the specifics of the CSCH are still a matter of debate, the clinical relevance of those cells with11

traits ascribed to TICs is clear. Regardless of the accepted importance of this knowledge, our ability to12

measure their dynamics in a clinical setting is lacking. In vivo measurement efforts are limited to carefully13

conducted live imaging in genetically engineered mice15, or genetic labelling and subsequent lineage14
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tracing16; while in vitro systems are better suited to the extraction of these parameters, little has been done15

to quantify them, as technically demanding single-cell lineage tracing17 is required. These experimental16

difficulties speak to the need for more theoretical work in this area, especially to propose metrics for17

quantifying proliferative parameters such as TIC symmetric division probability (Fig 1A) from clinical18

data. This is of particular importance as there is mounting evidence for the relevance of a proliferative19

hierarchy in determining response to radiotherapy18 and chemotherapy5. Further, we now know that20

certain microenvironmental factors such as hypoxia19, 20, acidosis21, growth factors22, and even stromal21

cell co-operation or co-option23, 24, can perturb this system.22

Several published mathematical models, taking different forms and considering different aspects of23

heterogeneity, have predicted that the evolution of a solid tumour should depend strongly on whether24

or not it exhibits a proliferative hierarchy, and on the parameters of such a hierarchy. These models25

have included spatial proliferation constraints, microenvironmental heterogeneity and selective pressures,26

and the noted differences include shape, clonal heterogeneity, rate of evolution and growth dynamics.27

Werner at al. specifically studied the differences in bulk tumour behaviour between tumours arising from28

mutant TICs and TACs25 in a non-spatial context. In a spatial context, the work of Sottoriva et al.3, 26
29

and Enderling et al.27, 28 represent the first works in which it was shown that the parameters governing30

TAC dynamics can constrain tumour growth, and also to show that TIC-driven tumours have significantly31

different spatial growth patterns: specifically, that they exhibit ‘patchy’ growth. In none of these models,32

except Sproufsske et al.29, in which the main question centred on TAC numbers, were these differences33

studied across TIC symmetric division probabilities, which is a key parameter governing the hierarchy,34

and one that is exceedingly difficult to measure or perturb in vitro or in vivo.35

To describe the evolutionary relationship between members of a species, or larger groups of life36

forms, biologists often formulate tree diagrams that represent their specific hypotheses about relatedness.37

While tree diagrams have been in use since medieval times to describe genealogies, their use to describe38

animal species was not popularized until the early 1800s. These trees were originally made on the basis39

of gross morphological differences (or similarities) and were called phenograms or cladograms, but in40

the last few decades we have begun to define these differences based on genetic information. The field41

of phylogenetics, born in the 1980s, seeks to use objective, genetic information to build trees. When42

populations are sampled, a common method of understanding the clonal evolution is through phylogenetic43

reconstruction, a method of inferring, usually from genetic sequence similarity, the evolutionary life44

history of a given life form. This has classically been applied in scientific fields such as zoology, and it has45

become a branch of bioinformatics all of its own, even spawning a branch of discrete mathematics called46

T-theory30.47

Phylogenetics has, in the last decade, begun to be applied to cancers, giving rise to a subfield48

recently dubbed ‘PhyloOncology’ by Somarelli and colleagues31. Using phylogenies reconstructed from49

spatially separated biopsies and informatic algorithms, many aspects of tumour evolution have begun50

to be elucidated32, including the genetic heterogeneity present within a primary tumour33, the origin of51

individual metastatic tumours within the primary site34, 35, and the effect of chemotherapy on primary and52

metastatic sites36, 37.53

In addition to these sorts of questions, there are precedents in other fields of study for using a54

phylogenetic information, together with population dynamics, a technique called phylodynamics38, to55

infer other underlying biological processes. For example, Leventhal et al.39 proposed that the phylogenetic56

tree contains a ‘fingerprint’ that can be used to determine the evolutionary process driving the population57

in question. Modelling the spread of HIV within a contact network, the authors investigated whether the58

network structure could be inferred from the resulting disease phylogenies. To address this question, the59

authors simulated a range of epidemics on several families of random graphs and measured the resulting60
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phylogenetic trees, finding that certain tree-based measures could discriminate between the qualitatively61

different families of random graph structures considered.62

We hypothesize that a similar approach could be used to discriminate between in silico tumours with63

different symmetric division rates. To test this hypothesis, here we study the effect of TIC symmetric64

division probability on tumour evolution using a computational modelling approach. We focus on65

observed patterns in reconstructed phylogenetic trees across a range of symmetric division probabilities.66

