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Abstract  
 
Identifying nuclei is often a critical first step in analyzing microscopy images of cells, and 
classical image processing algorithms are still commonly used for this task. Recent studies 
indicate that deep learning may yield superior accuracy, but its performance has not been 
evaluated for high-throughput nucleus segmentation in large collections of images. We compare 
two deep learning strategies for identifying nuclei in fluorescence microscopy images (U-Net 
and DeepCell) alongside a classical approach that does not use machine learning. We measure 
accuracy, types of errors, and computational complexity to benchmark these approaches on a 
large data set. We publicly release the set of 23,165 manually annotated nuclei and source 
code to reproduce the results. Our evaluation shows that U-Net outperforms both pixel-wise 
classification networks and classical algorithms. Although deep learning requires more 
computation and annotation time than classical algorithms, it improves accuracy and halves the 
number of errors. 
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Main 
Image analysis is a powerful tool in cell biology to collect quantitative measurements in time and 
space with precision, speed, and sensitivity. From image-based assays to high-content 
screening 1,2, microscopy images have led to understanding genetic perturbations, pursuing 
drug discovery, and phenotyping cells in biomedical applications and cell biology research 3,4. 
The most widely used quantitative imaging technique in biological laboratories is fluorescence 
imaging; with automation it can easily produce terabytes of primary research data 5. Accurate 
and automated analysis methods are key to successfully quantify relevant biology in such large 
image collections. 
 
One critical step in quantifying fluorescent images is often the identification of the nucleus of 
each cell with a DNA stain, and there is a long history of research efforts to designing and 
improving nuclear and cellular segmentation 6. One of the most commonly used strategies for 
nucleus segmentation is Otsu’s thresholding method 7 followed by seeded watershed 8,9, 
because of its effectiveness, simplicity of use and computational efficiency. Machine learning-
based segmentation methods have also been introduced for segmenting cells 10, which typically 
require annotated examples in the form of segmentation masks or interactive scribbles. Many of 
these strategies are readily available in various bioimage software packages 11, including open 
source options such as CellProfiler 12, Ilastik 10, and ImageJ/Fiji 13, facilitating their adoption in 
routine biological research. 
 
Despite widespread adoption, segmentation tools in biology generally do yield non-trivial 
amounts of segmentation error. These may silently propagate to downstream analyses, yielding 
unreliable measures or systemic noise that is difficult to quantify and factor out. There are 
several causes for segmentation errors. First, existing algorithms have limitations due to the 
assumptions made in the computational design that do not always hold, such as thresholding 
methods that assume bimodal intensity distributions, or region growing that expects clearly 
separable boundaries. Second, the most popular solutions for nucleus segmentation were 
originally formulated and adopted several decades ago when the biological systems and 
phenotypes of interest were often simpler; however, as biology pushes the limits of high-
throughput cellular and tissue models, natural and subtle variations of biologically meaningful 
phenotypes are more challenging to segment. Finally, algorithms are usually configured using a 
few –hopefully representative– images from the experiment, but variations in signal quality and 
the presence of noise pose challenges to the robustness and reliability of the solution at large 
scale.  
 
The ideal approach to nucleus segmentation would be a generic, robust and fully automated 
solution that is as reliable as modern face detection technologies deployed in mobile 
applications and social networks. The current state of the art in face detection and many other 
computer vision tasks is based on deep learning 14, which has demonstrated high accuracy, 
even surpassing human-level performance in certain tasks 15. Several models based on deep 
learning have already been proposed for cell segmentation in biological applications, most 
notably U-Net 16 and DeepCell 17, which are based on convolutional neural networks.  
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In this paper, we evaluate the performance of these two deep learning-based strategies, and 
investigate their potential to improve the accuracy of nucleus segmentation in fluorescence 
images. Expert biologists on our team hand-annotated more than 20,000 nuclei in an image 
collection of 200 images of the DNA channel from a large image-based chemical screen, 
sampled from a diverse set of treatments 18. Our evaluation methodology measures the success 
of identifying objects, whereas previous studies focused on pixel or boundary accuracy 
measures 17,19 that may ignore certain object-level errors. We also analyze different types of 
segmentation errors in each method, computational efficiency, and the impact of quantity and 
quality of training data for creating deep learning models. 

