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Abstract 

Prolonged auditory sensory deprivation leads to brain reorganization, indicated by functional 

enhancement in remaining sensory systems, a phenomenon known as cross-modal plasticity. 

In this study we investigated differences in functional brain network shifts from eyes-closed 

to eyes-open conditions between deaf and hearing people. Electroencephalography activity 

was recorded in deaf (N = 71) and hearing people (N = 122) living in rural Africa, which 

yielded a unique data-set of congenital, pre-lingual and post-lingual deaf people, with a 

divergent experience in American Sign Language. Functional networks were determined from 

the synchronization of electroencephalography signals between fourteen electrodes distributed 

over the scalp. We studied the synchronization between the auditory and visual cortex and 

performed whole-brain minimum spanning tree analysis based on the phase lag index of 

functional connectivity. This tree analysis accounts for variations in global network density 

and allows unbiased characterization of functional network backbones. We found increased 

functional connectivity between the auditory and visual cortex in deaf people during the eyes-

closed condition in both the alpha and beta bands. Furthermore, we found functional network 

backbone shifts both in deaf and healthy people as they went from eyes-closed to eyes-open 

conditions. In both the alpha and beta band the deafs’ brain showed larger functional 

backbone-shifts in node strength compared to controls. In the alpha band this shift in network 

strength differed among deaf participants and depended on type of deafness: congenital, pre-

lingual or post-lingual deafness. In addition, a correlation was found between functional 

backbone characteristics and experience of sign language. Our study revealed more insights in 

functional network reorganization specifically due to prolonged lack of auditory input, but 

might also be helpful for sensory deprivation and cross-modal plasticity in general. Global 

cortical network reorganization in deaf people supports the plastic capacities of the young 

brain. The differences between type of deafness stresses that etiology affects functional 
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reorganization, whereas the association between network organization and acquired sign 

language experience reflects ongoing brain adaptation in people with hearing disabilities. 
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Introduction 

Audition is an important sensory modality, which is essential for daily life and 

communication. Impairment or loss of hearing interferes with many activities, specifically 

limiting communication with others, which could easily lead to social isolation. The 

prevalence of this serious disability is greatest in middle- and low-income countries (Durkin, 

2002; Stevens et al., 2013; WHO, 2014). While in the United States about two out of every 

1,000 children is born with disabling hearing loss (Vohr, 2003), this number is considerably 

higher in Sub-Saharan Africa where about two percent of the children is born with disabling 

hearing loss (WHO, 2012). A subset of these children has profound hearing loss, resulting in 

absolute deafness. Infectious diseases are a major cause of deafness in these regions 

(Mulwafu et al., 2016).  

Prolonged periods of deafness are believed to cause profound neural reorganization 

related to functional enhancement in remaining sensory systems, which is referred to as cross-

modal plasticity (Bavelier and Neville, 2002; Merabet and Pascual-Leone, 2010; Ptito et al., 

2001). Deaf people have to rely more on visual input (and input from other modalities), which 

consequently leads to increased involvement of neuronal networks processing visual 

information (Bavelier et al., 2006; Bosworth and Dobkins, 2002; Brozinsky and Bavelier, 

2004; Dye et al., 2007; Finney and Dobkins, 2001; Hauser et al., 2007). While this 

reorganization occurs inevitably as a result of profound deafness, cross-modal plasticity is 

also strongly related to the acquisition and use of sign language and lip reading (Meyer et al., 

2007; Pénicaud et al., 2013). Furthermore, the extent of cross-modal plasticity is also 

dependent on the age of onset and the duration of deafness (Brotherton et al., 2016; Li et al., 

2013), as well as on the use of hearing aid and degree of auditory deprivation (Doucet et al., 

2006; Shiell et al., 2014). Cross-modal plasticity has been reported in different studies on deaf 

as well as blind people (Collignon et al., 2011; Klinge et al., 2010; Lewis et al., 2010; Liu et 

al., 2007; Ptito and Kupers, 2005; Renier et al., 2014; Théoret et al., 2004; Yu et al., 2008).  
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Brain mapping techniques such as functional magnetic resonance imaging (MRI) and 

electroencephalography (EEG) enable detection of functional neural reorganization in deaf (as 

compared to hearing people), as well as assessment of differences between early-deafness and 

late-deafness, e.g. by using task-based or resting-state paradigms. For example it has been 

shown that cortical auditory or auditory association areas in deaf people are responsive to 

visual motion stimuli. These auditory regions include the planum temporale (Petitto, 2000; 

Sadato et al., 2005; Shiell et al., 2016) and primary auditory cortices, like posterior superior 

temporal gyrus (Almeida et al., 2015; Ding et al., 2015; Karns et al., 2012; Li et al., 2015) and 

Hechl’s gyrus (Karns et al., 2012; Meyer et al., 2007; Scott et al., 2014; Smith et al., 2011). 

Furthermore, functional MRI studies have shown that the middle superior temporal sulcus is 

more prominently activated by visual stimuli in early-deaf subjects than in late-deaf subjects 

(Li et al., 2013; Neville et al., 1998; Sadato et al., 2004). Although these task-based 

approaches have provided valuable insights in cross-modal plasticity, they do not take into 

account the mutual dependency of different functional regions and the integrative nature of 

the human brain to process auditory information (Hackett, 2012). 