The estimation of this proliferative parameter from clinical data could help improve our understanding of67

the effect of therapies on tumour growth dynamics, and our ability to stratify tumours for consideration of68

different therapies. In this way, we seek to provide translatable measures to aid in understanding tumour69

biology: to use mathematical modelling to ‘see the invisible’.70

The remainder of this paper is structured as follows. We first present a spatial stochastic model71

of tumour growth under a proliferative hierarchy with neutral mutations, which we embed on a two-72

dimensional lattice to enable the study of the effect of spatial constraints. Next, we develop an algorithm73

to reconstruct the branched phylogenetic structure from each realization of our tumour growth model. We74

apply a range of statistical measures of phylogenetic tree shape to simulation outputs for comparison. We75

explore the temporal dynamics of these measures over the course of tumour growth to assess whether they76

are robust to tumour size changes, and then to changes in mutation frequency. Finally, we discuss the77

possible clinical utility of these measures.78

Materials and Methods79

Model development80

Here, we describe the development of a two-dimensional, lattice-embedded cellular automaton (CA) model81

of tumour growth with contact inhibition growing under neutral evolution and a proliferative hierarchy.82

Proliferative hierarchy83

We model a proliferative hierarchy comprising two cell types, TICs and TACs. We assume that each84

TIC divides symmetrically with probability α , creating two TICs, and asymmetrically with probability85

1−α , creating one TIC and one TAC. While there is evidence that microenvironmental parameters such86

as nutrient deprivation40, acidity21 and hypoxia41, 42 can change symmetric division probability, and that87

it is likely to vary from cell to cell, for simplicity we will assume it is constant. As it has been shown88

theoretically that the overall dynamics of TIC-driven tumours is equivalent with or without TIC symmetric89

differentiation43 (when a TIC divides to create two TACs), and as the lineage extinction possible in this90

case would significantly complicate our phylogenetic analysis, we make the simplifying assumption that91

there is no symmetric differentiation.92

We assume that every TAC division is symmetric, creating two TACs, but only allow this to progress93

for β rounds of division, after which the TAC will die if chosen to divide again. Here β represents the94

replicative potential of TACs, and is posited to represent telomere length44. Previous theoretical work has95

shown that tumour growth kinetics in spatially constrained geometries are strongly affected by the value of96

β 28. In particular, if β > 5, simulated tumours experience unrealistically lengthy growth delays. Therefore97

we follow a previously used assumption3, 29 and fix β = 4. This mode of growth and differentiation is98

illustrated in Fig 1A. For simplicity, we neglect cell death, though this could be added as a straightforward99

extension in future work.100

Neutral evolution101

To understand the effects of neutral evolution on tumours with differing proliferative hierarchies, we102

extend our model of tumour growth under a proliferative hierarchy to include random mutations. At103
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Figure 1. Spatial stochastic model schematic with neutral mutation schema. (A) The proliferative
hierarchy. Each TIC can divide symmetrically with probability α to make two identical TIC progeny, or
asymmetrically with probability (1−α) to make one TIC and one TAC. TACs divide symmetrically until
they reach a specific divisional age (β = 4 for this work), after which they die upon division attempt. (B)
At each division event (branching) after the first (carcinogenesis, labelled with a 1), a random number of
mutations drawn from a Poisson distribution with expectation λ is conferred on each daughter
(subsequent starred events). Each mutation event is given a unique flag, which is inherited by its offspring
unless they too mutate. Each unique mutation can then be considered as a novel mutant allele (red)
appearing in the population. (C) Flowchart outlining cellular automaton rules governing TIC and TAC
growth, including spatial inhibition of growth and TAC age.

each cell division, there is a possibility that one or more mutations occur. To determine the number of104

mutations accumulated by a given daughter cell, we independently draw a random number from a Poisson105

distribution with rate λ . We assume for simplicity that every mutation arising in our model is unique. This106

