Photosynthesis under very high oxygen concentrations in dense microbial mats and biofilms

Dirk de Beer, a# Volker Meyer, a Judith Klatt, a and Tong Li a

Max-Plank-Institute for Marine Microbiology, microsensor Research group, Celsiusstrasse 1, 28359 Bremen, Germany

#Address correspondence to Dirk de Beer, dbeer@mpi-bremen.de
Abstract:

Using microsensors O₂ concentrations were measured in photosynthetically active microbial mats of up to 3 mM, corresponding to a partial pressure of 3 bar. This could damage mats by internal gas formation, and be inhibitory by formation of reactive oxygen species (ROS) and reduced effectiveness of RuBisCo. The reliability of the electrochemical microsensors was checked by creating elevated O₂ concentrations in a water volume placed inside a pressure tank. A microsensor mounted with the tip in the gassed water bath showed a response linearly proportional to 5.5 mM corresponding to 4 bar pure O₂ pressure. After release of the pressure the O₂ concentration reduced quickly to 2.5 mM, then stabilized and subsequently reduced slowly over 14 hours to approximately 2 mM. We concluded that the very high O₂ concentrations measured in phototrophic microbial mats are real and O₂ oversaturation in mats is a stable phenomenon. As consequence of high O₂ concentrations, net production of H₂O₂ occurred. The accumulation was, however, limited to the respiratory zone under the photosynthetic layer. Despite the high gas pressure inside mats, no disruption of the mat structure was apparent by bubble formation inside the mats, and bubbles were only observed at mat surfaces. Additions of H₂O₂ to high concentrations in the water column were efficiently removed in the photosynthetically active zone. As the removal rate was linearly proportional to the H₂O₂ influx, this removal occurred possibly not enzymatically but by abiotic processes. Phototrophic microorganisms can produce O₂ at high rates under strongly elevated O₂ levels, despite the decreased efficiency due to the unfavorable kinetics of RuBisCo and energy costs for protection. Under non-limiting light conditions, this apparent dilemma is, however, not disadvantageous.

Importance Biofilms are often used in photobioreactors for production of biomass, food or specialty chemistry. Photosynthesis rates can be limited by high O₂ levels or high O₂/CO₂ ratios which are especially enhanced in biofilms and mats, due to mass transfer limitations. High O₂ may lead to reactive O₂ species (ROS) and reduce the efficiency of RuBisCo. Moreover, gas formation may destabilize their structure. Here we show that extremely high levels of O₂ are possible in mats and biofilms without ebullition, and while maintaining very high photosynthetic activity.
Introduction

