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Abstract 

 
HLA-I molecules bind short peptides and present them for recognition by CD8+ T 

cells. The length of HLA-I ligands typically ranges from 8 to 12 amino acids, but 

variability is observed across different HLA-I alleles. Here we collected recent in-

depth HLA peptidomics data, including 12 newly generated HLA peptidomes (31,896 

unique peptides) from human meningioma samples, to analyze the peptide length 

distribution and multiple specificity across 84 different HLA-I alleles. We observed a 

clear clustering of HLA-I alleles with distinct peptide length distributions, which 

enabled us to study the structural basis of peptide length distributions and predict 

peptide length distributions from HLA-I sequences. We further identified multiple 

specificity in several HLA-I molecules and validated these observations with binding 

assays. Explicitly modeling peptide length distribution and multiple specificity 

improved predictions of naturally presented HLA-I ligands, as demonstrated in an 

independent benchmarking based on the new human meningioma samples. 
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Introduction 
The binding of short intracellular peptides to Human Leukocyte Antigen Class I 

(HLA-I) molecules is a key step for immune recognition and prediction of naturally 

presented HLA-I ligands is currently the most important and most selective feature 

used to predict T cell epitopes. Peptide HLA-I interactions have been extensively 

studied either with binding assays or by Mass Spectrometry (MS). In recent years, 

improvements in sensitivity of MS instruments has led to the identification of 

hundreds of thousands naturally presented peptides, which include cancer testis 

antigens and neo-antigens (1, 2). Computational tools developed by ourselves and 

others have shown that HLA-I restriction can be predicted in large HLA-I 

peptidomics datasets, even in the absence of a priori information about HLA-I 

binding specificity using motif deconvolution (3, 4) or peptide clustering approaches 

(1, 5, 6). The use of MS data combined with these novel algorithms has led to 

refinement of known HLA-I motifs, identification of novel motifs, characterization of 

N- or C-terminal extensions and improved HLA-I ligand predictions (3, 4, 7–15). 

In addition, HLA peptidomics data provide information about the length distribution 

of naturally presented HLA-I ligands. Interestingly, in a recent study, clear 

discrepancies were observed between length distributions of eluted peptides and 

length distributions predicted based on binding affinity for five soluble HLA-I alleles 

transfected into HeLa cells (16). This work indicated that the peptide length 

distribution observed in naturally presented HLA-I ligands is the result of both 

distinct affinity values of HLA-I alleles for peptides of different lengths as well as 

length biases in the pool of peptides available for loading onto HLA-I molecules in 

the Endoplasmic Reticulum (ER). However, most studies investigating peptide length 

distributions have been restricted to a few alleles (2, 5, 7, 8, 16, 17). Moreover, most 

existing HLA-I predictors, with the exception of recent versions of NetMHCpan (17) 

and NetMHC (18), do not include length distribution corrections based on MS data. 

Another important feature characterizing peptides interacting with HLA-I molecules 

is the potential influence of a given amino acid at one position on the amino acid 

preferences at other positions. This type of co-operative effects, which often reflect 

multiple specificity patterns (19), can be captured with neural networks, support 

vector machines or mixture models. Such models have been widely used to predict 

the binding of peptides to HLA-I molecules (18, 20) or to peptide recognition 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 7, 2018. ; https://doi.org/10.1101/335661doi: bioRxiv preprint 

https://doi.org/10.1101/335661
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4	

domains (19, 21, 22). However few examples of actual amino acid correlations and 

multiple specificity have been documented among HLA-I ligands (3, 23). It remains 

therefore unclear how prevalent these correlations are in HLA-I alleles. 

In this work, we set out to analyze the peptide length distribution and multiple 

specificity of more than 80 HLA-I molecules using high quality HLA peptidomics 

data generated by ourselves and others. To this end, we expanded our recent motif 

deconvolution algorithm MixMHCp (3) to better handle peptides of different lengths. 

Clear clustering of HLA-I alleles based on their peptide length distribution similarity 

was observed, which enabled us to investigate the structural basis of peptide length 

distributions and predict peptide length distributions based on HLA-I sequences. We 

then used MixMHCp to investigate multiple specificity in HLA-I molecules and 

validated these observations with binding assays. Both peptide length distribution and 

multiple specificity were then incorporated into our HLA-I ligand predictor 

MixMHCpred (4), leading to improved prediction accuracy of naturally presented 

peptides in ten meningioma samples. Finally, this work expands significantly the 

allelic coverage of MixMHCpred (122 HLA-I alleles in total), making it suitable to 

run predictions of naturally presented HLA-I ligands for most patients of caucasian 

origin. 
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Materials and Methods 
 