Results  
Identifying nuclei in an image is best framed as an “instance segmentation” problem 20, where 
the challenge is to find distinct regions corresponding to a single class of objects: the nucleus. 
Semantic segmentation 21, which splits an image to regions of various classes without requiring 
objects to be separated, is not helpful for nucleus segmentation because there is only one class, 
and touching nuclei would not be distinguished from each other. Both of the deep learning 
strategies evaluated in this paper are cases of instance segmentation that formulate nucleus 
segmentation as a boundary detection problem.  
 
The boundary detection problem consists of identifying three different types of pixels in an 
image of nuclei: 1) background, 2) interior of nuclei, and 3) boundaries of nuclei. This 
formulation simplifies the problem of instance segmentation into a three-class, pixel-wise 
classification problem (Figure 1). If the boundary mask is correctly predicted, individual 
instances of nuclei can be recovered from the interior mask using a connected component 
labeling algorithm 22, thus successfully distinguishing two or more touching nuclei. Note that 
while we pose this as a pixel-wise classification problem of boundaries, we evaluate the 
performance on the success of identifying entire objects. 
 
A diverse set of convolutional neural network (CNN) architectures can address pixel-wise 
classification; here we evaluate two, representing two families of prominent models: DeepCell 17 
and U-Net 16 (Online Methods). We use the same preprocessing and postprocessing pipeline 
when evaluating both CNN models, so differences in performance are explained by architectural 
choices only.  
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Figure 1. Strategy of the evaluated deep learning approaches. Our main goal is to follow the popular strategy of 
segmenting each nucleus and micronucleus as a distinct entity, regardless of whether it shares the same cell body 
with another nucleus. It is generally possible to group nuclei within a single cell using other channels of information in 
a post-processing step if the assay requires it. a) Images of the DNA channel are manually annotated, labeling each 
nucleus as a separate object. Then, labeled instances are transformed to masks for background, nucleus interior and 
boundaries. A convolutional neural network (CNN) is trained using the images and their corresponding masks. b) The 
trained CNN generates predictions for the three class classification problem. Each pixel belongs to only one of the 
three categories. In post-processing, the predicted boundary mask is used to identify each individual instance of a 
nucleus. 

Deep learning improves nucleus segmentation accuracy 
Overall, we find that deep learning models exhibit higher accuracy than classical segmentation 
algorithms, both in terms of the number of correctly identified objects, as well as the localization 
of boundaries of each nucleus (Figure 2). We evaluate these properties using the F1 score (the 
harmonic average of precision and recall) averaged over increasingly stringent thresholds of 
overlap between the ground truth and prediction. U-Net and DeepCell obtained higher average 
F1 scores, yielding 0.85 and 0.78 respectively, versus 0.74 and 0.72 for the advanced and basic 
CellProfiler pipelines selected as a baseline (see Online Methods). This 20% improvement is a 
significant margin when experiments are run at large scale with thousands of images. U-Net 
yields a higher average F1 score across larger thresholds (Figure 2a), indicating that the 
boundaries of objects are more precisely mapped to the correct contours compared to the other 
methods.  
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Figure 2. Segmentation performance of four strategies compared against ground-truth expert segmentations. 
a) Average F1 score vs. nucleus coverage for U-Net (green), DeepCell (yellow), CellProfiler advanced (red), and 
CellProfiler basic (blue). The y axis is average F1 score (higher is better), which measures the proportion of correctly 
segmented objects. The x axis represents intersection-over-union (IoU) thresholds as a measurement of how well 
aligned the ground truth and estimated segmentations must be to count a correctly detected nucleus. Higher 
thresholds indicate stricter boundary matching. Notice that average F1 scores remain nearly constant up to IoU=0.80; 
at higher thresholds, performance decreases sharply, which indicates that the proportion of correctly segmented 
objects decreases when stricter boundaries are required to count a positive detection. b) Example segmentations 
obtained with each of the four evaluated methods sampled to illustrate performance differences. Segmentation 
boundaries are in red, and errors are indicated with yellow arrows. 
 
The most common errors for all methods are merged objects, which occur when the 
segmentation fails to separate two or more touching nuclei (yellow arrows in Figure 2b). Deep 
learning strategies tend to reduce this type of error (more in Figure 3c) and provide tighter and 
smoother segmentation boundaries than those estimated by global Otsu thresholding and 
declumping, which is at the core of the baseline CellProfiler pipelines for nucleus segmentation. 
 