In lakes and coastal waters O₂ levels modestly higher than air-saturation is commonly observed (1, 2). In phototrophic microbial mats and microphytobenthos much higher O₂ levels develop due to mass transfer resistance, and indeed 2-5 times air saturation is commonly observed with electrochemical O₂ microsensors (3-6). High O₂ levels, especially under low CO₂, can enhance the oxygenase activity by ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCo) leading to a reduction of net photosynthesis (7). This would preclude the formation of high levels of O₂ by phototrophs, and be especially inhibitory for photosynthesis in mats and biofilms, where due to mass transfer resistance O₂ can accumulate and CO₂ can be depleted. However, detailed studies on hypersaline intact mats showed no effect of elevated O₂ concentrations on net- and gross photosynthesis (8, 9). These studies reported O₂ levels of up to 5 times air saturation, equaling 1 bar of pure O₂. This is remarkable considering the potential cell damage by extreme O₂ levels. O₂ in its ground state is rather unreactive unless catalyzed, however, organisms in oxic environments run the risk of being damaged by formed ROS. O₂-derived ROS comprise superoxide, hydrogen peroxide (H₂O₂), and hydroxyl radicals (10). ROS can be formed by O₂ reacting with cell components that are brought in high energy state in photosynthesis (11) or respiration (12). These activated cell components will more readily produce ROS when the O₂ is in high concentration, as occurs in illuminated phototrophic mats. During photosynthesis light-activated reaction centers in photosystem I and II (PSI and PSII) can react with O₂ to generate ROS. Particularly under high illumination, chlorophyll-a (Chl-a) triplets accumulate, that react with O₂ resulting in the formation of singlet O₂ in PSII and superoxide anion radicals in PSI (Mehler reaction). During respiration activated quinones in the electron transport chain and the terminal electron donor, cytochrome-c oxidase, are the sources of ROS formation. A well-known defense mechanism is the combination of superoxide dismutase that converts superoxide into H₂O₂ and catalase that degrades H₂O₂ to water and O₂. For H₂O₂ microsensors are available. A last issue is the potential for mat disruption by gas formation. Indeed, often bubbles are observed and released from these photosynthetic communities, which indicates internal oversaturation, O₂ partial pressures exceeding atmospheric pressure (9, 13). Especially under conditions where DIC is not limiting, as occurs
in alkaline lakes or in phototrophic bioreactors with purposefully elevated pH, extremely high O₂ levels strongly exceeding partial pressures of 1 bar pure O₂ are theoretically well possible inside biofilms. However, reports on oversaturation are rare, possibly, such observations were considered artifacts. We report extremely high O₂ levels in biofilms and mats of up to 3 times pure O₂ saturation, so 15 times air-saturation. We tested the reliability of our measuring technique, the electrochemical O₂ microsensors, under extremely high O₂ tension. Furthermore, we measured the magnitude of the possible oversaturation in water, and determined the stability of the oversaturation. Also, we assessed the spatial distribution of H₂O₂ in highly active mats to assess community defense mechanisms against ROS.
Results

In different biological systems, mats and biofilms, we measured significant oversaturations of O₂ upon illumination (Fig. 2). At the surface of all mats bubbles were formed during illumination, but no escaping bubbles from within the mats occurred and no evidence of structural damage by bubbles was obvious. In the microbial mat from Solar Lake the highest measured O₂ concentration was approximately 1.1 mol m⁻³, which was over 7 times air-saturation (Fig. 2A). In the microbial mats from the alkaline lake Boitano (Fig. 2B), we measured O₂ maxima of 2.2 mol m⁻³, which is 9 times above air-saturation. The overlaying water column had an oversaturation in O₂, due to the limited water-air exchange. The biofilms grown in alkaline saline water had the highest volumetric activity (Fig. 2C), with an O₂ peak of 2.3 mol m⁻³.

It should be noted that due to the different salinities and temperatures, the air-saturated O₂ concentration was different in each experiment. In the Solar Lake water O₂ was at air-saturation 0.146 mol m⁻³, in the water of Lake Boitano 0.26 mol m⁻³ and in the biofilm experiment 0.16 mol m⁻³.

To test the response of sensors above pure oxygen saturation, a sensor was placed in the pressure tank (Fig. 1) and the O₂ level in the water was increased to 5.5 mol m⁻³ (Fig. 3), by stepwise increasing the pressure to 4 bar during bubbling the water. The resulting calibration was perfectly linear (Fig. 4). After the sensor calibration the tank was vented and the pressure was released to atmospheric level in approximately 10 minutes. The O₂ concentration quickly (in one hour) reduced from 5.5 mol m⁻³ to 2.5 mol m⁻³ and then reduced very slowly in the subsequent 14 hours to 2 mol m⁻³. After that the tank and water volume was ventilated by air, and the signal of the sensor returned to that of air saturation.

To assess the effect of high O₂ on ROS development we measured H₂O₂ profiles as function of illumination (Fig. 5A and B). In illuminated mats, O₂ did not reach oversaturation, but approached pure oxygen saturation. The H₂O₂ sensor measured a background signal, corresponding to 0.5-1 µM H₂O₂, that disappeared in the permanently anoxic zones in the mats. Deep in the mats (below 5 mm in the light, below 3 mm in the dark) the signal went up sharply, probably due to sulfide interference (not shown).