Expanding motif deconvolution to peptides of different lengths 

Binding motif deconvolution in HLA-I peptidomes with the previous version of the 

mixture model (MixMHCp1.0) performs well in many samples for 9- and 10-mers (3, 

4). However, it often fails for 8-mers and for longer (>10-mers) peptides, since much 

less data is available for them in MS samples. To overcome this limitation, we 

introduce here a new approach to better handle peptides of different lengths. Motif 

deconvolution is first carried out on 9-mers as previously done in MixMHCp1.0 (3, 

4). For peptides of other lengths, the motifs used in the mixture model are fixed, 

based on the first three and last two positions of the 9-mer motifs, and only the 

weights of the different motifs are learned from the data. The underlying justification 

for this approach is that HLA-I motifs, and especially positions close to the anchor 

residues, differ only slightly between 9-mers and other peptide lengths. However, the 

proportion of peptides from each allele in HLA-I peptidomics samples is likely to 

differ substantially for different peptide lengths, because of the different length 

distributions of HLA-I alleles. In addition, we integrated a flat motif (fixed values at 

all positions) in the mixture model to which peptides that do not match any motif 

inferred from the data can be assigned. This is useful to remove potential 

contaminants in MS data (6) and the number of peptides assigned to the flat motif is 

listed for each sample analyzed in this work in Supplemental Table I (see also Fig. 1). 

In mathematical terms, the new log-likelihood function for the peptides of length 

equal to core length (hereafter core length equals to 9) is defined as: 

 

log$𝑃(𝑋|𝑀,𝑤,)𝑃prior(𝑀).

= 0 log 10𝑤,23𝑀45
6,7
2

,

789

:

289

+ 𝑤,:<93𝑃456
,

789

=
>?

@89

+ log$𝑃prior(𝑀). 

(Eq. 1) 

where Mk represents the kth motif, 𝑤,2  represents the weight of this motif in the 9-mer 

peptides, 𝑁, the number of 9-mer ligands, 𝑋@ = (𝑋9@, … , 𝑋,@) the nth ligand of length 9 

and 𝑃prior(𝑀) the prior on the PWM entries as defined in (19, 22). The Pi (i=1,…,20) 

values are taken as the amino acid frequencies in the human proteome and represent a 

flat motif to which peptides that do not match any of the other motifs can be assigned, 
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similar to the trash cluster in GibbsCluster (5, 24). This log-likelihood can be 

efficiently maximized used Expectation-Maximization (19, 22). For 9-mers, the only 

difference with the previous version of MixMHCp comes from the inclusion of the 

flat motif. 

For peptides of length L<9, the log-likelihood function reads: 

 

log{𝑃(𝑋|𝑤D)} = 0 log 10𝑤D23𝑀45
6,7
2

F

789

:

289

3𝑀45G(?GH)
6 ,7
2

,

78I

>H

@89

+ 𝑤D:<93𝑃456
F

789

3𝑃45G(?GH)6

,

78I

=	 

(Eq. 2) 

In this case the matrices Mk are fixed based on the motifs deconvoluted in the 9-mer 

peptides and only the weights of the different motifs are learned from the data, using 

again the Expectation-Maximization algorithm. For example, for 8-mers, it means that 

position 1-3 of the 9-mer motifs are used to score position 1-3 of the peptides, and 

position 8 and 9 of the 9-mer motifs are used to score position 7 and 8 of the peptides.  

For peptides of length L>9, the log-likelihood function is given by: 

  

log{𝑃(𝑋|𝑤D)}

= 0 logK0𝑤D2 max
OP8Q,…,DR,

OS8OP<T,…,DRU
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(Eq. 3) 

 

Here again the motifs themselves (Mk, k=1-3, 8-9) are fixed based on those inferred 

from the 9-mer peptides and the weights (𝑤D2) of the different motifs are learned 

separately for each length. The use of the ‘max’ function is meant to consider all 

possible cases of N- and C-terminal extensions (9). Information about which starting 

position of the N-terminal motif (i.e., S1+1) and end position of the C-terminal motif 

(i.e., S2+2) gave rise to the highest value for each cluster is given in output of 

MixMHCp2.0 (responsibility files), thereby providing predictions about potential N- 
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and C-terminal extensions. T1=0.05 and T2=0.2 correspond to penalties assigned to 

extensions and represent the fact that, on average, cases where a motif can be found 

both at the terminus and within the peptide sequence correspond to bulges (9). The 

optimal number of motifs and the assignment of the different motifs to different 

alleles in each sample was determined as described in our previous work based on 9-

mers (3, 4) and all motif annotations were manually reviewed. 

The new version of the motif deconvolution (MixMHCp2.0) is available at 

https://github.com/GfellerLab/MixMHCp. All logos were generated with the LOLA 

software (http://baderlab.org/Software/LOLA). 