The human brain forms a complex integrative network, which consists of spatially 

distributed, but functionally connected (i.e. synchronized activated) regions that continuously 

interact with each other (Bullmore and Sporns, 2009; van den Heuvel and Hulshoff Pol, 

2010). Brain function and reorganization can only be properly understood when studied in 

their context, i.e. within a functional network, which can be mapped by 

electroencephalography or functional MRI (Stam and van Straaten, 2012). A powerful 

approach to assess organizational aspects of functional brain networks is provided by graph 

analysis (Bullmore and Sporns, 2012). Graph analysis describes a complex system like the 

human brain, as a set of nodes (i.e. functional brain regions such as the auditory or visual 

cortex) and edges or ties (i.e. the functional connections between regions), and provides 
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quantitative information on the topological properties of networks (Bullmore and Sporns, 

2009; Heuvel et al., 2012; Rubinov and Sporns, 2010). It has been shown that the healthy 

human brain can be characterized as a complex network that effectively combines integration 

(i.e. global efficiency, indicated by a short average path length) and segregation (i.e. 

functionally specialized brain regions (Bullmore and Sporns, 2012), indicated by a high 

clustering coefficient), which together is defined as a small-world organization (Bullmore and 

Sporns, 2009; Watts and Strogatz, 1998). Other important aspects of brain organization, 

typified by graph analyses, are modularity (i.e. different functional modules) and hubness (i.e. 

relatively small number of highly connected nodes) (Barabasi and Albert, 1999). 

So far only a few studies have used graph analysis to examine structural or functional 

brain networks in deaf subjects. Kim et al. showed that pre-lingual deaf adults have altered 

morphological networks compared to normal controls, whereas post-lingual deaf adults did 

not show differences with normal controls, indicating that auditory experience might affect 

the morphology of brain networks in deaf adults (Kim et al., 2014). Li et al. (2016) showed 

increased connectivity between the limbic system and regions involved in visual and language 

processing, as well as decreased connectivity between the visual and language processing 

regions. However small-worldness was not changed in pre-lingual deaf adults as compared to 

hearing controls (Li et al., 2016). 

Although classical graph analysis has revealed significant aspects of brain 

reorganization in deaf people, and despite its potential and popularity (Giusti et al., 2016), it 

has some intrinsic limitations, particularly for inter-subject or between-group comparisons 

where network sizes and densities are different (van Wijk et al., 2010). Commonly used 

network metrics, such as the clustering coefficient (i.e. segregation) and average path length 

(i.e. integration or global efficiency) are highly affected by the number of connections (i.e. 

density) and average degree (i.e. mean number of connections per node) of a network (Stam et 
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al., 2014; van Wijk et al., 2010). Hence, comparing healthy and affected (or reorganized) 

brain networks might give biased results (Tewarie et al., 2015; van Wijk et al., 2010; Zalesky 

et al., 2010). A promising alternative analysis approach, which might solve these limitations, 

is selective assessment of the functional network backbone by means of the minimum 

spanning tree method. Network backbone analysis allows for unbiased comparison of 

networks since all minimum spanning trees have the same size and density (Stam et al., 2014; 

Tewarie et al., 2015). An increasing number of studies have shown the usefulness of this 

approach in capturing subtle network changes in brain development and ageing (Boersma et 

al., 2013; Otte et al., 2015; Smit et al., 2016; Vourkas et al., 2014) but also in brain diseases, 

like multiple sclerosis, Alzheimer’s disease and epilepsy (Engels et al., 2015; Tewarie et al., 

2014; van Diessen et al., 2016, 2014). 

In the present study we investigated the effects of prolonged periods of deafness on 

topological characteristics of brain functional network backbones. Therefore we acquired 

resting-state electroencephalograms from both healthy controls and congenital, pre-lingual 

and post-lingual deaf people in eyes-open and eyes-closed conditions. Opening and closing 

the eyes are very basic attention-directing behaviors (i.e. towards the internal or external 

world) (Xu et al., 2014), related to different brain states (Marx et al., 2004; Zhang et al., 

2015). Moreover, deaf people completely lack audiovisual input during the eyes-closed 

condition. We made use of a unique homogeneous population in a representative rural region 

in sub-Saharan Africa where deafness is a common disability but cochlear implants are not 

available. The study of brain plasticity in deaf people in countries with a well-established 

health-care system is complicated as many people with hearing disabilities will have a 

cochlear implant. Cochlear implants changes the brain organization, including functional 

cortical reorganizations at rest (Strelnikov et al., 2010). If the implantation is done early, 
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auditory language develops almost normally in those people (Hammes et al., 2002). In our 

study population none of the people had a cochlear implantation. 

Electroencephalography recordings were used to construct functional networks and 

functional network backbones. We hypothesized enhanced functional connectivity between 

auditory and visual cortex in deaf people. In addition that functional network backbones differ 

between healthy and deaf people, indicating that sensory processing is a distributed brain 

function. As deaf people hardly get any sensory input when they are in resting-state condition 

with eyes closed, we speculated that we would detect larger network backbone-shifts between 

eyes-open and eyes-closed conditions in deaf people as compared to healthy controls. Lastly, 

we anticipated the backbone characteristics in deaf people to be related to years of American 

Sign Language (ASL) experience. 
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Methods 

Study setting and ethics 

The study pipeline as described below is visualized in Figure 1. Our study was conducted at 

two inclusive primary schools and one inclusive secondary school located at two separate 

rural places in Ebonyi State, southeast Nigeria in September-October 2016, which are part of 

a Community-Based Rehabilitation (CBR) program. In this inclusive education schools all 

community students, with or without disability, attend and are welcomed in age-appropriate, 

regular classes and are supported to learn, contribute and participate in all aspects of the life 

of the school. Standard ASL is taught at those Nigerian schools for more than twenty years. 

So all students, deaf and non-deaf learn sign language. This educational approach is a 

potential strategy to reduce the burden of disability (Eleweke and Rodda, 2002; Pförtner, 

2014). The distribution of students with and without disabilities is about equal. The lessons 

are taught in English and if the teacher does not know sign language there is an interpreter for 

the deaf students. Every class consists of non-disabled as well as (a maximum of fifty percent) 

disabled students. Deaf children receive lessons in both Sign Language and Speech therapy. 

All children live in the surrounding villages for full integration within the community. In this 

way many people in the community master and/or understand Sign Language as well. 