Qualitatively, nucleus boundaries predicted by the U-Net appear to define objects better than 
those produced by human annotators using an assistive annotation tool, which can introduce 
boundary artifacts (Online Methods). Neural nets can learn to provide edges closer to the nuclei 
with fewer gaps and better-delineated shapes, despite being trained with examples that have 
such boundary artifacts, showing ability to generalize beyond noise. Overcoming the limitation 
of assisted annotations is a major strength of this approach because fixing boundary artifacts by 
hand in the training data is very time consuming. We suspect that the accuracy drop observed 
in the segmentation performance plot at IoU=0.85 (Figure 2a) may be partly explained by 
inaccurate boundaries in ground truth annotations, i.e. improved segmentations may be unfairly 
scored at high thresholds. 

Deep learning excels at correct splitting of adjacent nuclei 
Deep learning methods make fewer segmentation mistakes compared to classical pipelines, 
effectively correcting most of their typical errors (Figure 3a). Here, an error is defined as when a 
nucleus in the ground truth is missed in an estimated segmentation mask after applying a 
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minimum IoU threshold of 0.7. By this metric, U-Net achieves an error rate of 8.1%, DeepCell 
14.0%, advanced CellProfiler 15.5% and basic CellProfiler 20.1%. These results are consistent 
with the evaluation of accuracy performed at multiple IoU thresholds, indicating that U-Net 
obtains significantly better performance. 
 

 
Figure 3. Analysis of segmentation errors (missed, splits, merged objects). The 5,720 nuclei in the test set were 
used in this analysis. a) Counts of missed nuclei by object size (see table). Missed objects in this analysis were 
counted using an IoU threshold of 0.7, which offers a good balance between strict nucleus coverage and robustness 
to noise in ground truth annotations. b) Example image illustrating sizes of nuclei. c) Counts of merged and split 
nuclei. These errors are identified by masks that cover multiple objects with at least 0.1 IoU. d) Example merges and 
splits. 
 
To understand the performance differences among the evaluated methods, we categorized 
missed objects by size (Figure 3a, b) and segmentation errors by type (merges vs. splits) 
(Figure 3b, c). An object is missed when the segmentation does not meet the minimum IoU 
threshold criterion. A merge is counted when one estimated mask is found covering more than 
one ground truth mask. Similarly, a split is counted when a ground truth mask is being covered 
by more than one estimated mask. Note that splits and merges are a subset of the total number 
of errors, and partially overlap with the number of missed objects. That is, some splits and all 
merges result in one or more missing objects, but not all missing objects are a result of a split or 
merge.  
 
Deep learning corrects almost all of the errors made by classical pipelines for larger nuclei. We 
also note that all methods usually fail to capture tiny nuclei correctly (generally, micronuclei, 
which are readily confounded with debris or artifacts, and represent about 15% of all objects in 
the test set) (Figure 3a). Interestingly, although they make almost the same number of mistakes 
(14.0% vs 15.5%), DeepCell tends to accumulate errors for tiny nuclei only while the advanced 
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CellProfiler pipeline tends to make errors across all sizes (Figure 3b). Tiny nuclei may be 
particularly hard to segment using the boundary detection approach because most of the pixels 
are encoded in the boundary, and very few pixels are left for the interior which is used to 
produce segmentation masks. This might be addressed in part by increasing image resolution, 
either optically or computationally (Discussion). 
 
Both deep learning approaches are effective at recognizing boundaries to separate touching 
nuclei and correct typical error modes of classical algorithms: merges and splits (Figure 3c and 
3d). Split errors produced by the advanced CellProfiler pipeline reveal a trade-off when 
configuring the parameters of classical algorithms: in order to fix merges we have to accept 
some more splits. A similar situation happens with U-Net: it has learned to separate clumped 
nuclei very effectively because the boundary class has 10 times more weight in the loss function 
(Online Methods), which at the same time forces the network to make some splits to avoid the 
cost of missing real boundaries. 

More training data improves accuracy and reduces errors 
Using U-Net models only –given their better performance and faster running times– we found 
that training with just two images performs more accurately than an advanced CellProfiler 
pipeline (Figure 4a). This is consistent with previous reports on DeepCell 17 and U-Net 16, which 
were designed to learn from few images by processing patches and using data augmentation. 
Since training a convolutional neural network requires the additional effort of manually 
annotating example images for learning, limiting the investment of time from expert biologists is 
valuable. 
 