 

Collection of publicly available HLA peptidomics data 

Publicly available HLA peptidomics datasets from mono-allelic studies (7, 8, 25, 26) 

and pooled studies (1, 2, 4, 14, 27–30) were considered in this work (Supplemental 

Table II). Almost all these samples were measured with 1% FDR and none of them 

was filtered by existing predictors. For the samples from (29), raw MS data were 

reprocessed and the list of peptides is available in (4). For the samples from (8), the 

list of peptides before filtering was kindly provided to us by the authors of this study. 

Finally IEDB (31) data (as of March 2018) were also collected, treating separately 

those annotated as "ligand presentation" (MS data) and those not (non-MS data). 

 

Motif deconvolution in HLA peptidomes 

All HLA peptidomics datasets were analyzed with the new version of MixMHCp (see 

above) and all motifs were manually verified. These include mono-allelic samples, 

where the flat cluster was used to remove potential contaminants and motifs from 

endogenous alleles in samples transfected with soluble alleles (e.g., HLA-B35:03 and 

HLA-C04:01 in the data from (8)). Peptides were assigned to specific alleles based on 

the highest responsibility value observed for the corresponding motif (3, 4). For each 

allele, a unique list of peptides was derived by pooling together all peptides 

corresponding to motifs annotated to this allele across all samples, as previously 

described (3, 4). d. Peptides assigned to the flat motif in any sample were also 

excluded from downstream analyses. 

 

Length distribution in HLA-I ligands 
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The number of ligands 𝑁](𝐿) of each length L=8,…,14 for a given allele h was 

computed based on available MS data. When MS data from our curated set of HLA 

peptidomics studies were not available for a given allele, we used MS data from 

IEDB. Although allele restriction was often predicted with former version of HLA-I 

ligand predictors in IEDB MS data, the utility of such data to estimate peptide length 

distributions and improve predictors has been recently demonstrated (17). Only HLA-

I alleles with at least 200 peptides were considered in this analysis (84 alleles in total). 

Low-dimensionality representation of the alleles based on their peptide length 

distribution similarity was carried out with standard t-SNE, as implemented in R 

(initial_dims=5 and perplexity=28) (32). Of note the exact positioning of the points in 

the t-SNE plot was not used in downstream analyses, and is only meant to help 

visualization. Clustering of HLA-I alleles was performed in R (hclust package in R) 

based on the Euclidean distance between length distributions for all pairs of alleles 

(k=3, method="ward.D2"). The average length distribution of each cluster was then 

computed (Fig. 2B). 

When incorporating peptide length distributions into our predictor (i.e., to compute 

the shifts, see below), a smoothing procedure was applied based on the average 

distribution 𝑁_(𝐿) = 9
|O`|

∑ >b(D)
∑ >b(D)Pc
5de

]∈O`  for each cluster c (c=1,2,3): 

𝐷](𝐿) =
𝑁](𝐿) + 	𝛽𝑁_(𝐿) + 𝛾
∑ 𝑁](𝐿)9j
78I + 𝛽 + 7𝛾

, 

(Eq. 4) 

with b=100, g=10 and c=1, 2 or 3 depending on the cluster of allele h and Sc the set of 

alleles in cluster c. This will be especially useful for alleles without MS data 

(𝑁](𝐿) = 0), see below. 

 

Prediction of peptide length distributions 

To predict peptide length distribution directly from HLA-I sequences, we aligned the 

amino acid sequences of all alleles with at least 200 ligands found by MS. We then 

trained a multinomial logistic regression to predict the clusters observed in Fig. 2A 

(cv.glmnet, as implemented in R), using as input the amino acids at each position in 

the HLA-I binding site (i.e., positions 5, 7, 9, 33, 45, 59, 63, 66, 67, 69, 70, 73, 76, 77, 

80, 81, 84, 97, 99, 114, 116, 123, 142, 143, 146, 147, 152, 156, 159, 163, 167 and 

171, following residue numbering in X-ray structures), based on standard 20-
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dimensional encoding of amino acids. Cross-validation was carried out by randomly 

splitting into five groups the alleles shown in Fig. 2A and iteratively training the 

model (including both the clustering and the logistic regression) on four groups and 

testing the predictions on the 5th group. In the testing set, the predicted length 

distribution of a given allele was taken as the average length distribution over the 

alleles of the cluster to which this allele was assigned and the correlation between the 

predicted length distribution and the actual one was computed. Average correlation 

reported in the manuscript corresponds to the average over all alleles and over ten 

different random choices of the groups used in the cross-validation (distinct random 

seeds). For comparison, correlations obtained by random cluster assignment of alleles 

in the testing sets were computed. This is important since peptide length distributions 

of all HLA-I molecules share common features, so we always expect some level of 

correlation between predicted and actual peptide length distributions, even with a 

random predictor. 