Our study was approved in by the organizational boards (RBC/CBR Effata) and the 

local health ministry (Izzi, Local Government Area) and federal government (Ebonyi State 

House of Assembly, Abakaliki [7-11-2016]) in Nigeria. Written informed consent was 

obtained from adult participants and caretakers of children below eighteen years. Assent was 

obtained from the children. Prior to asking volunteers for the recordings, the study protocol 

was clearly explained to all students in class.  
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Participants 

Table 1 shows the demographic information of all participants. We included 193 participants 

between ten and 43 years old (mean age of 18.5 (standard deviation 6.0); gender: 103 male, 

90 female), both students and teachers. Sign language experience of participants varied 

between zero and seventeen years at the time of recording. We selected two groups: hearing 

(n=122) and deaf (n=71) participants. The pre-lingual deaf participants were all capable of lip 

reading.  

 

Data acquisition 

We used a high-resolution sixteen sensor / fourteen channel EEG monitor configured to 

sample at 128 Hertz with a 16-bit resolution (EMOTIV Inc, San Francisco, USA) (Aspinall et 

al., 2013; Badcock et al., 2015; McMahan et al., 2015; Prause et al., 2016; Yu and Sim, 2016). 

This wireless headset can be connected to a computer via Bluetooth and is an invaluable tool 

to collect EEG signals from participants in rural or resource-limited areas, where access to a 

clinical type of EEG system is often impossible or burdensome. Two sensors were preserved 

for reference and grounding: the ‘common mode sense’ (CMS; located at P3) sensor was used 

as the active reference for absolute referencing. The ‘driven right leg’ (DRL; located at P4) 

sensor was used for feedback noise cancelation. The electrodes were located at anterofrontal 

(AF3, AF4, F3, F4, F7, F8), frontocentral (FC5, FC6), occipital (O1, O2), parietal (P7, P8) 

and temporal sites (T7, T8), according to the International 10–20 system. Signal quality 

scores are recorded for each electrode with a range of one to five (no units), with five as best 

quality. 

Participants were asked to sit on a chair in a quiet room for five minutes while wearing 

the Emotiv headset. They were instructed to keep their eyes closed for the first three minutes 

and open in the next two minutes. The order of the conditions (i.e. ‘eyes closed’ or ‘eyes 

open’) was assigned alternatingly, so that half of the participants started in the ‘eyes open 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 9, 2018. ; https://doi.org/10.1101/335414doi: bioRxiv preprint 

https://doi.org/10.1101/335414
http://creativecommons.org/licenses/by-nc/4.0/


 11

condition’ whereas the other half of the participants started in the ‘eyes closed condition’. The 

researcher kept a log on deviations from the protocol or unusual events in the environment 

that may affect the experiment. Example recordings are shown in Figure 2. The 

electroencephalography signals were band-pass filtered into the delta (0.5–4 Hz), theta (4–8 

Hz), alpha (8–16 Hz), beta (16–32 Hz) and gamma (32–64 Hz) frequency bands (examples 

shown in Suppl. Figure 1 and 2). 

 

Data cleaning and window selection 

Time segments of the recordings were removed if i) the research log indicated a deviation 

from the protocol, ii) the electroencephalography signal quality score was below four for any 

of the channels, and iii) if the absolute deviation of the gyroscope signals relative to the 

gyroscope signal median was larger than five times the standard deviation. This threshold was 

based on visual data inspection (See example in Suppl. Figure 3). The cleaned filtered data 

were cut into 10-sec epochs. Functional connectivity and multiple network backbone metrics 

– calculated in a similar way as in our study – stabilize within recordings if the minimal epoch 

length is at least six seconds (Fraschini et al., 2016). Therefore we used this conservative 10-

sec length. Multiple epochs per subject result in stable network backbone metrics (van 

Diessen et al., 2015).  

 

Functional connectivity 

For each epoch a functional network was constructed. Recorded time-series within each epoch 

were used to determine functional connectivity between different electrodes capturing 

neuronal signals from underlying brain areas. Functional connectivity was computed and 

quantified with the phase lag index. This is a measure of the asymmetry of the distribution of 

instantaneous phase differences between two time series and scales between zero and one 

(Pillai and Sperling, 2006). It is relative resistant to the influence of common sources, 
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including volume conduction and active reference electrodes. An index of zero indicates no 

phase coupling between time series, or coupling with a phase difference centered on zero ± p 

radians. A non-zero index indicates the presence of phase coupling. A more mathematical 

description of computing the phase lag index can be found elsewhere (Stam et al., 2007). 

 

Occipital – parietal functional connectivity 

We expected remodeling of the auditory cortex in deaf people reflected as enhanced 

synchronization between the auditory and visual cortex. We therefore characterized in both 

groups the average phase lag index between the electrodes P7/P8, covering the auditory 

cortex, and the occipital electrodes O1/O2, covering the visual cortex, at eyes-open and eyes-

closed conditions. 

 

Minimum spanning tree analysis 

For each functional network a minimum spanning tree (MST) was calculated from the 

connectivity graph G by applying Kruskal’s algorithm (Kruskal, 1956). An MST captures the 

network’s backbone and is defined as a subset of the network nodes (forming the original 

weighted graph G) that connects all the nodes and does not contain cycles or loops (Jackson 

and Read, 2010). A minimum spanning tree T minimizes the sum of the costs of its edges,

 over the set of all possible spanning trees on G (Hidalgo et al., 2007). 