H₂O₂ showed a maximum in the respiratory zone of the mats, clearly below the photosynthesis driven O₂ maximum, and this peak was elevated in the light (Fig. 5). Upon addition of increasing concentrations to
the overlaying water H_2O_2 did not penetrate to below the photosynthetic layer (Fig. 6A). All influxing H_2O_2 was completely consumed at 1.1-1.3 mm depth, independent of the concentration in the water column. Consequently, the conversion rate in the mats (calculated from the interfacial flux divided by the penetration depth) was linearly proportional to the concentration in the water column (Fig. 6B). The H_2O_2 additions did not reduce the oxygen production upon illumination (Fig. 6A).

Discussion

O$_2$ sensors are usually calibrated in O$_2$ free and air saturated water, and occasionally in pure O$_2$. To test whether observations of higher O$_2$ levels in mats are real, we needed to extend the calibration range to above 1 bar pure O$_2$. The microsensor worked perfectly in 5 bar partial pressure O$_2$. After the exposure to extreme O$_2$ levels the sensor response was unchanged. Thus very high levels of O$_2$ can reliably be measured. Oversaturation can remain stable for at least 12 hours (Fig. 3), much longer than the diffusion times (t), calculated using $t=x^2/(2D)$, where x is the distance and D the diffusion coefficient. The O$_2$ maxima in the mats occurred at 0.001-0.005 m depth (Fig. 2), resulting in diffusion times of 4 minutes to 1.5 hour. Consequently, extreme O$_2$ oversaturation in actively photosynthesizing mats and biofilms is indeed very well possible.

We then considered whether such high O$_2$ concentration, above 1 bar partial pressure, can occur without leading to instant ebullition. Oversaturation and bubble formation in liquids is studied since decades, and appears highly complex(14). The pressure inside bubbles is inversely related to their size, as surface tension increases with decreasing bubble diameter. The smallest bubbles are subjected to extremely high (up to 260 atm) surface tensions (15). The ensuing very high internal pressure 'squeezes' gasses out of the bubbles into solution. Thus small bubbles are unstable and tend to dissolve increasingly fast while shrinking. Conversely, very high gas concentrations are needed to overcome the surface tension and to create a bubble. Once a bubble is formed and expands the surface tension goes down and its internal pressure decreases, and it thus absorbs increasingly fast gas from the liquid. There is a critical size below which bubbles dissolve faster than they can grow, even in oversaturated medium. Above the critical size they will grow faster than they dissolve (16).
Thus in clean water, the site of \(\text{O}_2 \) production (e.g. an electrode) \(\text{O}_2 \) levels must be ~300 times higher than saturation, close to 2.5 M, before formation of bubbles can occur (17). This concentration is needed to overcome the surface tension of 260 atm of the initial bubbles. Such partial pressures seem beyond physiological ranges, hence bubble formation by photosynthesis in biological systems like mats and sediments requires an additional mechanism. Formation of bubbles can be stimulated by nucleation on heterogeneous surfaces nucleation (18). Nucleation sites are hydrophobic micro-areas on surfaces, which stabilize microbubbles (<1 µm) and even allow their growth to above the critical size above which bubbles grow faster than they dissolve (14). The surrounding solution must be oversaturated, the local concentrations depend on the transport rate of gas to the bubbles. Hydrophobic microsites are indeed abundant on cell surfaces (19, 20). Their density and accessibility is critical for bubble formation (18).

Degassing of fluids is a function of the surface tension of the liquid, size and internal pressure of bubbles, the viscosity of the liquid and the diffusion coefficient of the gas in this liquid, the release rate of the bubble to the surface and foam building leading to transfer resistance between liquid and air. Ebullition is thus a highly complex phenomenon, but strong oversaturation is very well possible with a degree depending on the density of nucleation sites, their surface properties and mass transfer phenomena. We suspect that potential nucleation sites in phototrophic mats and biofilms are somehow shielded, so that structural damage by internal bubble formation is prevented.