Finally, for HLA-I alleles without MS data, the clusters were predicted with the 

logistic regression trained on the full dataset of alleles with MS data (84 alleles in 

total) and the predicted peptide length distributions for these alleles correspond to the 

average length distribution of the alleles belonging to the cluster where it was 

assigned, plus a flat pseudo-count given by g (Eq. 4). 

 

Amino acid frequencies at non-anchor positions 

Alleles with at least 20 ligands for all lengths L=8,…14 were selected (i.e., A01:01, 

A02:01, A03:01, A11:01, A24:02, A29:02, A31:01, A68:01, B07:02, B15:01, 

B27:05, B44:02, B57:01) and the frequency of amino acids (fr(x), x=1,…20) at 

positions P5 to PW-2 was computed for each peptide length and each allele. For each 

amino acid, the average frequency (<fr(x)>) divided by the amino acid frequency in 

the human proteome (Px) and standard deviation across the 20 alleles are shown in 

Fig. 3. Amino acids have been ranked based on the slope of the linear regression (red 

line in Fig. 3). P-values in Fig. 3 correspond to the P-value of the Pearson correlation. 

 

Building Position Weight Matrices 

The training set of our HLA-I ligand predictor MixMHCpred was built as previously 

described (4), adding two new meningioma samples measured in this work (3911-

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 7, 2018. ; https://doi.org/10.1101/335661doi: bioRxiv preprint 

https://doi.org/10.1101/335661
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 10	

ME_I and 4021_I, representing 4,719 unique peptides of length L=8,…,14) and 

several recent HLA peptidomics studies (8, 25, 26, 30). For alleles with less than 200 

peptides, MS data from IEDB (31) were further included. For alleles that still had less 

than 20 peptides, in vitro binding data from IEDB were used (treating as positives all 

entries not annotated as “Negatives”). This led to a total of 122 alleles for which we 

could obtain ligands and build PWMs for length L=8 to L=14. To this end, all 

peptides assigned to the same allele across all studies were pooled together and each 

peptide was considered only once. Single Position Weight Matrices for each allele h 

and each peptide length L (𝑀(],D)) were built, including pseudo-counts based on 

BLOSUM correction and renormalization by the expected background amino acid 

frequencies (4, 33). In this framework, the score of a L-mer peptide 𝑋 = (𝑋9, … , 𝑋D) 

with allele h was computed as: 𝑆](𝑋) = 	 log	(∏ 𝑀45,7
(],D)D

789 ) log	(𝐿)o . In a few cases, 

no ligand was available for L=8, and we used the 9-mer PWMs, removing the middle 

position with the lowest binding specificity. In a few other cases, ligands were not 

available for longer peptides (L=10,…,14). In these cases, a non-specific position was 

added to 𝑀(],DR9)  right after position L-4. Of note, these cases contribute only 

marginally to the predictions when incorporating peptide length distribution in the 

predictor, since by construction the corresponding lengths are given a very low weight 

(see below). 

 
Explicitly modeling length distribution in HLA-I ligand predictors 

The scores given by standard PWMs result in peptide length distributions that do not 

follow those observed in MS data. To explicitly model the peptide length distributions 

of naturally presented ligands, we added a correction factor to the scoring of peptides 

of different lengths: 

 

𝑆]p𝑋(D)q = 	
log	(∏ 𝑀45,7

(],D)D
789 )

log	(𝐿) − 𝐶(],D) 

(Eq. 5) 

 

The correction factors 𝐶(],D) were computed as the score corresponding to 100 ×

𝐷](𝐿)  percentile rank for 100’000 L-mers (randomly selected from the human 

proteome) without the correction factor. In this way, the top 1% peptides predicted 
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from a set of 700’000 8- to 14-mers (100’000 of each length) follows by construction 

the distribution 𝐷](𝐿) derived from MS data and positive scores indicate peptides in 

the top 1% of the predictions while negative scores indicate peptides in the low 99% 

of the predictions for a single allele. 

 

Incorporating multiple specificity in HLA-I ligand predictors 

All peptides annotated to the same allele were re-analyzed with our mixture model to 

identify multiple motifs. Peptides of different lengths were treated separately, always 

setting the core length equal to the peptide length in MixMHCp. Treating separately 

peptides of different lengths is important for multiple specificity analysis since 

peptides of different length may not display the same multiple specificity patterns (see 

example of C-terminal extensions in Fig. 4). All cases were then manually reviewed 

to determine whether the multiple motifs differed significantly from the single motif 

(Fig. 4). 