‘infinite sites’ assumption is usually ascribed to Kimura45.107

For simplicity, we assume that mutations confer no advantage, disadvantage or any other phenotypic108

change and therefore serve only as a method by which to track clonal lineages. This assumption could in109

principle be loosened to allow for positive selection46, a balance of positive and negative selection47, and110

neutral48. A schematic of this model of evolution, and labelling scheme, is shown in Fig 1B.111

For computational efficiency, we record a unique flag only for the most recent mutation accumulated112

within a cell, which is passed down to its progeny, unless a mutation occurs, in which case a new flag is113

assigned. We also record each mutation event in the form of an ordered pair, (parent flag, child flag), so114

that the complete ‘genomes’ (bit strings) can be reconstructed for future use. As they are the only cells115

capable of forming tumours on their own, and infinite replication, we follow previous works in considering116

new mutations to accrue only in TICs3, 26, 29, 49.117
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Spatial dynamics118

As we are interested in the effect of the proliferative hierarchy on the neutral evolutionary process in solid,119

spatially constrained tumours, we embed our cell-based model in a two-dimensional square lattice. While120

recent work has shown some qualitative differences in vascularised CA models between two and three121

dimensions, using a two-dimensional lattice for unvascularised tissue is a common simplification50–53 that122

allows spatial constraints to be studied in a computationally tractable manner. In addition to the above123

description of cell proliferation, we consider cell proliferation to be modulated by contact inhibition54.124

Each cell is allowed to divide only if there is one or more free lattice sites within that cell’s Moore125

neighbourhood; if not, then we consider the cell to be in a quiescent state that may be exited when space126

becomes available. At each time step, each ‘cell’ has an opportunity to divide given that it has space to do127

so. Cells are chosen uniformly at random for updates from the entire population to avoid order bias.128

Cell-type specific rules129

If space is available, and the cell is a TIC, then the type of division is determined by choosing a uniform130

random number, r, from [0,1]. If r < α , then the TIC divides symmetrically, creating another TIC that is131

placed uniformly at random in one of the free neighbouring lattice sites. The parent and daughter TICs132

will independently acquire a random number of new mutations, as described above. If r ≥ α , then the TIC133

divides asymmetrically, creating a TAC that is placed uniformly at random in one of the free neighbouring134

Figure 2. Temporal evolution of the spatial model reveals observable morphologic differences
between TIC-driven and non-TIC-driven tumours, as observed by others. We plot representative
results of simulations of two tumours, each simulated on a square lattice of size 400×400. Top: a tumour
simulated with α = 0.2 and β = 4. We notice, as have Enderling et al.27 and Sottoriva et al.3, a ‘patchy’
clonal architecture, and non-uniform edge. Bottom: a tumor simulated with α = 1.0, i.e. no proliferative
hierarchy. We note smooth edges, radial patterns of clonal architecture and relatively faster population
growth, reaching ≈ 70,000 cells in less than 200 time steps. To reach a similar size, the tumour with
symmetric division probability of 0.2 took 35,000 time steps. Colour bars denote number of mutations
present in a given clone, n.b. top scale is about 1/3 of bottom scale.

5/22

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/334946doi: bioRxiv preprint 

https://doi.org/10.1101/334946
http://creativecommons.org/licenses/by-nc/4.0/


lattice sites. The daughter TAC is created with the same mutation ID as the parent, and age = 0, while the135

parent TIC will independently acquire a random number of new mutations, as described above.136

If the chosen cell is instead a TAC, then the check after available space is a check of the cell’s137

proliferative age, which is the number of divisions as a TAC. If the TAC age is equal to the replicative138

potential, β , then the TAC dies, at which point it is removed from the simulation. If the TAC age is less139

than β , then we create a new TAC daughter and places it in an empty space in the Moore neighbourhood140

at random. The parent and daughter TACs share the same mutation ID and their age is updated to be one141

more than the age of the originally chosen TAC.142

Full implementation143

The full CA flow-chart, represented in Fig 1C, schematises the entire process of cell fate decisions that144

each cell undergoes at each time step in the spatial model. In the top panel, the rule set followed by the145