The following MST metrics were calculated at nodal or network level: 

i) Maximum node degree (nodal): We summarized every tree by taking the maximum 

node degree: Smax. Which is the node with the maximum number of connections. 

ii) Leaf number (Nleaf) (network): the number of nodes of the tree with exactly one 

connection to any other node (with maximum degree = 1). A higher leaf number is 

∑
∈

=
Tw

wT ll )(
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related to increased global efficiency and integration (Stam et al., 2014; Tewarie et al., 

2015). 

iii) Diameter (d) (network): the largest distance between any two nodes in a tree, which 

has a lower bound of two and an upper bound of m = N – 1. The largest possible 

diameter will decrease with increasing leaf number (Boersma et al., 2013; Stam et al., 

2014; Tewarie et al., 2015).  

iv) Eccentricity (network): the shortest path length between a tree node I and any other 

node from the tree. Eccentricity decreases when nodes become more central in the 

tree.  

v) Radius (nodal): the smallest node eccentricity in the tree. The lower the eccentricity, 

the more central a node in a tree. 

vi) Strength (nodal): the tree node strength is a summation of all nodal connection 

weights (Hagmann et al., 2010; Rubinov and Sporns, 2010).  

vii) Maximum betweenness centrality (BCmax): a network hub metric which relies on the 

identification of the number of shortest paths that pass through a node (Rubinov and 

Sporns, 2010). The more the passages, the higher the betweenness-centrality (i.e. 

hubness), which is defined by  where gjk is the 

shortest path between two nodes and gjk(i) is the number of node paths that actually 

pass through i. We summarized the tree by taking the maximum betweenness 

centrality: BCmax.  

viii) Closeness centrality (nodal): the inverse of the sum of all distances to other nodes 

(Sabidussi, 1966).  
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Statistical analyses 

We compared topological network differences between congenitally deaf, pre- and post 

lingually deaf and hearing subjects by means of Bayes factors extracted from Bayesian model 

comparisons (Table 2). We determined the model likelihood of a null model without 

interaction between group and eye condition and the likelihood of a model with an interaction 

between group and eye condition for each MST network metric. Bayes factors give the ratio 

of model likelihoods; thereby providing which model (i.e. the presence or absence of a 

difference in the parameter change) is supported (i.e. more likely to occur). This was repeated 

for each frequency band separately. Since sex (Boersma et al., 2011) and age (Smit et al., 

2012) influence functional network topologies, we included both as covariates in the analysis 

to correct for potential sex- and age-related group effects.  

All network analyses, statistical modeling and visualization were performed in R 

(http://www.r-project.org/) using the packages igraph, BayesFactor and ggplot2. All epoch 

data is available at the Open Science Framework in anonymized form (Otte et al., 2018). 
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Results 

 

Occipital – parietal functional connectivity 

Functional connectivity differences between eyes-open and eyes-closed in occipital-parietal 

cortex are shown in Figure 3: left panel. The functional connectivity is lower in the eyes-

open condition in the theta, alpha and beta frequency range. Differences are most pronounced 

in the alpha frequency range with -54.9% (95% confidence interval (CI): -68.2 to -41.6%) 

reduction in functional connectivity during switching from eyes-closed to eyes-open in the 

control group (Figure 3: right panel). This reduction was larger in the deaf group -88.0% 

(CI: -112.4 to -63.6%). Reductions in functional connectivity between eyes-closed and eyes-

open were also present in the beta frequency range: -27.7% (CI: -37.3 to -18.0) in controls and 

-36.1%  (CI: -49.2 to -23.0) in deaf people. These alpha and beta functional connectivity 

reductions were statistically significant (Table 3). 

 

Functional backbone differences between eyes-open and eyes-closed conditions 

Transition from eyes-closed condition to eyes-open condition showed visible changes in 

functional network backbone characteristics. The most notable differences were found in the 

alpha band and beta band, which are shown in Figure 4. In both the alpha and beta band the 

backbone leaf number and kappa were lower in eyes-open condition than in eyes-closed 

condition for both deaf and controls. Contrary, in both the alpha and beta band the backbone 

diameter, eccentricity and radius were higher in eyes-open condition compared to eyes-closed 

condition, again for both deaf and controls. Furthermore, changing from eyes-closed to eyes-

open condition showed an increase in closeness centrality and a decrease in mean and 

maximum node strength, in the alpha band only. 
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Larger functional network modifications in deaf 

As shown in Figure 4, from the eyes-open to the eyes closed condition, several functional 

network backbone characteristics show larger shifts in deaf as compared to hearing 

participants. As indicated by the Bayes factors in Table 4, there is extreme evidence for a 

larger shift (i.e. from eyes open to eyes closed condition) of the functional backbone node 

strength in both alpha and beta band in deaf. Furthermore in the alpha band there was 

moderate to strong evidence for a larger shift of the backbone closeness centrality median and 

maximum respectively in deaf. In addition, in the beta band there was some evidence for a 

larger shift in backbone closeness centrality, leaf number, diameter and kappa in deaf as 

compared to controls. 

Furthermore, the results showed differences among the deaf participants. Figure 5 

shows a difference in functional backbone node strength between different types of deafness 

(i.e. congenital, pre-lingual and post-lingual deafness), which is supported by the Bayes factor 

indicating strong evidence as shown in Table 5. In addition, these Bayes factors show 

moderate evidence for a difference among deaf participants in both the maximum and the 

median of closeness centrality of functional network backbones.  

 

Relation between backbone characteristics and American Sign Language 

Next we investigated the effect of ASL on functional backbone characteristics, which 

revealed a correlation between experience in ASL and several functional backbone metrics. 

Initially, no distinction was made between deaf and hearing subjects, because hearing subjects 

had relatively little ASL experience. Figure 6 shows that ASL experience is related to altered 

backbone characteristics in the theta band. More specifically, an increase in ASL experience 

is related to a larger backbone diameter and radius, a higher backbone eccentricity and 

betweenness centrality (median), combined with a lower leaf number, kappa and hierarchy 

(see Table 6 for corresponding Bayes factors). Figure 7 shows the relationship between ASL 
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experience and functional backbone characteristics for deaf subjects only. An increase in ASL 

experience is related to a larger maximal closeness centrality in the theta-band network (see 

Table 7 for corresponding Bayes factors). Furthermore, Table 6 shows strong evidence for a 

correlation between mean and maximum backbone strength and ASL experience as well as 

extreme evidence for a relation between closeness centrality and ASL experience in the delta 

band.  