To investigate whether multiple specificity could improve HLA-I ligand predictions, 

we modeled these cases with multiple PWMs using the framework introduced 

previously by ourselves for peptide recognition domains (19, 22) and recently applied 

to model C-terminal extensions in 10-mer HLA-I ligands (9). Peptides were assigned 

to each motif identified by the mixture model based on the highest responsibility 

values and multiple PWMs (𝑀(],D,2)) were built as described above for each allele h, 

each group of peptides k and each length L. Each motif also includes a weight 𝑤2  

corresponding to the fraction of peptides assigned to it in the training set. The score of 

a new peptide of length L with allele h is then computed as: 

 

𝑆](𝑋) = 	
log	(∑ 𝑤2 ∏ 𝑀45,7

(],D,2)D
789

:
289 )

log	(𝐿) − 𝐶(],D) 

(Eq. 6) 

The new version of the HLA-I ligand predictor (MixMHCpred2.0.1) is available at 

https://github.com/GfellerLab/MixMHCpred. 

 

HLA peptidome profiling of meningioma samples with mass spectrometry based 

immunopeptidomics 
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Snap frozen meningioma tissues from patients were obtained from the Centre 

hospitalier universitaire vaudois (CHUV, Lausanne, Switzerland). HLA-I typing was 

performed for all samples. Informed consent of the participants was obtained 

following requirements of the institutional review board (Ethics Commission, 

CHUV). Protocol F-25/99 has been approved by the local Ethics committee and the 

biobank of the Lab of Brain Tumor Biology and Genetics.  

We extracted HLA-I peptides from the meningioma samples as previously described 

(1). Briefly, snap-frozen meningioma tissue samples were placed in tubes containing 

ice cold PBS lysis buffer comprising of 0.25% sodium deoxycholate (Sigma-Aldrich), 

0.2 mM iodoacetamide (Sigma-Aldrich), 1 mM EDTA, 1:200 Protease Inhibitors 

Cocktail (Sigma-Aldrich), 1 mM Phenylmethylsulfonylfluoride (Roche, Basel, 

Switzerland), 1% octyl-beta-D glucopyranoside (Sigma-Alrich) and homogenized on 

ice in 3-5 short intervals of 5 seconds each using an Ultra Turrax homogenizer (IKA, 

Staufen, Germany) at maximum speed. Cell lysis was performed at 4°C for 1 hour. 

Lysates were cleared by centrifugation at 20,000 rpm in a high speed centrifuge 

(Beckman Coulter, JSS15314, Nyon, Switzerland) at 4°C for 50 minutes. The lysates 

were loaded on stacked 96-well single-use micro-plates (3µm glass fiber, 10µm 

polypropylene membranes; ref number 360063, Seahorse Bioscience, North Billerica, 

Massachusetts). The first plate contained protein-A sepharose 4B (Pro-A) beads 

(Invitrogen, Carlsbad, California) for depletion of antibodies, and the second plate 

contained same beads cross-linked to W6/32 anti HLA monoclonal antibodies as 

previously described (1). We then employed the Waters Positive Pressure-96 

Processor (Waters, Milford, Massachusetts). We washed the second plate with 4 times 

2 mL of 150 mM sodium chloride (NaCl) (Carlo-Erba, Val de Reuil, France) in 20 

mM Tris-HCl pH 8, 4 times 2 mL of 400 mM NaCl in 20 mM Tris-HCl pH 8 and 

again with 4 times 2 mL of 150 mM NaCl in 20 mM Tris-HCl pH 8. Finally, we 

washed the beads twice with 2 mL of 20 mM Tris-HCl pH 8. We stacked the affinity 

plate on top of a Sep-Pak tC18 100 mg Sorbent 96-well plate (ref number: 186002321, 

Waters) already equilibrated with 1 mL of 80% ACN in 0.1 % TFA and with 2 mL of 

0.1% TFA. We eluted the HLA and peptides with 500 µL 1% TFA into the Sep-Pak 

plate and then we washed this plate with 2 mL of 0.1 % TFA. Thereafter, we eluted 

the HLA-I peptides with 500 µL of 28% ACN in 0.1% TFA into a collection plate. 

Recovered HLA-I peptides were dried using vacuum centrifugation (Concentrator 

plus Eppendorf) and stored at -20°C. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 7, 2018. ; https://doi.org/10.1101/335661doi: bioRxiv preprint 

https://doi.org/10.1101/335661
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 13	

Prior to MS analysis HLA-I peptide samples were re-suspended in 10 µL of 2% 

ACN/0.1 % FA  and aliquots of 3 ul  for each MS run were placed in the Ultra HPLC 

autosampler. All samples were acquired using the nanoflow Ultra-HPLC Easy nLC 

1200 (Thermo Fisher Scientific, LC140) coupled online to a Q Exactive HF Orbitrap 

mass spectrometer (Thermo Fischer Scientific) with a nanoelectrospray ion source 

(Sonation, PRSO-V1,  Baden-Württemberg, Germany) as previously described (1). 