Providing more annotated examples improved segmentation accuracy and reduced the number 
of errors significantly (Figure 4). Accuracy improves with more data, gaining a few points of 
performance as more annotated images are used, up to the full 100 images in the training set 
(Figure 4a). We found little difference in this trend whether using basic data augmentation vs. 
using extra augmentations based on elastic deformations (Online Methods). 
 
Segmentation errors are reduced significantly with more annotated examples, by roughly half 
(Figure 4b), but as above, even training with two images produces results better than the 
advanced CellProfiler baseline. Touching nuclei particularly benefit from more training data, 
which helps to reduce the number of merge errors. The trend for split errors is to increase with 
more data as an effect of learning to recognize difficult boundaries; however, this represents a 
very small fraction of the total number of errors that are still fewer than the number of splits 
made by the advanced CellProfiler pipeline.  
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Figure 4. Impact of the number of annotated images used for training a U-Net model. Basic augmentations 
include flips, 90 degree rotations and random crops. Extra augmentations include the basic plus elastic deformations. 
a) Accuracy improves as a function of the number of training images, up to a plateau around 20 images (representing 
roughly 2,000 nuclei). b) Segmentation errors are reduced overall as the number of training images increases, but the 
impact differs for merges vs. splits. The advanced CellProfiler pipeline is shown as dotted lines throughout. Results 
are reported using the validation set to prevent over-optimizing models in the test set (holdout). For all experiments, 
we randomly sampled (with replacement) subsets (n = 2, 4, 6, 8, 10, 20, 40, 60, 80, 100) of images from the training 
set (n=100) and repeated 10 times to evaluate performance. Data points in plots are the mean of repetitions. 
Although the percent overlap between the random samples increases with increasing sample size, and is 100% for 
n=100, we nonetheless kept the number of repeats fixed (=10) for consistency. 

Providing a variety of training images improves generalization 
We found that training with images that exhibit different types of noise produces models that 
transfer better to other sets (Figure 5a). In contrast, training on an image set that has 
homogeneous acquisition conditions does not transfer as well to other experiments (Figure 5b). 
We tested U-Net models trained on one image set and evaluated their performance when 
transferring to another set. In one case we took images of nuclei from a prior study (“Van 
Valen’s Set”)17, representing different experiments and including representative examples of 
diverse signal qualities, cell lines, and acquisition conditions (Figure 5d). In the other case we 
used the BBBC022 image collection which exhibits homogeneous signal quality and was 
acquired under similar technical conditions (Figure 5c). 
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Figure 5. Signal quality is the main challenge when transferring models across experiments: Performance 
differences when models are trained and evaluated in different experiments. a) Models evaluated on the BBBC022 
test set, including a U-Net trained on the same set, another U-Net trained on Van Valen’s set, and a CellProfiler 
pipeline. The results indicate that transferring the model from one screen to another can bring improved performance. 
b) Models evaluated in Van Valen’s test set, including CellProfiler baselines adapted to this set (Online Methods), a 
U-Net trained on the same set, and another U-Net trained on BBBC022. The results illustrate the challenges of 
dealing with large signal variation. c) Example images from BBBC022 showing homogeneous signal with uniform 
background. d) Example images from Van Valen’s set illustrating various types of realistic artifacts, such as 
background noise and high signal variance. Number of training images: 100 in BBBC022 and 9 in Van Valen. 
Number of test images: 50 in BBBC022 and 3 in Van Valen. 
 
A model trained only on the 9 diverse images of Van Valen’s set generalizes well to test images 
in BBBC022, improving performance over the baseline (Figure 5a) and reaching comparable 
performance to the model trained on BBBC022 training images. Note that training a network on 
images of BBBC022 improves performance with respect to the CellProfiler baseline. The 
transferred model does not fix all the errors, likely because the number of training examples is 
limited. Nevertheless, the transferred performance indicates that it is possible to reuse models 
across experiments to improve segmentation accuracy. 
 
A transfer from the more homogenous BBBC022 set to the more diverse Van Valen set is less 
successful: a model trained with 100 examples from the BBBC022 set fails to improve on the 
test set of Van Valen’s images despite the availability of more data (Figure 5b). This 
demonstrates the challenges of dealing with varying signal quality, which is a frequent concern 
in high-throughput and high-content screens. The large gap in performance is explained by 
varying signal conditions (Figure 5c, d): because the U-Net did not observe these variations 
during training, it fails to correctly segment test images.  
 