Discussion 

Our study employed resting-state EEG to investigate and map functional network backbone 

differences between deaf and hearing people. We showed that transition from the eyes-closed 

to the eyes-open condition was associated with changes in functional connectivity between 

occipital and parietal cortex as well as changes in functional network backbones. These occur 

especially in the alpha and beta frequency bands, in both deaf and hearing participants. This 

indicates increased synchronization between auditory and visual cortical regions in response 

to visual stimuli (Boytsova and Danko, 2010) or suggests topological network reorganization.  

 

Functional cortical remapping 

The ‘spontaneous’ intrinsic activity of the brain is affected by incoming stimuli, such as visual 

information, which will be different in the ‘eyes open’ and ‘eyes closed’ conditions. 

Moreover, the number and strength of connections also change, which is known as ‘alpha 

synchronization’ and is shown to be related to the wiring cost variation between ‘eyes-open’ 

en ‘eyes-closed’ conditions (Gómez-Ramírez et al., 2017). However, in addition to 

connectivity variation between conditions, the strong interaction effect we found between 

deaf and control conditions in alpha and beta functional connectivity between occipital and 

parietal cortex favors the hypothesis that in grown-up humans the neocortex possesses long-

term plasticity. This cortical plasticity is known to be a multicomponent process which 

involves both synaptic and cellular mechanisms (Feldman, 2009). What is interesting from 
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our results is that the modifications in cortical mapping occur at a relative large distance, 

namely between occipital and parietal regions. This remodeling is also in line with neural 

plasticity of the primary visual cortex. It has been shown in multiple studies across three 

different species, such as cats and monkeys, that the location of V1 neuronal receptive fields 

shifts after induction of lesions in the retina (Calford et al., 2000; Chino et al., 1995; Heinen 

and Skavenski, 1991; Kaas et al., 1990). These shifts are cortically mediated given that the 

thalamic input to the visual cortex shows limited reorganization (Eysel, 1982). In deaf people 

it may even be the case, as suggested by our increased neuronal synchronization between 

occipital and parietal recordings, that these shifts occur at a much larger scale as well. 

Validation studies with experimental animal models are required to characterize the 

underpinnings of this enhanced functional synchronization. 

 

Functional backbone differences between eyes-open and eyes-closed conditions 

During the eyes-open condition the functional network backbone showed a larger diameter, 

higher eccentricity and a lower leaf number in the alpha and beta bands. This suggests that the 

backbone topology in the eyes-open condition was more chainlike (i.e. less integration and 

global efficiency), whereas during the eyes-closed condition the topology was more star-like 

(i.e. more functional integration and global efficiency) (Stam et al., 2014). Visual input during 

eyes-open conditions might suppress the connectivity of default-mode network activity during 

eyes-closed condition (Chen et al., 2008). These results may also be explained by alpha 

desynchronization, which will lead to less connections in general, indicating a ‘real change’ in 

functional connectivity and not just a change in alpha activity (Gómez-Ramírez et al., 2017). 

The alpha desynchronization from the eyes-open to the eyes closed condition in deaf as well 

as healthy subjects is in line with previous research among healthy adults (Barry et al., 2007; 

Gómez-Ramírez et al., 2017) and children (Barry et al., 2009). Two other studies reported 
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increased global efficiency of functional networks in the alpha band, but not in the beta band, 

during the eyes-open condition as compared to the eyes-closed condition (Miraglia et al., 

2016; Tan et al., 2013), which seem to contradict our findings. These discrepancies might be 

explained by demographical and methodological differences. Miraglia et al. (2016) only 

included 30 healthy elderly with an average age of 65.4, while Tan and colleagues included 

only 21 healthy Chinese university students, whereas our study includes 193 participants, both 

teenagers and adults. Both studies used more EEG electrodes or regions of interest (i.e. 

respectively 128 and 84) leading to larger networks with potential higher densities. Moreover, 

these previous studies used classical graph analysis to investigate whole brain network, 

whereas we have used MST analysis and studied the functional backbones of neural networks 

only, which might arguably lead to slightly different results. 

 

Larger functional network modifications in deaf 

We found larger functional backbone shifts in both alpha and beta bands, from the eyes-open 

to the eyes-closed condition in deaf people compared to hearing controls. These differences 

between the eyes-open and eyes-closed conditions may be related to the different attentional 

states of the brain (i.e. internal versus external attention) (Marx et al., 2004; Xu et al., 2014; 

Zhang et al., 2015). In the beta band, the shift (i.e. from a more chainlike backbone in the 

eyes-open condition towards a more star-like backbone in eyes-closed condition) was more 

pronounced in deaf than in healthy controls. Specifically we found a larger shift of functional 

backbone node strength in deaf people from eyes-open to eyes-closed, indicating a higher 

overall physiological efficacy of backbone nodes in deaf during the eyes closed condition, but 

a lower overall efficacy during the eyes open condition (Hagmann et al., 2010). These effects 

might be more pronounced in deaf due to cross-modal plasticity (Bavelier et al., 2006; 

Bavelier and Neville, 2002; Hauser et al., 2007; Merabet and Pascual-Leone, 2010), 
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especially in the alpha band, which has been related to visual stimuli (Boytsova and Danko, 

2010) and awareness (Putilov and Donskaya, 2014), as well as the complete lack of 

audiovisual input in the eyes-closed condition.  

The larger functional backbone shifts we found in deaf people, especially in the alpha band, 

may therefore reflect increased awareness in eyes-open condition (i.e. they rely to a greater 

extend on visual modality) and decreased awareness in eyes-closed condition. This hypothesis 

is based on the deprived sensory input typically found in deaf people. Interestingly, we also 

found that backbone node strength differed across the different forms of deafness and might 

depend on whether people were born deaf (i.e. congenital deafness) or acquired deafness later 

in life (i.e. pre-lingual or post-lingual deafness). 