We packed the uncoated PicoTip 8µm tip opening with 75 µm i.d. x 50 cm long 

analytical columns with ReproSil-Pur C18 (1.9 µm particles, 120 Å pore size, Dr. 

Maisch GmbH, Ammerbuch, Germany). Mounted analytical columns were kept at 

50°C using a column oven. Data was acquired with data-dependent “top10” method. 

The MS scan range was set to 300 to 1,650 m/z with a resolution of 60,000 (200 m/z) 

and an AGC target value of 3e6 ions. For MS/MS, AGC target values of 1e5 were 

used with a maximum injection time of 120 ms at set resolution of 15,000 (200 m/z). 

In case of assigned precursor ion charge states of four and above, no fragmentation 

was performed. 

We employed the MaxQuant computational proteomics platform version 1.5.5.1 (34) 

to search the peak lists against the UniProt databases (Human 42,148 entries, March 

2017) and a file containing 247 frequently observed contaminants. We used default 

settings unless otherwise mentioned. Methionine oxidation (15.994915 Da), cysteine 

carbamidomethylation (57.021463 Da) and cysteinylation (119.004099) were set as 

variable modifications. The second peptide identification option in Andromeda was 

enabled. A false discovery rate (FDR) of 0.01 and no protein FDR was set. The 

enzyme specificity was set as unspecific and the ‘match between runs’ option was 

enabled across different replicates of the same biological sample in a time window of 

0.5 min and an initial alignment time window of 20 min. We used the ‘peptides’ 

MaxQuant output table from which peptides matching to reverse and contaminants 

were filtered out (Supplemental Table III). MS RAW data, MaxQuant parameters and 

selected MaxQuant output tables used for analyses have been deposited to the 

ProteomeXchange Consortium (35) via the PRIDE partner repository with the dataset 

identifier PXD009925.  

Two of these samples (3911-ME_I and 4021_I) were included in the peptide length 

distribution and multiple specificity analysis as well as the training of the new version 

of the HLA-I ligand predictor (MixMHCpred2.0.1), since they contained alleles 

(HLA-B49:01 and HLA-C15:05) whose motifs were not detected in our collection of 
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publicly available HLA peptidomics studies, and therefore enabled us to expand the 

allelic coverage of MixMHCpred. The other ten datasets were kept for benchmarking 

of the new version of MixMHCpred (Fig. 6) and were not included in any training 

procedures presented in this work. 

 

Benchmarking MixMHCpred2.0.1 

To benchmark our new algorithm (MixMHCpred2.0.1), we used the ten HLA 

peptidomes from meningioma samples that were measured in this study. Negative 

data were chosen by randomly selecting peptides from the human proteome so as to 

have 4 times more negative than positive. Peptides of lengths 8 to 14 were uniformly 

selected in the negative data. When attempting to predict peptides naturally presented 

in meningioma samples with many (i.e. up to six) different HLA-I alleles, we used for 

each peptide the highest score of MixMHCpred2.0.1 across all alleles. Precision in the 

top 20% of the predicted peptides (which is also equal to recall in the case of 4-fold 

excess of negative data) and Area Under the ROC Curve (AUC) were computed for 

each sample (4th bars in Fig. 6A And 6B). AUC values were also computed with 99-

fold excess of random negative data (Fig. 6C). MixMHCpred2.0.1 scores were then 

computed in the absence of peptide length distribution corrections and multiple 

specificity (1st bars in Fig. 6), absence of peptide length distribution corrections (2nd 

bars in Fig. 6) or absence of multiple specificity (3rd bar in Fig. 6). When 

benchmarking with NetMHCpan4.0 (17), we used the percentile rank of the elution 

scores and chose the lowest percentile rank across all alleles for each peptide (5th bar 

in Fig. 6).  

 

X-ray structures of HLA-I alleles 

X-ray structures of HLA-I alleles shown in Fig. 2A were retrieved from the PDB. A 

representative structure for each allele was selected based on (i) the fact that the 

ligand is a 9-mer (ii) the absence of other receptors binding to the peptide-HLA-b2m 

complex (e.g., TCR or KIR, the only exception is HLA-C03:04 for which a crystal 

structure was only available in complex with KIR2DL2) and (iii) the lowest R value. 

This led to a total of 30 alleles with X-ray structures in complex with 9-mers 

(Supplemental Table IV). 
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Euclidean distances between the peptides and the beta sheet of the HLA-I molecules 

were computed as the smallest distance of any heavy atom of the peptide (P3 – PW-1) 

with any heavy atom of residues in the beta sheet (positions 5, 6, 7, 8, 9, 10, 11, 12, 

23, 24, 25, 26, 27, 28, 95, 96, 97, 98, 99, 100, 101, 113, 114, 115, 116, 117 and 118). 