As supersaturation in mats is real and does not necessarily lead to bubbling, the exposed organisms have to deal with the physiological consequences of extreme \(\text{O}_2 \) levels. The physiology of phototrophs and the whole community can be affected in various ways, via substrate stimulation or product inhibition phenomena. Most prominently, the community is expected to suffer from exposure to ROS. Indeed, we observed net production of \(\text{H}_2\text{O}_2 \) in mats especially under high photosynthesis rates, but only by respiratory activity below the photic zone. Both photosynthesis and respiration are sources for \(\text{H}_2\text{O}_2 \).

Apparently, especially the phototrophs have an efficient protection mechanism against \(\text{H}_2\text{O}_2 \) by active degradation of the compound. The power of this protection is demonstrated by the experiment where we enhanced the medium concentration to very high levels. The consumption of \(\text{H}_2\text{O}_2 \) in the photosynthetic
active zone of the mats was first-order suggesting that the degradation was not enzymatically mediated. If

H$_2$O$_2$ were converted enzymatically, its affinity to H$_2$O$_2$ must be very low, which is unlikely for a

protective mechanism. The H$_2$O$_2$ penetrated to 1.2 mm depth, independent of the concentration. At that

location, possibly pools of labile reduced substances are stored by the phototrophs, as protection against

ROS. The phototrophic activity of the mats was not damaged by the exposure to extreme H$_2$O$_2$ levels. In

the deeper zones of the mats where O$_2$ consumption dominates, protection against H$_2$O$_2$ appears to be less

active, as here the H$_2$O$_2$ peak was enhanced by illumination, due to increased respiration, driven by higher

fluxes of photosynthetically produced O$_2$.

Despite the remarkable protection against ROS, photosynthetic organisms still have to cope with potentially

decreased carbon fixation efficiency in the presence of high O$_2$. This is because of increased O$_2$

consumption by photorespiration, the oxygenase reaction of RuBisCo under formation of

phosphoglycolate (21). It is well documented that RuBisCo is sensitive to O$_2$, as the oxygenase activity is

controlled by the O$_2$/CO$_2$ ratio (22). This effect is demonstrated in reconstituted enzyme systems and

spinach chloroplasts, but is much less obvious in intact microbial cells. Aquatic microalgae have a highly

effective carbon concentrating mechanism (CCM) (7, 23, 24), that elevates the intracellular CO$_2$

concentrations by several orders of magnitude and thereby effectively blocks the oxygenase reaction (25).

Moreover, the affinity ratio (ratios of K_m for CO$_2$ and O$_2$) of RuBisCo from microalgae is lower than of

plants (26). Hence also photorespiration is unlikely to be strongly affected by extreme O$_2$ levels, even

when under 3 mM of O$_2$ in the cell surroundings an energy expensive CCM is needed.

The consequences of high O$_2$, enhanced ROS and enhanced oxygenase activity of RuBisCo, are countered

with considerable energy cost. For example, a large part of the intracellularly accumulated dissolved

inorganic carbon (DIC) leaks out again as CO$_2$ permeates easily through membranes (27, 28). While all the

protective leaks and photorespiration are reducing photosynthetic efficiency, it seems not to be of a

disadvantage, as ROS mainly develops when photosynthesis is not light limited. Protection is clearly more

important than energy efficiency under such conditions. This is also manifest in the fact that the highly

active mechanisms to remove superoxide and hydrogen peroxide can make cyanobacterial mats sinks for
these compounds: the mats are able to remove much higher H₂O₂ fluxes than required for protection against their internal production. We are still only scratching the surface of the consequences of high O₂ and ROS, and important regulatory functions are likely to be discovered. Further experiments with the pressure tank will be done to better relate O₂ and DIC levels to photosynthesis rates, energy efficiency and ROS production. Furthermore, due to the enormous partial pressure of O₂ that naturally develops in cyanobacterial mats, these are ideal to study effects of high O₂ on phototrophs and other inhabitants.