TICs is represented to include differentiation and mutation. In the bottom panel, the TAC rule set is defined146

to include death by terminal differentiation and TAC aging. An example simulation of tumor growth over147

time is shown in Fig 2, where the effect of lowering α can be seen on overall tumour growth kinetics,148

where the colour-bar represents the current clonal state (mutation ID) of a given clone.149

Recovering phylogenetic trees from simulation150

While experimentalists and clinicians can only infer phylogenies from incomplete data, reconstruction of151

the ‘true’ phylogeny is possible in our model as we can record the entire life history of the simulated tumour.152

Thus, we can test whether phylogenetic tree-based measures are able to discriminate TIC symmetric153

division probability in the case where the ‘ground truth’ is known. At each time step we record the spatial154

location of each individual cell with its mutation ID, which is our CA state vector. Additionally, we record155

the evolutionary ‘life history’ as a list of ordered pairs of every mutation event as (parent mutational ID,156

child mutational ID). We then recursively construct the phylogenetic tree from this life history.157

Phylogenetic tree reconstruction algorithm158

To create the complete tree data structure required for our quantitative analyses we use the information159

encoding the mutation events from our stochastic simulation. To this end, we create a list of unique160

parent-child pairs using the life history of mutation events. We then apply an iterative process in which161

each child is added as a subnode below the parent (from the unique parent-child pair). This process is162

continued until all parent-child pairs are added to the structure, and the tree is complete. The simulation163

code and functions to create these trees and calculate the metrics is freely available on request.164

Qualitative comparison of reconstructed trees165

To compare phylogenies from simulations with different underlying parameter values, we first construct166

and visualize the phylogenies constructed from three example simulations with differing TIC symmetric167

division probabilities in Fig 3. It is clear by inspection that the number of mutations increases with168

symmetric division probability (more branches). However, the tree structure is not as easy to parse visually.169

For ease of visualization the trees depicted in Fig 3 have been pruned of all terminal nodes (also called170

leaves) with no children of their own. While this transformation does affect the quantitative results, it does171

not qualitatively affect the resultant phylogenetic tree statistic ranks (see Fig 8). Regardless, we will use172

the full trees going forward.173

Candidate tree-based measures for model comparison174

Visual inspection of Fig 3 suggests that simulations with different TIC symmetric division probabilities175

generate distinct phylogenetic trees. However, to make meaningful conclusions we must perform a176
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Figure 3. Three example simulations with increasing symmetric division probability, α (0.2, 0.6
and 1.0 from top to bottom) and their associated phylogenetic trees. Each example plot is the result
of a single stochastic simulation of our spatial CA model. Each simulation is initiated with a single TIC
and complete when the domain is full, in this case 250,000 cells. Parameter values are β = 4 and
λ = 0.01. Visualized trees (right) have been pruned of all leaves for ease of visualisation, which does not
qualitatively affect measure rank (see 8).

quantitative comparison. Here we present several measures useful in summarising and comparing177

phylogenetic trees. The most commonly studied property of a phylogenetic tree’s shape is its balance,178

defined as the degree to which internal nodes (branch points) have the same number of children as one179

another. Balance (or imbalance) indices depend only on the branching topology of trees, and not on180

other factors like branch length or other features of the terminal branches (leaves). Since the first balance181

index by Sackin55, many others have been proposed with slightly differing properties56. One of the first182

papers to present a systematic comparison of a suite of balance indices (often denoted with the letter ‘B’)183
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and indices of imbalance (denoted with ‘I’) was by Shao and Sokal57, who reported striking differences184

between the studies’ measures. Their central message was that different measures on trees can give185

insight into different aspects of the underlying processes governing the interactions, and one should thus186

consider several measures for any given tree or family of trees. In this study we will consider several tree187

topology-based measures.188

Before describing the measures, it is worthwhile to briefly define the terms which are used to describe189

trees, and the two basic underlying stochastic models which have been proposed to describe neutral190

evolution and the resulting topologies. Phylogenetic trees are mathematical objects which describe the191

evolutionary relationship between individuals with different physical traits from one another, or in the192

case of our model, different mutational combinations (genotypes). In our model, each simulation begins193