The CellProfiler pipelines also confirm the difficulty of handling noisy images. A single pipeline 
cannot deal with all variations in Van Valen’s test set, requiring the adjustment of advanced 
settings and the splitting of cases into two different pipelines (Online Methods). In BBBC022, a 
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single pipeline works well due in part to the homogeneity of signal in this collection; the errors 
are due to challenging phenotypic variations, such as tiny nuclei or clumped objects. 

Deep learning needs more computing and annotation time than 
classical methods 
Although we found the performance of deep learning to be favorable in terms of improving 
segmentation accuracy, we also found that this comes at higher computational cost and 
annotation time. First, deep learning requires significantly more time to prepare training data 
with manual annotations (Figure 6a). Second, deep learning needs the researchers to train a 
model and tune its parameters (Figure 6b), usually with special hardware. Third, when a model 
has been trained, it is slower to run on new images than classical algorithms (Figure 6c). 
However, running times can be accelerated using graphic cards, which makes the technique 
usable in practice (Figure 6d). 

 
 
Figure 6. Evaluation of the time needed to create annotations, train, and run segmentation models. a) 
Preparation time measures hands on, expert time annotating images or creating CellProfiler pipelines. Manually 
annotating 100 training images with about 11,500 nuclei requires significantly longer times. b) Neural networks need 
to be trained while CellProfiler pipelines do not need additional processing. Training algorithms were run on a single 
NVIDIA Titan X GPU. DeepCell trains an ensemble of 5 models, which was used in all other evaluations. c) 
CellProfiler pipelines and trained neural networks are run on new images using only CPU cores to measure the 
computational cost of segmenting a single image. Deep learning needs significantly more resources to accomplish 
the task. d) Deep learning models can be accelerated using GPUs, which have thousands of computing cores that 
allow algorithms to run operations in parallel. This reduces significantly the elapsed time, making it practical and even 
faster than classical solutions. The GPU used in this evaluation is a single NVIDIA Titan X GPU. 
 
We observed that the time invested by experts for annotating images is significantly longer than 
configuring CellProfiler segmentation pipelines (Figure 6a). We estimate that manually 
annotating 100 images for training (~11,500 objects) takes 50 hours of work using an assisted-
segmentation tool (Online Methods). In contrast, a basic CellProfiler pipeline can be calibrated 
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in 15 to 30 minutes of interaction with the tool, setting up a configuration that even users without 
extensive experience nor computational expertise could complete. CellProfiler is very flexible 
and allows users to add more modules in order to correct certain errors and factor out artifacts, 
creating an advanced pipeline that can take from 1 to 3 hours. 
 
Training deep learning models takes substantial computing time on GPUs, while CellProfiler 
pipelines do not need any additional training or post-processing (Figure 6b). In our study, the 
deep learning models under evaluation (Online Methods) are big enough to need a GPU for 
training, but light enough to be trained in a few hours. In particular, a U-Net can be trained in a 
single Nvidia Titan X GPU in just one hour, while DeepCell takes 25 hours (an ensemble of 5 
models as suggested in the original work 17, which required 5 hours each in our experiments). 
Also, training models may need preliminary experiments to calibrate hyperparameters of the 
neural network (e.g. learning rate, batch size, epochs), which adds more hands-on time. 
 
When segmenting new images using CPU cores, deep learning models are slower than 
CellProfiler pipelines (Figure 6c). The computational complexity in terms of space (memory) and 
time (operations) of a convolutional neural network is proportional to the number of layers, the 
number of filters, and the size of images. As these architectures get deeper and more complex, 
they involve more operations to produce the final result, and thus require more computing 
power. This is in contrast to classical segmentation algorithms whose thresholding and filtering 
operations have relatively limited computing requirements that scale with the size of images. 
Even with 8 times more cores, a U-Net takes 10.1 seconds to segment a single image, which 
results in about 20 times more computing power requirements than the advanced CellProfiler 
pipeline. CellProfiler pipelines are run in a single CPU core and take 2.2 and 4.3 seconds for the 
basic and advanced pipelines respectively. 
 
Using GPU acceleration can significantly speed up the computations of deep learning models, 
making them very usable and efficient in practice (Figure 6d). Segmenting a single image with a 
U-Net model takes only 0.6 seconds on a Nvidia Titan X GPU, improving computation times by 
a factor of 16X. Note that no batching was used for prediction, which can accelerate 
computation of groups of images even further. This result shows that a deep learning model is 
faster than classical algorithms when using appropriate hardware. The DeepCell model takes 
significantly more computing time even with GPU acceleration, which is explained by the patch-
based design of the model not fully exploiting parallel hardware. However, DeepCell is more 
memory efficient and could process larger images without tiling. 
 