Materials and methods

Microbial mats were collected from Solar Lake (Sinai, Egypt, 29°25'20.66"N 34°49'47.66"E) in 1997, brought to the laboratory in Bremen, Germany, and stored at 27°C in artificial seawater with ambient salinity (10.5%), pH 8.2, under irradiance of 400 µmol photons m⁻² s⁻¹, with 12-12 hour diel cycle. The measurements were done within two weeks after sampling, under the same conditions, while the water column was bubbled with air.

Microbial mats were sampled from Lake Boitano (British Columbia, Canada, 51°56'58.02"N 122°7'45.91"W) in June 2017, brought to the laboratory in Calgary and stored at room temperature under irradiance of 136 µmol photons m⁻² s⁻¹, with 12-12 hour diel cycle. The salinity was 0.9%, the pH of the water was 10.5. The measurements were done in two days after sampling at 300 µmol photons m⁻² s⁻¹. An airjet was blown over the water column to maintain a gentle current.

The biofilms were grown from an inoculum obtained from hyperalkaline lake mats (29) in artificial hyperalkaline medium with 85 g L⁻¹ sodium bicarbonate on agar plate submerged at 2 cm depth. The irradiance during cultivation was 100 µmol photons m⁻² s⁻¹, with 12-12 hour diel cycle. The salinity was 8.5%, the pH was 8.9 the temperature 20°C. The microsensor measurement was performed 5 days after inoculation. Light intensity during measurement was 100 µmol photons m⁻² s⁻¹, mixing was provided by a gentle air current above the water surface.
Mats were collected from the d’Es Trenc salina (Mallorca, Spain, 39°20’44.00”N 3° 0’1.73”E) and were maintained at 11% salinity under 300 µmol photons m⁻² s⁻¹, with 12-12 hour diel cycle, at 20°C. Measurements on the effect of H₂O₂ were performed 4 months after sampling, mixing was provided by a gentle air current above the water surface.

O₂ microsensors with a guard cathode and a tip diameter of 10 µm were prepared, calibrated and used as described previously (30, 31). Single anode H₂O₂ electrodes were prepared as described previously (32). Shortly, glass-coated Pt wires were tapered by etching at 2.5 V in saturated KCN and coated with glass in a hot Pt loop, opened at a diameter of 10 µm and reheated to reseal the glass to the Pt wire. Their tips were recessed to 20 µm from the tip, at 2.5 V in saturated KCN. The recesses were filled with porous Pt by electroplating in PtCl₆ (2% in 1M HCl) under microscopic observation until the recesses were filled after approximately 5 minutes. These electrodes were coated with cross-linked bovine serum albumin (BSA).

For this 1 ml 10% BSA in 50 mM phosphate buffer pH 7.3 was vortexed quickly with 10 µL 50% glutaraldehyde, a drop of the mixture was brought in a Pasteur pipette that was made slightly thinner in the tip, and under microscopic guidance the electrode was moved in and out of the mixture until the BSA became syrupy and a thin film covered the electrode. This was dried in air overnight after which a ceramic-like coating developed. A potential was applied of +700 mV against a Ag/AgCl reference, and the sensor was stabilized for 10 minutes in the saline incubation medium and calibrated by adding aliquots of H₂O₂ from a 3% stock that was stabilized by phosphoric acid. The sensor was highly sensitive to sulfide resulting in an elevated signal, and entirely insensitive to O₂. The diffusion coefficient of H₂O₂ in the hypersaline mats was 5.25 x 10⁻¹⁰ m² s⁻¹, obtained from (33), corrected for salinity and the mat matrix(3).

A pressure tank was used to investigate the response of the sensor to high O₂ levels (Fig. 1). The tank was made from stainless steel and had a volume of 11.3 L. The sensor was mounted to the pressure-resistant housing of the amplifier. The amplifier provided the potential of -0.8 V and measured the current of the microsensor. The amplifier was connected with a cable through the lid of the pressure tank to a laptop with a program for recording the microsensor signals. The sensor tip was positioned in a beaker with water. The water could be bubbled with pure O₂, supplied from a tank with O₂ gas. All gas in the tank first
passed the water beaker with the O₂ microsensor. The pressure was regulated by the second stage of the
regulator and the pressure was recorded, with a pressure sensor, simultaneously with the microsensor
signals. A release valve was used to regulate the throughput of pure O₂ gas. Initially the water was air-
saturated.