with a cell with mutation flag 1, or a genotype with the first allele mutated (1000...), termed the ‘root’, and194

evolution progresses stochastically, by adding individual mutations at subsequent alleles and increasing195

the mutation flag, as described in Fig 1B. At each mutation event, an evolutionary branch point is created,196

which is termed a node in phylogenetic tree terminology. If this node gives rise to no other children during197

the simulation, it is termed a terminal node, or leaf. There are two common, classically referenced models,198

which bear mention here as well, since many tree topology-measures are normalized against them. The199

first, described by Yule in 192458 and sometimes termed the ‘equal rate Markov’ model, begins with a200

single root and proceeds by replacing, uniformly at random, a given leaf with a node with two children of201

its own. The process continues until the desired number of leaves exist. The other main model, termed the202

‘Proportional to Distinguishable Arrangements’ or uniform model, was described by Rosen59. This model,203

which is truly a model of tree growth rather than an explicitly evolutionary process, begins as does the204

Yule model (and indeed ours) with a single node labelled 1. At each update step, a new leaf is added to the205

tree to any point, either internal node or leaf. These models will serve as normalisation factors in several206

of the measures we present below, which are summarised graphically in Fig 4.207

Sackin index208

The Sackin index was the first statistic used to understand the balance of a phylogenetic tree55, 57. To
compute this statistic, one sums the number of ancestors (Ni) for each of the n terminal nodes of the tree:

In
s =

n

∑
i=1

Ni. (1)

This index increases with tree size: under the Yule growth model, its expectation E[In
s ] grows as 2n logn58.209

One can therefore only perform a meaningful comparison of Sackin indices of trees generated from210

tumours if the same size.211

Normalized Sackin index212

To address this dependence on tree size, several normalisations to the Sackin index have been proposed,
two of which we explore here. In particular, one can normalise the Sackin index of a phylogenetic tree to
the expectation value of a similarly sized tree, under the Yule growth model:

IYule =
1
n

(
In
s −2n

n+1

∑
j=2

1
j

)
, (2)

One can alternatively normalise using the Proportional to Distinguishable Arrangements (PDA) model59–61
213

which is simply the Sackin index scaled by n3/2.214
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The B1 statistic215

The B1 statistic, originally described by Shao and Sokal57, considers the balance of a tree. To calculate
the measure, one uses all i internal nodes of the tree with the exception of the root (the founding cell). For
each non-root internal node j, the maximum number of nodes traversed along the longest possible path to
a terminal node, M j, is counted. The B1 statistic is then defined as

B1 = ∑
i

1
M j

∀i 6= root. (3)

N̄216

N̄ reports the average number of nodes above a terminal node. To compute this, we sum the path from217

each terminal node to the root, and divide by the number of terminal nodes. An alternative definition is the218

Sackin index ‘normalised’ by the number of terminal nodes. For a more complete review and comparison219

of the measures presented here, and others, see Blum et al.62 and Shao and Sokal57.220

Examples of how these measures change on several example trees with equal numbers of leaves (but221

different numbers of internal nodes) are presented in Fig 4. In these examples, we compute each of222

the presented measures for comparison. From left to right, the trees contain 4, 3 and 2 internal nodes223

respectively, but the same number (6) of leaves. We note that the measures do not all follow the same224

pattern. For an exhaustive description of all possible trees with 6 leaves, and the correlation of a larger225

family of associated measures, see Shao and Sokal57.226

Results227

Measuring trees from simulation228

As our primary goal is to identify whether tree-based measures allow discrimination of simulated tumours229

with different TIC symmetric division probabilities, we focus on changes in tree measures as we vary230

comparable simulations changing only this parameter. To compare the model tree measures, we first231

perform 50 stochastic simulations of our spatial CA using a range of TIC symmetric division probabilities232

(0.2,0.4,0.6,0.8 and 1.0), holding mutation rate and TAC lifetime constant (λ = 0.01 and β = 4). For233

each simulation, we construct the resulting phylogenetic tree at tumour size 250,000 cells, as described in234