 

Discussion  
Our results show that deep learning strategies improve segmentation accuracy and reduce the 
number of errors significantly as compared to baselines based on classical image processing 
algorithms. In our benchmark, U-Net provided the best performance in all the tests that 
measured accuracy and error rates. Despite requiring significant annotation effort and 
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computational cost, deep learning methods can have a positive impact on the quality and 
reliability of the measurements extracted from fluorescence images.  

Improved accuracy 
The results show that U-Net outperforms DeepCell in all our benchmarks. This can be explained 
by several architectural differences between the two models: U-Net makes special use of skip 
connections, which are known to improve training stability, speed, and accuracy of convolutional 
neural networks 23. In contrast, DeepCell follows a simpler design with a stack of convolutional 
layers. Also, the U-Net architecture has a total of 7.7 million parameters versus 2.5 million for 
DeepCell, which translates in more learning capacity in the U-Net. More parameters may make 
the model prone to overfitting; however, we did not observe evidence of this being a problem in 
our experiments with a single dataset, i.e., test performance did not drop significantly with 
respect to training and validation when running evaluations in the BBBC022 set. 
 
The analysis of errors indicates that deep learning can fix most of the segmentation errors 
observed in classical algorithms, especially merges. One special type of error that represents a 
challenge for both deep learning models is the segmentation of tiny nuclei. If needed for a given 
application, this could be solved by increasing the resolution of images, either during acquisition 
24 or with computational methods such as resizing images to make objects look bigger. 
Alternatively, different loss functions adapted to this problem might be designed. 

Training data 
In our evaluation, the amount of training data was shown to be an important factor to reduce the 
number of errors. Our results confirm that training a neural network with only a few images is 
enough to get improved performance relative to non-deep learning baselines. However, in order 
to improve accuracy and leverage the learning capacity of deep learning models, more data is 
required. Importantly, a neural network can also be reused across experiments, as long as the 
training data incorporates variations in morphological phenotypes as well as variations in signal 
quality and acquisition conditions. We argue that a single deep learning model might be 
constructed to address all the challenges of nucleus segmentation in fluorescence images if a 
diverse database of annotated examples were to be collected to incorporate these two critical 
axes of variation. We advocate for collecting that data collaboratively from different research 
labs, so everyone will benefit from a shared resource that can be used for training robust neural 
networks. We have begun such an effort via the 2018 Data Science Bowl 
https://www.kaggle.com/c/data-science-bowl-2018/. 

Computational cost 
We observed that U-Net is faster than DeepCell when using GPU acceleration despite U-Net’s 
largernumber of parameters. By design, DeepCell processes images using a patch-based 
approach for single pixel classification, which involves redundant computations and does not 
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take full advantage of GPU parallelism. CellProfiler pipelines do not require acceleration, but are 
limited by the accuracy of the underlying algorithms. 
 
Deep learning models generally run a higher computational cost. GPUs can be useful in 
microscopy laboratories for accelerating accurate neural network models; if acquisition or 
maintenance is prohibitive, cloud computing allows laboratories to run deep learning models 
using remote computing resources on demand. Adopting these solutions will equip biologists 
with essential tools for many other image analysis tasks based on artificial intelligence in the 
future. 
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Online Methods  

Experimental Design 
The main dataset in this paper, BBBC022, was split in three subsets, using 50% of the images 
for training, 25% for validation, and 25% for testing (holdout set). All optimization steps of the 
deep learning strategies were tuned using the training and validation sets, and the reported 
results are obtained with final evaluations using the holdout test set (unless otherwise 
indicated). 
 
We evaluate four segmentation strategies, two based on deep learning, and two baseline 
pipelines based on the CellProfiler software. The deep learning strategies are U-Net 16, 
representing a family of neural networks originally designed for segmentation; and DeepCell 17, 
representing another family of neural networks for patch-based, pixel-wise classification. The 
baseline segmentation pipelines include an advanced settings mode and a basic settings mode. 
 
With trained deep learning models and calibrated CellProfiler pipelines, we proceeded to 
segment all images in the test set. To evaluate and compare the estimated masks we use the 
average F1 score and modes of error. 