The lack of differences between deaf and hearing in functional backbone shifts from the eyes-

open to the eyes closed condition in other frequency bands (i.e. delta, theta and gamma), 

suggests that auditory deprivation does not alter functional networks as much in these 

frequency bands. This might indicate that auditory deprivation leads to a strengthened 

functional networks regarding situations related to sensory input (i.e. the alpha and beta 

bands), rather than functional networks consisting of gamma waves. Gamma rhythms are 

involved in higher processing tasks and cognitive functioning (Herrmann et al., 2010)), 

whereas theta waves are involved in daydreaming, sleep and creativity. It seems therefore that 

topology of functional networks in the brain (of deaf) is strongly related to conscious 

achievement together with visual input, although further research is needed to investigate this 

into more detail. 

 

Relation between backbone characteristics and American Sign Language 

Another interesting finding of our study is the clear relation between years of ASL experience 

and functional backbone characteristics in the theta band. Increasing experience in sign 
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language reduced the leaf number, the maximum degree and the hierarchy of the functional 

backbones, while it increased the eccentricity, diameter, median betweenness centrality and 

radius of functional backbones (i.e. together indicating less integration and efficiency). This 

means that the organization of functional backbones shifts toward a more chain-like or 

decentralized organization with gaining ASL experience. This pattern is unlikely to be caused 

by age alone as these functional network backbone patterns have different or even opposing 

(e.g. leaf number, tree-hierarchy and diameter) directions in studies across the lifespan (Smit 

et al., 2016). The correlation between functional backbone characteristics and years of ASL 

experience is in line with previous research showing plasticity of functional and structural 

network organization in the brain due to sign language (Meyer et al., 2007). However, to the 

best of our knowledge there is no study that includes early-deaf teenagers and adults with sign 

language experience ranging from one year up to sixteen years. 

 

Advantages of study design and tools 

Our results again show that MST graph parameters are highly suitable in exploring the 

topology and connectivity of brain networks (Engels et al., 2015; Tewarie et al., 2014; van 

Diessen et al., 2016), in our case related to cross modal neuroplasticity. Also our study shows 

the usefulness of the portable electroencephalography device as an invaluable tool to be used 

in rural or resource-limited African areas. This device enabled us to acquire an unique data-set 

of recordings from deaf and hearing subjects in a country where auditory deprivation is more 

prevalent than in Western countries, but where neuroimaging research is often impossible or 

burdensome due to geographic conditions, poor health-care infrastructure and high levels of 

poverty.  

 

Study limitations and future directions 
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The downside of electroencephalography is that neural activity is measured at a few places on 

the scalp and lacks information from deeper brain structures. In addition, the current data set 

was limited to fourteen channels. The signals are linear combinations of the neural generators 

they project to the scalp location of the electrodes. Together this means a reduction in 

precision of functional network mapping. Other neuroimaging techniques, such as MRI, 

might therefore be more capable to capture different activation patterns of the whole brain, 

specifically in sub-cortical areas, also because functional MRI studies have shown that visual 

motion stimuli caused a response in some specific auditory regions in deaf subjects (Almeida 

et al., 2015; Ding et al., 2015; Karns et al., 2012; Li et al., 2015; Neville et al., 1998; Petitto, 

2000; Sadato et al., 2005, 2004; Scott et al., 2014; Shiell et al., 2016; Smith et al., 2011). The 

use of wireless headsets for recording EEG may have increased the noise in the EEG signal, 

and affected the backbone computations. However, recent studies have shown similar 

performance as standard EEG hardware (Badcock et al., 2013; David Hairston et al., 2014; 

Schiatti et al., 2016), making wireless EEG recordings ideal for research in resource-poor 

settings (McKenzie et al., 2017). Lastly, an additional limitation is that history taking might 

be affected by a recall bias; in as much patient records (i.e. dates of births) in Nigeria are not 

stored like they are in modern Western countries. This bias will have increased the noise-level 

in the regression analysis. 

 

Since both electroencephalography and the use of network backbones reduce data density (i.e. 

does not take into account peripheral functional network elements), future research should 

also use, or combine electroencephalography with, other neuroimaging techniques such as 

functional MRI and magnetoencephalography, which allows mapping of different functional 

aspects of the brain. Furthermore, in addition to the application of MST analysis, future 

studies should use other network analysis techniques such as Bayesian exponential random 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 9, 2018. ; https://doi.org/10.1101/335414doi: bioRxiv preprint 

https://doi.org/10.1101/335414
http://creativecommons.org/licenses/by-nc/4.0/


 23

graph models (Caimo and Friel, 2011; Sinke et al., 2016), mixed-effect models (Simpson and 

Laurienti, 2015) and Gibbs distribution models (La Rosa et al., 2016), which also enable 

unbiased comparison of networks differing in size and density. This might further elucidate 

the role of specific brain areas in functional backbone shifts in normal and sensory lacking 

conditions, which may improve our understanding of neuroplasticity occurring after auditory 

and other types of sensory deprivation. 

 

Conclusion 

We were able to detect functional network backbone differences in eyes-closed and eyes-open 

conditions as well as larger shifts in some functional backbone characteristics in deaf as 

compared to controls. Furthermore, differences were seen between different forms of 

deafness, and our study demonstrated subtle functional network backbone changes and 

differences with increasing experience of American Sign Language. Our results provide 

original insights into the organization of functional brain networks derived from 

electroencephalography data, both in deaf and healthy people. This might help to better 

understand functional brain connectivity with lack of auditory input and the development of 

sign language specifically, as well as cross-modal plasticity due to lack of sensory input in 

general. Our results further underpin the notion of brain-wide neuroplastic capacities and 

global network reorganization in the cortex of deaf people. The distinct reorganization 

patterns between different types of deafness informs on the importance of underlying etiology 

and staging of the auditory damage in the process of reorganization. The link between the 

functional network backbone characteristics and acquired sign language experience reflects 

ongoing brain adaptation in people with hearing disabilities. 
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Figure 1. Schematic study protocol. Five minutes of resting-state electroencephalography 

(EEG) was acquired with wireless headsets in deaf and controls. The sensor locations 

corresponding to the fourteen channels are shown in orange; the CMS/DRL sensors are shown 

in blue. Two minutes within this recording were with eyes closed and two minutes with eyes 

open. The order of open/closed was random. Frequency bands included delta, theta, alpha, 

beta and gamma bands. Functional networks were constructed from 10-seconds epochs. 