Figure 4. Example phylogenetic trees and their measures. From left to right the trees contain 4, 3
and 2 internal nodes (dots) respectively, but the same number (6) of terminal nodes.
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the Materials and Methods section. We then measure the value of each summary index defined earlier for235

all 50 simulations at the final time point and plot the distribution in a box-whisker plot, which is shown236

in Fig 5 with each data point overlaid in a swarm. Differences between distributions were determined237

using the Wilcoxon rank sum test. While these statistics were performed post hoc, we should note that238

standard statistics can be misleading for simulation based studies with arbitrarily large sample sizes63 (see239

Supplementary Fig 9 for effect size).240

Variation of tree-based measures with symmetric division probability241

The results of the model are presented in Fig 5 (right). We find that all of the indices have monotone242

relationships with symmetric division probabilities except for N̄. Of the normalised indices, the B1 statistic243

has the least overlap in error between symmetric division probabilities. All measure distributions are244

significantly different by the Wilcoxon rank sum test (p < 0.05) except 0.4 and 0.6 in the Sackin index245

normalised by the Yule model (p = 0.08). While we recognize the dangers in reporting p-values in246

simulation based studies 63, we report them here for comparison, and report effect size as well, with full247

statistics reported in Figure 9. The strongest effect is seen in the Sackin index (R2 = 0.871), followed248

closely by the Yule normalised Sackin index (R2 = 0.743).249

Figure 5. A summary of four tree indices measured over a range of symmetric division
probability. We plot the distribution of each of four measures of tree balance for the final resultant trees
from 50 simulations against symmetric division probability. All simulations were run with β = 4 and
λ = 0.01 until a tumour size of 250,000 cells. In each plot we display a box-whisker plot as well as the
individual results as points. NS = non-significant by the Wilcoxon rank sum test.

Dynamics of tree-based measures during tumour growth250

As discussed in Materials and Methods, the measures considered here are strongly dependent on the total251

number of nodes in the tree. With all other parameters held constant, simply allowing a tumour to grow252

larger would increase the number of total mutations, and therefore the number of total nodes, subsequently253
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altering the value of the measure. To ensure that the differences we have noted are robust to changing254

tumour size then, we next consider how these measures evolve during the growth of a tumour.255

Figure 6. Comparing phylogenetic tree measures across symmetric division probability through
tumour growth. We plot the average and standard deviation (error bars) of four phylogenetic tree
measures for each of the 50 simulations for a range of symmetric division probabilities over the course of
tumour growth. Rank is maintained across symmetric division probabilities for each of the 3 tree
measures with which we could discriminate between symmetric division probabilities. As before, N̄ is not
predictive and changes rank throughout tumour growth. All tumours are grown to eventual confluence at
250,000 cells. In all simulations β = 4 and λ = 0.01.

To determine how these measures vary over the life of a growing tumour, we measure the index256

over the course of each simulation at increasing tumour sizes. To accomplish this, we use the life257

history to reconstruct the tree at 20 equally spaced time points during the lifespan of each of the 50258

simulations for each symmetric division probability. The time to fill the domain for each of the symmetric259

division probabilities is quite different as the dynamics of tumours driven by differing symmetric division260

probabilities are different (see Fig 2). So, while we break the life history into equally spaced time intervals,261

as the total times in each family of simulations are different. When we compare across symmetric division262

probabilities we need to consider this ‘time’ to be a surrogate for tumour size instead instead of explicitly263

comparing times. Comparing across tumour size is of greater utility clinically, however, as the age of a264

given tumour is rarely known, while size can be readily approximated.265

After reconstruction, we then create a ‘time’ trace for each statistic. We plot these statistics over266

‘time’ in Fig 6, where each family of 50 simulations (for a given symmetric division probability) is267
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represented by a single trace with the standard deviation represented by the coloured error bars. We find268

that for each of the statistics, except N̄, the relationships between the symmetric division probabilities are269

maintained over time, suggesting that, if we know the tumour size, and true phylogeny, we can estimate the270

relative symmetric division probability between two samples from these measures. This statement must271

be somewhat qualified by the fact that mutation probability was also held constant for these simulations.272