During the experiment the gas content of the cylinder was first exchanged by pure O₂ at 1 bar. Then the
pressure was stepwise increased, while bubbling continued. Each step was performed until the sensor
signal was stable, which took ca 15 minutes. After the highest pressure test of the sensor, the pressure was
released in 20 minutes and the cylinder was left untouched overnight, while the recording of sensor signals
continued.

Acknowledgements We thank our technical staff for supplying the microsensors. This research received
no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
Figure legends

Fig. 1 Scheme of the pressure tank for experiments with O₂ pressures up to 5 bar.

Fig. 2 O₂ profiles measured in a microbial mat from Solar Lake, Sinai (A), in a mat from Lake Boitano, Canada (B), and a laboratory biofilm grown at high pH and 1 M DIC (C).

Fig. 3 O₂ concentrations during the experiment in the pressure tank, and the oversaturation level calculated by dividing the measured concentration with the saturation level at 1 bar of pure O₂. In the first 1.5 hours the O₂ tension was stepwise increased to record the response of the microsensor to extreme O₂ concentrations. Subsequently, the pressure was released in 10 minutes to 1 bar, and the O₂ dynamics of the further degassing was followed overnight, in a locked room. At 18 hours the tank was ventilated by air.

Fig. 4 The calibration line of an O₂ microelectrode to very high concentrations. The line is the linear regression (R=0.999).

Fig. 5 O₂ and H₂O₂ microprofiles measured in an illuminated (A) and dark-incubated (B) cyanobacterial mat.

Fig. 6 H₂O₂ profiles measured in a cyanobacterial mat with increasing additions of H₂O₂ (17, 48, 110 and 272 µM) to the overlying water column (Fig. 6A). From the penetration depths and the interfacial fluxes the volumetric H₂O₂ consumption rates were calculated (Fig. 6B). After the last H₂O₂ addition illumination was switched on and, after reaching steady state, an O₂ profile was measured, showing high photosynthetic activity and no damage by H₂O₂.
References

Fig. 1 Scheme of the pressure tank for experiments with O₂ pressures up to 5 bar.
Fig 2. O$_2$ profiles measured in a microbial mat from Solar Lake, Sinai (A), in a mat from Lake Boitano, Canada (B), and a laboratory biofilm grown at high pH and 1 M DIC (C).
Fig. 3 O₂ concentrations during the experiment in the pressure tank, and the oversaturation level calculated by dividing the measured concentration with the saturation level at 1 bar of pure O₂. In the first 1.5 hours the O₂ tension was stepwise increased to record the response of the microsensor to extreme O₂ concentrations. Subsequently, the pressure was released in 10 minutes to 1 bar, and the O₂ dynamics of the further degassing was followed overnight, in a locked room. At 18 hours the tank was ventilated by air.
Fig. 4 The calibration line of an O$_2$ microelectrode to very high concentrations. The line is the linear regression ($R^2=0.999$).
Fig. 5 O₂ and H₂O₂ microprofiles measured in an illuminated (A) and dark-incubated (B) cyanobacterial mat.
Fig. 6 H$_2$O$_2$ profiles measured in a cyanobacterial mat with increasing additions of H$_2$O$_2$ (17, 48, 110 and 272 µM) to the overlying water column (Fig. 6A). From the penetration depths and the interfacial fluxes the volumetric H$_2$O$_2$ consumption rates were calculated (Fig. 6B). After the last H$_2$O$_2$ addition illumination was switched on and, after reaching steady state, an O$_2$ profile was measured, showing high photosynthetic activity and no damage by H$_2$O$_2$.