Network backbone metrics were related with years of sign language experience. Interaction 

effects in the two populations and between ‘open/closed conditions’ were assessed with 

Bayesian model selection. 
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Figure 2. Raw EEG time-series from one participant (male, 22 years old, deaf). The y-scaling 

is arbitrary. Vertical grey lines indicate the initial acclimatization period, two minutes 

condition I (eyes closed in this subject) and two minutes condition II (eyes open). Labels of 

the fourteen channels are given above the time-series. 
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Figure 3. Functional connectivity between the occipital and parietal cortex. Left panel: The 

average functional connectivity, quantified with the phase lag index, between O1/O2 and P7/P8 (y-

axis) is shown for eyes-open and eyes-closed conditions (x-axis) and all frequency bands (top) in 

controls and deaf people. Right panel: The delta functional connectivity between eyes-open en eyes-

closed is plotted as percentage change relative to the eyes-open functional connectivity values for each 

frequency band, based on the data shown in the left panel: Δ in % = 100 × ( closed – open ) / open. 

Error bars represent the 95% confidence intervals. 

 

  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 9, 2018. ; https://doi.org/10.1101/335414doi: bioRxiv preprint 

https://doi.org/10.1101/335414
http://creativecommons.org/licenses/by-nc/4.0/


Figure 4. Network backbone comparisons between eyes open and eyes closed conditions for both 

deaf and controls. Functional network backbone characteristics in the alpha band (8-16Hz) and beta 

band (16-32 Hz) (top), are shown for deaf (yellow) and controls (blue) for both the eyes open and eyes 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 
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closed condition (x-axis) and indicated by the following minimum spanning tree metrics (y-axis): (a) 

diameter, (b) maximum closeness centrality, (c) median closeness centrality, (d) leaf number, (e) 

maximum strength, (f) median strength, (g) eccentricity, (h) radius and (i) kappa. Error bars represent 

the 95% confidence intervals. 
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Figure 5. Average functional backbone node strength differs across types of deafness. The 

average functional backbone node strength (y-axis) shown for eyes-open and eyes-closed conditions 

(x-axis) and all frequency bands (top) differed across different types of deafness, i.e. congenital (red), 

pre-lingual (yellow) and post-lingual (blue). Error bars represent the 95% confidence intervals. 
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Figure 6. The relation between American Sign Language (ASL) and functional backbone 

characteristics. The ASL experience in years (x-axis) related to functional backbone characteristics 

(y-axis) in the theta band (4-8 Hz) for both the eyes open (yellow) and eyes closed (blue) condition, as 

indicated by the following minimum spanning tree metrics (from top-left to bottom-right): maximum 

degree, median betweenness centrality (BC), leaf number, diameter, eccentricity, radius, tree-

hierarchy, and kappa. Shaded areas: 95% confidence intervals. 
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Figure 7. The relation between American Sign Language (ASL) and functional backbone 

characteristics in deaf subject only. The ASL experience in years (x-axis) related to functional 

backbone characteristics (y-axis) in the theta band (4-8 Hz) for both the eyes open (yellow) and eyes 

closed (blue) condition, as indicated by the following minimum spanning tree metrics (from top-left to 

bottom-right): maximum degree, median betweenness centrality (BC), leaf number, diameter, 

eccentricity, radius, tree-hierarchy, and kappa. Shaded areas: 95% confidence intervals. 
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Tables 

 

Table 1. Participant characteristics. 

 Deaf Hearing controls 

 congenitally pre-lingual post-lingual sign language 

experience 

no sign 

language 

experience 

N total 42 22 7 65 57 

Sex 13 males / 29 

females 

16 males / 6 

females 

7 males 31 males / 34 

females 

36 males / 21 

females 

Age (years) 18 ± 5  

(range 10-30) 

19.6 ± 4.4 

(range 10-26) 

16.6 ± 4.1 

(range 10-22) 

17.3 ± 5.6 

(range 12-39) 

20 ± 7.6 

(range 12-43) 

First Eyes 

condition 

(random 

defined) 

25 open /  

17 closed 

11 open /  

11 closed 

2 open / 5 

closed 

30 open / 35 

closed 

28 open / 29 

closed 

experience 

sign 

language 

(years) 

8.9 ± 3.5  

(range 2-16) 

 

8.9 ± 3.4 

(range 1-16) 

 

8.1 ± 3.7 

(range 3-15) 

2.3 ± 2.6 

(range 1-17) 

- 
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Table 2. Bayes factors and their interpretations, based on (Raftery, 

1995). M0: the baseline model without interaction term, M1: the alternative 

model with interaction term. In the subsequent tables the Bayes factors for M1 

are reported only. 

log (Bayes factor) Interpretation 

 > 100  Extreme evidence for M1 

30  – 100  Very strong evidence for M1 

10 – 30  Strong evidence for M1 

3 – 10  Moderate evidence for M1 

1 – 3  Anecdotal evidence for M1 

 1   No evidence 

1/3 – 1  Anecdotal evidence for M0 

1/10 –  1/3  Moderate evidence for M0 

1/30 –  1/10  Strong evidence for M0 

1/100 –  1/30  Very strong evidence for M0 

 <  1/100  Extreme evidence for M0 
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Table 3. Bayes factors of the interaction between condition (i.e. eyes-closed and eyes-open) and 

the group (i.e. deaf and controls) per frequency band. 