While estimating mutation probability is not trivial, significant advances have been made into measuring273

the speed of the ‘evolutionary clock’ of tumours: essentially a proxy for mutation probability64. Further,274

we found that the rank order of each discriminatory measure holds throughout tumour growth, indeed275

becoming more discriminatory as the tumours grow larger (with the exception of N̄). As the tumours276

simulated in this study are unrealistically small given the computational constraints, this information277

gives us hope that in tumours of realistic size, these measures would be even more useful. This becomes278

particularly important as the statistics that we have calculated come from the ‘true trees’, that is, trees279

comprised of all mutation events. In reality, trees would be inferred from the imperfect information280

gleaned from biopsies.281

Dependence of tree-based measures on mutation probability282

As the tree measures depend heavily on the number of mutations within a given tumour, and therefore the283

number of branches within a given tree, we next ask how these measures behave when we vary mutation284

probability (λ ) and symmetric division probability simultaneously. To answer this, we perform 10285

stochastic simulations for each combination of the symmetric division probabilites considered previously286

and 5 different values for λ varying over two orders of magnitude (0.001,0.005,0.01,0.05,0.1). We then287

use the previously described method to reconstruct the resulting phylogenies and calculate the measures288

previously discussed. In particular, we ask how the Sackin index, the B1 statistic and the normalized289

Sackin index perform over this range of λ to better understand the applicability of these measures in290

determining differences in symmetric division probability.291

We plot the results of this parameter investigation in Fig 7. In each heat map, we plot the mean of292

the 10 simulations for each parameter combination with symmetric division probability varied along the293

horizontal axis and mutation probability along the vertical. The indices which are not normalized by294

branch number, namely the Sackin index and B1 statistic, increase monotonically with mutation probability295

and symmetric division probability in all cases. The Sackin index normalised by the PDA model, however,296

varies somewhat unexpectedly and has a global minimum at symmetric division probability of 1.0 and297

mutation probability 0.01. This measure is monotonic in symmetric division probability except at the298

highest mutation probability where it becomes somewhat more difficult to determine the differences.299

As before, the B1 statistic appears to be the most stable, and only breaks down slightly in its ability to300

distinguish between the families of simulations at the lowest mutation probability (λ = 0.001) and the301

middle range of symmetric division probability (symmetric division probabilities = 0.4−0.8), as can be302

seen in Fig 7.303

Discussion304

While the use of phylogenetic trees is increasing in translational oncology laboratories, there has yet to be a305

method found by which we can utilise the information clinically. To address this shortcoming, we worked306

to leverage the growing interest in biomarker derivation from spatially distinct tumour biopsies65, and307

the recent success of Leventhal39 and others in teasing apart complex biological rules from phylogenetic308

information. We developed an individual based model of tumour growth under a TIC driven proliferative309

heterogeneity which undergoes neutral evolution. We then developed an algorithm to construct phyloge-310
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Figure 7. Comparing phylogenetic tree measures across symmetric division probability and
mutation probability. We plot the average of each of four phylogenetic tree measures at the end of each
of 10 simulations for a range of symmetric division probabilities and mutation probabilities. We vary
mutational probability over two orders of magnitude (0.1−0.001), and simulate all tested symmetric
division probabilities. Rank is maintained across symmetric division probabilities for each of the three
four measures with which we could discriminate between symmetric division probabilities with changing
mutation probability, allowing for differentiation between parameters. As before, the N̄ statistic is not
predictive. As expected, for the non-normalized indices, Sackin and B1, the measures change
monotonically with both symmetric division and mutation probability. For the PDA normalized Sackin
index, however, there is a global minimum for λ = 0.01 and α = 1.

netic trees from simulated tumours. The resultant trees were then analysed and compared using a suite311

of statistical measures of tree (im)balance. Through this method, we have generated a large dataset that312

includes the observed statistical measures of the ‘true’ phylogeny for tumours with a range of symmetric313

division probabilities.314

In particular, we compared the classical measures of tree topology – the Sackin index and the B1315

statistic – as well as normalized versions of each across several parameters of our spatial and non-spatial316

models as well as through the process of tumour growth. Not surprisingly, we found that the Sackin317

index was able to discriminate between the families of simulations as it is directly correlated with branch318

number (in this case correlating with total number of mutations in the TICs, which also is increased with319

increasing symmetric division probability). Encouragingly, we also found that the normalised version of320

this metric was able to discriminate between the different symmetric division probabilities, suggesting321

a more meaningful (and measurable) topologic difference between the underlying phylogenetic trees322

resulting from these parameter changes (representing diverse biological traits).323