Most of the time, the residue closest to the peptide in the beta sheet is residue 97, 

which is located in the center of the binding site and points towards the non-anchor 

residues of the ligand. In each structure, B factors for all Ca atoms of the peptides (P3 

– PW-1) were averaged and this value was normalized (i.e. divided) by the average of 

B factors of all Ca atoms of the HLA-I molecule to enable meaningful comparison 

between different structures. 

 

In vitro refolding assays 

All peptides used in refolding assays with HLA-A03:01, HLA-B07:02, HLA-B15:01 

and HLA-C06:02 were synthesized with free N and C-termini (1mg of each peptide, > 

80% purity). Peptides were incubated separately with denaturated HLA-I alleles 

refolded by dilution in the presence of biotinylated beta-2 microglobulin proteins at 

temperature T=4°C for 48 hours. The solution was then incubated at 37°C. Samples 

were retrieved at time t=0h, 8h, 24h, 48h and t=72h. Stable complexes indicating 

interactions between HLA-I molecules and the peptides were detected by ELISA. 

Two independent replicates were performed for each measurement in Fig. 2C, 5B and 

5C. Positive controls were used to renormalize the ELISA absorbance values between 

the different replicates and the y-axis shows the mean and standard deviation of these 

normalized values. Values in Fig. 2C were further renormalized by the 9-mer at time 

t=0h. 
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Results 

Peptide length distributions in HLA-I ligands 

To study the length distribution of naturally presented HLA-I ligands, we used our 

collection of curated HLA peptidomics datasets, including two novel meningioma 

samples (4’719 unique 8- to 14-mer peptides, see Materials and Methods and 

Supplemental Table III), to reach a total of 227’510 unique peptides. We used our 

recent motif deconvolution algorithm MixMHCp (3) to assign allelic restriction in 

pooled HLA peptidomics samples and expanded this approach better handle peptides 

of different lengths and allow for a flat motif that can identify contaminants that do 

not fit any of the motifs learned by the algorithm, akin to the trash cluster in 

GibbsCluster (5, 6, 24) (Eq. 1-3 and Materials and Methods). Supplemental Table I 

shows the number of predicted contaminants for each sample analyzed in this work 

and each peptide length. Overall, we observed a median 3.7% of predicted 

contaminants across samples, with some samples displaying over 25% of predicted 

contaminants (e.g., HLA-A68:02 in (7), as also reported in (6)). The highest fraction 

of predicted contaminants was observed in samples obtained by transfecting soluble 

HLA-I alleles, followed by mono-allelic samples, and then pooled HLA peptidomics 

samples (Fig. 1A). We also observed a much higher fraction of predicted 

contaminants among longer peptides (median of 58.8% among 14-mers versus 0.66% 

among 9-mers, see Fig. 1B). 

Focusing on alleles with enough MS data (>200 ligands after removing peptides 

assigned to the flat motif), we could estimate peptide length distributions for a total of 

84 alleles (Supplemental Fig. 1). As previously reported (7, 16–18), we observed 

significant differences in peptide length distributions between different alleles. To 

have a global view of the diversity of peptide length distributions across HLA-I 

alleles, we used t-SNE to represent in 2D the different HLA-I alleles based on the 

similarity of their peptide length distributions and proposed three distinct clusters of 

HLA-I alleles (Fig. 2A and 2B) (see Materials and Methods). Cluster 1 is composed 

of HLA-I alleles that accommodate many longer ligands (e.g., HLA-A01:01 or HLA-

03:01). Cluster 2 contains alleles that can bind 10- and 11-mers, in addition to 

canonical 9-mers, but much less longer peptides (e.g., HLA-A02:01). Finally, cluster 

3 contains alleles with peptide length distributions peaked on 9-mers (e.g., HLA-

C06:02) or 8- and 9-mers (e.g., HLA-B51:01) and much fewer longer peptides. 
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Some patterns emerged from this analysis in terms of which HLA-I alleles fall into 

which cluster. First, we observed a strong clustering of HLA-C alleles (mainly in 

cluster 3), whereas HLA-A and HLA-B alleles were more mixed, with few HLA-A 

alleles in cluster 3. As expected, HLA-B alleles found in cluster 3 also displayed 

peptide length distributions peaked at 8- and 9-mers and include alleles with anchor 

residues at P5 (e.g., HLA-B08:01, HLA-B14:02, HLA-B37:01) (3). To test whether 

the peptide length distributions peaked at 9-mers for HLA-C alleles reflected 

differences in binding affinity, we tested six different ligands of HLA-C06:02 

(Materials and Methods and Fig. 2C). In all cases we observed lower stability of both 

the 10- and 11-mers (orange and cyan, respectively) compared to the 9-mers (purple). 