Image Collection 
The image set is a high-throughput experiment of chemical perturbations on U2OS cells, 
comprising 1,600 bioactive compounds 18. The effect of treatments was imaged using the Cell 
Painting assay 25 which labels cell structures using six stains, including Hoechst for nuclei. From 
this image collection, we randomly sampled 200 fields of view of the DNA channel, each 
selected from a different compound. By doing so, phenotypes induced by 200 distinct chemical 
perturbations were sampled. 
 
The original image collection is part of the Broad Bioimage Benchmark Collection, with 
accession number BBBC022, and publicly available at 
https://data.broadinstitute.org/bbbc/BBBC022/. We will contribute the set of manually annotated 
nuclei to this collection. 

Expert Annotations 
Each image in the sampled subset was reviewed and manually annotated by PhD-level expert 
biologists. Annotations were made to label each single nucleus as a distinguishable object, even 
if nuclei happen to be clumped together or appear to be touching each other. Nuclei of all sizes 
and shapes were included as our goal was to densely annotate every single nucleus that can be 
recognized in the sampled images, regardless of its phenotype. In this way, a wide variety of 
phenotypes was covered, including micronuclei, toroid nuclei, fragmented nuclei, round nuclei, 
and elongated nuclei, among others 18. 
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We created a web-based annotation tool to complete single-object masks for all images. Our 
user interface allows the expert to zoom in and out to double check details, and also presents 
the annotation mask overlaid on top of the original image using a configurable transparency 
layer. Importantly, our annotation tool is based on assisted segmentation based on superpixels, 
which are computed based on intensity features to facilitate user interactions. The source code 
for the annotation tools is made publicly available. 

DeepCell 
DeepCell 17 is a CNN-based strategy to segment images of cells, using a patch-based, single 
pixel classification objective. The network architecture has seven convolutional layers, each 
equipped with a ReLu nonlinearity 26 and batch normalization 27; three max-pooling layers to 
progressively reduce the spatial support of feature maps; and two fully connected layers; 
totalling about 2.5 million parameters for training. This architecture has a receptive field of 
61x61 pixels, which is the approximate area needed to cover a single cell, and produces as 
output a three-class probability distribution for the pixel centered in the patch. 
 
In our evaluation, we use the recommended configuration reported by Van Valen et al. 17, which 
was demonstrated to be accurate on a variety of cell segmentation tasks, including mammalian 
cell segmentation and nuclei. Their configuration include training an ensemble of five replicate 
networks to make predictions in images. The final segmentation mask is the average of the 
outputs produced by each individual network. The ensemble increases processing time, but can 
also improve segmentation accuracy. The settings of the DeepCell system that we used in our 
experiments can be reproduced using the following Docker container: 
https://hub.docker.com/r/jccaicedo/deepcell/.   

U-Net 
The U-Net architecture 16 resembles an autoencoder 28 with two main sub-structures: 1) an 
encoder, which takes an input image and reduces its spatial resolution through multiple 
convolutional layers to create a representation encoding. 2) A decoder, which takes the 
representation encoding and increases spatial resolution back to produce a reconstructed 
image as output. The U-Net introduces two innovations to this architecture: First, the objective 
function is set to reconstruct a segmentation mask using a classification loss; and second, the 
convolutional layers of the encoder are connected to the corresponding layers of the same 
resolution in the decoder using skip connections. 
 
The U-Net evaluated in our work consists of eight convolutional layers and three max pooling 
layers in the encoder branch, and eight equivalent convolutional layers with upscaling layers in 
the decoder branch. All convolutional layers are followed by a batch normalization layer, and the 
skip connections copy the feature maps from the encoder to the decoder. The receptive field of 
the U-Net is set to 256 x 256 pixels during training, which can cover a large group of cells at the 
same time. This architecture has a total of 7.7 million trainable parameters. 
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We adapted the objective function as a weighted classification loss, giving 10 times more 
importance to the boundary class. We apply basic data augmentation during training, including 
random cropping, flips, 90 degree rotations, and illumination variations. Also, we apply 
additional data augmentation using elastic deformations, as discussed by the authors 16. The 
training parameters for this network were tuned using the training and validation sets, and the 
final model is applied to the test set to report performance. The source code of our U-Net 
implementation can be found in https://github.com/carpenterlab/unet4nuclei. 