While we have shown that these measures differ significantly from one another, we have not yet324
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provided a method by which we can use the metric of a given tree to directly predict the symmetric325

division probability of an unknown tumour. However, the present work at least allows us to understand326

the rank order of symmetric division rate for two tumours given their measured indices. This could be327

particularly useful in certain clinical settings. For example, this could allow us to determine how a given328

therapy affects symmetric division probability by using our calculated measures over serial biopsies, and329

subsequent phylogenetic reconstruction.330

Conclusions331

Aiming towards a translatable method by which to infer the symmetric division probability in solid332

tumours, we have identified several phylogenetic tree based measures that correlate with TIC symmetric333

division probability. We have found several measures which are able to discern differences in simulated334

tumours between symmetric division probabilities. These results are robust to changes in tumour size,335

specifically maintaining their rank throughout tumour growth. The rate of mutation does affect these336

results to some degree, but rank is maintained permitting comparison through time, or between tumours of337

similar size.338

While there is some overlap amongst the measures when more than one parameter is varied, with339

information on mutation probability and tumour size, relative symmetric division probability can be340

estimated. we have only restricted our focus to measures of (im)balance, a basic property of phylogenetic341

trees based only on their branching topology. With more information, such as evolutionary branch342

lengths66, 67 which are linked to the ‘speed’ of a tumour’s molecular clock64, some of these limitations could343

be obviated. Further, we have only considered neutral evolution. While most tumour evolution is likely344

neutral48, there is certainly evidence for non-neutrality in the form of driver and passenger mutations47, 68,345

which would drastically affect the resulting phylogenetic trees38 – especially with intervening treatment346

regimens. How non-neutral evolution and treatment affect our measures remain avenues for future work.347
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Supplemental Material486

Pruning trees does not affect rank of statistics487

To visualize the trees more easily in Fig 3, we prune the leaves from each full tree. While this changes the488

absolute value of each of the tree-based measures, it does not affect their relative ranking. This suggests489

that each measure is capturing something fundamental about the biology as it appears invariant with tree490

size. This is corroborated by the results shown in Fig 6, indicating that the rank of each measure is stable491

over tumour growth.492
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Effect size of symmetric division probability493

To better understand the impact of the symmetric division probability on changes in results tree topology,494

rather than just use differences between families of simulations, we compute the regression slope, R2
495

and p-value of the regression line for each case. For the B1 statistic we find a regression slope of496

142.64, R2 = 0.72, p = 1.74× 10−71. For the Sackin index we find a regression slope of 5178.61,497

R2 = 0.871, p≈ 0. For the Yule normalised Sackin index we find a regression slope of−2.380, R2 = 0.743,498

p = 3.25× 10−75. For the N̄ statistic we find a regression slope of −0.111, R2 = 0.0075, p = 0.172.499

These values are plotted in Fig 9.500

Figure 9. Effect size of symmetric division for four tree-based measures. We plot the effect size for
the data shown in Fig 5.
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Algorithm for generating individual cell ‘genomes’ from mutational flag and life history501

Here we describe the algorithm we created to develop the individual cells ‘genomes’ from the mutational502

flag and the life history. Using this reconstruction algorithm allows for significant increase in speed of our503

tumour growth model and reduced memory requirements by several orders of magnitude.504

Algorithm 1: Pseudo-code describing algorithm to reconstruct genomes from unique mutation flags
and family history.

Data: Dictionary of unique Parent:Child pairs and spatial array of unique mutation flags at time
point of interest.

Result: Array of bitstrings representing ‘genomes’ of cells in array.
for All cells in array do

if mutation ID = 0 then
break

end
set bitstring to ’1’ + maxval(mutation ID) ’0’;
final-parent = 2;
if mutation ID = 1 then

finalize bitstring
end
while final-parent > 1 do

final-parent = lookup parent(cell of interest) in dictionary;
flip bitstring at position(cell of interest) to ’1’;

end
finalize bitstring;

end
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