    

Frequency Bayes factor 

Delta (0.5-4 Hz) 0.04 

Theta (4-8 Hz) 0.07 

Alpha (8-16 Hz) 922.92 V 

Beta (16-32 Hz) 2.42 I 

Gamma (32-64 Hz) 0.03 

I Anecdotal evidence, V Extreme evidence for interaction 
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Table 4. Bayes factors of the interaction between conditions (i.e. eyes-closed and eyes-open) 

and the group (i.e. deaf and controls) per frequency band. 

MST-metric 

Delta band 

(0.5-4 Hz) 

Theta band 

(4-8 Hz) 

Alpha band 

(8-16 Hz) 

Beta band 

(16-32 Hz) 

Gamma band 

(32-64 Hz) 

      

Strength (max) 0.06 0.08 1547.06V 8364.70V 0.13 

Strength (mean) 0.11 0.07 24539.81 V 224.19V 0.15 

Degree (max) 0.03 0.08 0.05 4.64II 0.12 

BC (max) 0.02 0.06 0.06 0.32 0.06 

BC (median) 0.05 0.08 0.05 0.23 0.10 

CC (max) 0.04 0.07 26.72III 0.64 0.09 

CC (median) 0.03 0.08 7.17II 1.13 I 0.09 

Leaf 0.05 0.06 0.06 1.11I 0.07 

Diameter 0.05 0.06 0.06 1.10I 0.07 

Eccentricity 0.04 0.05 0.05 0.40 0.05 

Radius 0.05 0.06 0.06 0.23 0.06 

Tree-hierarchy 0.04 0.06 0.06 0.27 0.07 

Kappa 0.04 0.10 0.06 2.63I 0.07 

      

BC = betweenness centrality, CC = closeness centrality, I Anecdotal evidence, II Moderate 

evidence, III Strong evidence, V Extreme evidence for interaaction 
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Table 5. Bayes factors of the interaction between condition (i.e. eyes-open and eyes-closed) 

and type of deafness (i.e. congenital, pre-lingual and post-lingual) per frequency band.  

MST-metric 
Delta band 

(0.5-4 Hz) 

Theta band 

(4-8 Hz) 

Alpha band 

(8-16 Hz) 

Beta band 

(16-32 Hz) 

Gamma band 

(32-64 Hz) 

    
  

Strength (max) 0.03 0.13 0.38 0.02 0.04 

Strength (mean) 0.03 0.30 29.93 III 0.02 0.05 

Degree (max) 0.02 0.02 0.03 0.11 0.06 

BC (max) 0.01 0.02 0.03 0.05 0.02 

BC (median) 0.16 0.02 0.11 0.02 0.09 

CC (max) 0.04 0.03 5.50 II 0.03 0.03 

CC (median) 0.04 0.03 8.61 II 0.02 0.04 

Leaf 0.05 0.02 0.05 0.09 0.03 

Diameter 0.05 0.02 0.06 0.10 0.03 

Eccentricity 0.03 0.03 0.03 0.03 0.06 

Radius 0.04 0.02 0.03 0.03 0.04 

Tree-hierarchy 0.02 0.02 0.03 0.03 0.03 

Kappa 0.02 0.02 0.03 0.47 0.04 

      

BC = betweenness centrality, CC = closeness centrality, II Moderate evidence, III Strong evidence 

for interaction 
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Table 6. Bayes factors of the relation between the MST-metric and ASL-experience. 

MST-metric 

Delta band 

(0.5-4 Hz) 

Theta band 

(4-8 Hz) 

Alpha band 

(8-16 Hz) 

Beta band 

(16-32 Hz) 

Gamma band 

(32-64 Hz) 

      

Strength (max) 31.37 IV 0.05 1.14 I 0.09 0.05 

Strength (mean) 26.10 III 0.05 1.55 I 0.06 0.07 

Degree (max) 0.04 2.80 I 0.08 0.10 0.06 

BC (max) 0.03 0.46 0.05 0.04 0.04 

BC (median) 0.07 276.98 V 0.04 0.05 0.04 

CC (max) 106.82 V 0.41 0.09 0.04 0.10 

CC (median) 196.19 V 0.24 0.10 0.04 0.08 

Leaf 0.15 1.450.69 V 0.04 0.14 0.05 

Diameter 0.16 1.474.65 V 0.04 0.14 0.05 

Eccentricity 0.04 70.93 IV 0.07 0.04 0.05 

Radius 0.05 33.39 IV 0.05 0.05 0.07 

Tree-hierarchy 0.51 14.90 III 0.05 0.14 0.05 

Kappa 0.06 225.97 V 0.04 0.38 0.05 

      

BC = betweenness centrality, CC = closeness centrality, I Anecdotal evidence, III Strong evidence, 

IV Strong evidence, V Extreme evidence for relation 
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Table 7. Bayes factors of the relation between the MST-metric and ASL-experience in deaf 

people only. 

MST-metric Delta band 

(0.5-4 Hz) 

Theta band 

(4-8 Hz) 

Alpha band 

(8-16 Hz) 

Beta band 

(16-32 Hz) 

Gamma band 

(32-64 Hz) 

      

Strength (max) 0.26 0.14 0.07 0.07 0.08 

Strength (mean) 0.48 0.33 0.06 0.08 0.07 

Degree (max) 0.03 0.14 0.08 0.06 0.39 

BC (max) 0.08 0.97 0.06 0,10 0.07 

BC (median) 0.13 0.12 0.12 0.06 0.13 

CC (max) 1.53 I 1.61 I 0,07 0.06 0.06 

CC (median) 1.64 I 0.92 0.08 0.05 0.06 

Leaf 0.15 0.13 0.20 0.07 0.15 

Diameter 0.16 0.13 0.20 0,07 0.16 

Eccentricity 0.04 0.12 0.09 0.06 0.07 

Radius 0.05 0.09 0,06 0.06 0.08 

Tree-hierarchy 0.7 0.06 0.19 0,12 0.13 

Kappa 0.04 0.15 0.24 0.06 0.25 

BC = betweenness centrality, CC = closeness centrality, I Anecdotal evidence for relation 
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