Evaluation metrics 
Measuring the performance of cell segmentation has been generally approached as measuring 
the difference between two segmentation masks: a reference mask with ground truth objects 
representing the true segmentation, vs. the predicted/estimated segmentation mask. These 
metrics include root-mean-square deviation 29, Jaccard index 17, and bivariate similarity index 19, 
among others. However, these metrics focus on evaluating pixel-wise segmentation accuracy 
only, and fail to quantify object-level errors explicitly (such as missed or merged objects). 
 
In our evaluation, we adopt an object-based accuracy metric that uses a measure of area 
coverage to identify correctly segmented nuclei. Intuitively, the metric counts the number of 
single objects that have been correctly separated from the rest using a minimum area coverage 
threshold. The metric relies on the computation of intersection-over-union between ground truth 
objects T and estimated objects E: 

 
Consider  true objects and  estimated objects in an image. A matrix  is computed with 
all  scores between true objects and estimated objects to identify the best pairing. This is a 
very sparse matrix because only a few pairs share enough common area to score a non-zero 

 value. To complete the assignment, a threshold greater than 0.5  is applied to the 
matrix to identify segmentation matches. In our evaluation, we do not accept overlapping 
objects, i.e., one pixel belongs only to a single nucleus. Thus, a threshold greater than 0.5 
ensures that for each nucleus in the ground truth there is no more than one match in the 
predictions, and vice versa. At a given threshold, the object-based segmentation F1 score is 
then computed as: 

  
where  is the evaluated  threshold. We compute the average F1 score across multiple 
thresholds, starting at  up to  with increments . This score 
summarizes the quality of segmentations by simultaneously looking at the proportion of correctly 
identified objects as well as the pixel-wise accuracy of their estimated masks. Our evaluation 
metric is similar in spirit to other evaluation metrics used in computer vision problems, such as 
object detection in the PASCAL challenge 30 and instance segmentation in the COCO challenge 
20,31. One important difference of these metrics and ours is that our problem considers a single 
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object category (the nucleus), and therefore, it is more convenient to adopt the F1 score instead 
of average precision. 
 
In our evaluation, we also measure other quality metrics, including the number and type of 
errors to facilitate performance analysis 32. The following are different types of errors that a 
segmentation algorithm can make: false negatives (missed objects); merges (under-
segmentations), which are identified by several true objects being covered by a single estimated 
mask; and splits (over-segmentations), which are identified by a single true object being 
covered by multiple estimated masks. We identify these errors in the matrix  of  scores 
using a fixed threshold for evaluation, and keep track of them to understand the difficulties of an 
algorithm to successfully segment an image. 

Baseline Segmentation 
We use CellProfiler 3.0 33 pipelines to create baseline segmentations. CellProfiler was used as a 
baseline over other tools because it offers great flexibility to configure multi-step image 
processing pipelines that connect different algorithms for image analysis, and it is widely used in 
biology labs and high-throughput microscopy facilities. The pipelines are configured and tested 
by an expert image analyst using images from the training set, and then run in the validation 
and test set for evaluation. We refer to two CellProfiler pipelines for obtaining baseline 
segmentations: basic and advanced.  
 
The basic pipeline relies only on the configuration of the module IdentifyPrimaryObjects, which 
is frequently used to identify nuclei. The module combines thresholding techniques with area 
and shape rules to separate and filter objects of interest. This is the simplest way of segmenting 
nuclei images when the user does not have extensive experience with image analysis 
operations, yet it is complete enough to allow them to configure various critical parameters. 
 
The advanced pipeline incorporates other modules for preprocessing the inputs and 
postprocessing the outputs of the IdentifyPrimaryObjects module. In our advanced configuration 
we included illumination correction, median filters and opening operations, to enhance and 
suppress features in the input images before applying thresholding. These operations are useful 
to remove noise and prepare images to the same standard for segmentation using the same 
configuration. The postprocessing steps include measuring objects to apply additional filters and 
generate the output masks.  
 
A single pipeline was used for segmenting images in the BBBC022 dataset, while Van Valen’s 
set required to split the workflow in two different pipelines. We observed large signal variation in 
Van Valen’s set given that these images come from different experiments and reflect realistic 
acquisition modes. Two settings were needed for thresholding, the first for normal single mode 
pixel intensity distributions and another one for bimodal distributions. The latter is applied to 
cases where subpopulations of nuclei are significantly brighter than the rest, requiring two 
thresholds. We used a clustering approach to automatically decide which images needed which 
pipeline. The pipelines used in our experiments are released together with the data and code. 
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