These results suggest that the preference of HLA-C06:02 for 9-mers compared to 10- 

or 11-mers is also due to lower binding affinity of longer peptides, in addition to the 

expected higher frequency of 9-mer peptides available for loading in the ER (16) 

Reversely, 8-mers (black) displayed only slightly lower stability compared to 9-mers, 

suggesting that their lower frequency in MS data is mainly due to lower frequency of 

8-mers in the ER (16). Similar results were previously observed for HLA-B51:01 

(16). 

To explore the structural basis of peptide length distributions, we surveyed existing 

X-ray structures of HLA-I alleles in complex with 9-mer peptides (Supplemental 

Table IV) and measured the distance between the ligand and the beta sheet of the 

HLA-I binding site (see Materials and Methods). Interestingly, we observed that the 

smallest distance between residues in the beta sheet of the HLA-I binding site and 

residues at non-anchor positions (P3 to P8) in the peptide is significantly lower for 

alleles in cluster 2 and 3 compared to alleles in cluster 1 (Fig. 2D, see example in Fig. 

2E). In addition, the average normalized B-factor of Ca atoms of residues P3 to P8 

(see Materials and Methods), which represents how flexible these atoms are in X-ray 

structures, is significantly lower for alleles found in cluster 2 and 3 compared to 

alleles in cluster 1 (Fig. 2F). The lower distance between the residues in the beta sheet 

and those in the peptide together with the lower B-factors of peptides for alleles in 

cluster 2 and 3 indicate that 9-mer ligands of these alleles are more constrained and 

less floppy. This provides a potential structural explanation for the observed 

differences in peptide length distributions between different alleles and suggests that 
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bulging out of the peptides in the presence of additional amino acids (i.e., longer 

peptides) is less favorable in alleles from clusters 2 and 3. 

To further support this hypothesis, we note that HLA-B57:01 and HLA-B58:01 differ 

by only two residues in the HLA-I binding site (47 and 97) and have very similar 

binding motifs (Fig. 2E). Position 97 is located close to non-anchor residues of the 

peptide (P3 to P8), while position 45 is buried in the B pocket (Fig. 2E). In HLA-

B57:01 valine is found at position 97 and does not interact directly with residues P3-

P8 in the peptide (PDB: 2RFX (36), minimal distance equal to 5.4Å), while in HLA-

B58:01 arginine is found at position 97 and makes direct interactions with the peptide 

(PDB: 5IND (37), minimal distance equal to 3.5Å) (Fig. 2E). Consistent with the 

mechanism proposed above, HLA-B57:01 has a broader peptide length distribution 

than HLA-B58:01 (Fig. 2A). These data suggest that position 97 in the HLA-I binding 

site may play a role in determining length preference and Fig. 2B indicates that, on 

average, smaller residues are found in alleles of cluster 1. This is consistent with the 

increased interactions previously observed between W97 and the peptide in HLA-

B14:02 compared to most B27 alleles which have N at position 97 (38). 

 

Predicting peptide length distributions 

The clustering observed in Fig. 2A suggests that it may be possible to predict peptide 

length distribution for a new HLA-I allele based on its sequence only, by predicting to 

which cluster it belongs and then mapping the average peptide length distribution of 

the cluster to this new allele. To this end, we trained a multinomial logistic regression, 

using as features all the HLA-I residues found in the binding site and as output the 3 

clusters identified in Fig. 2A (Materials and Methods). Five-fold cross-validation was 

carried out, including both the clustering and the training of the multinomial logistic 

regression. The average correlation between observed and predicted peptide length 

distributions was 0.972. As a comparison, a random assignment of HLA-I alleles to 

the clusters during the cross-validation  would result in an average correlation of 

0.930. This clearly indicates that our approach has predictive power for peptide length 

distributions based on HLA-I sequences, beyond what is conserved across all HLA-I 

alleles (e.g., the higher frequency of 9-mers). 

 

Amino acid frequencies at non-anchor positions 
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We next took advantage of our large collection of unbiased HLA-I ligands of different 

lengths to investigate the changes in amino acid preferences at non-anchor positions 

(P5 to PW-2) for alleles displaying at least 20 ligands for all peptide lengths L=8,…14 

(13 alleles in total, see Materials and Methods). Fig. 3 shows the changes in amino 

acid frequencies with respect to peptide lengths. The first pattern that emerges from 

this analysis is the very clear increase in frequency of glycine in longer peptides. 

Glycine is known to destabilize secondary structures and induce protein disorder (39). 

We anticipate that the higher frequency of glycine in longer HLA-I ligands enables 

them to adopt bulging conformations more easily. We also observed increased 

frequency of negatively charged residues (aspartate and glutamate), serine and to a 

lower extent alanine. Glycine, serine and alanine have small sidechains, which 

confirms at a larger scale the observation made  for HLA-C04:01 ligands (40). 

Disfavored amino acids in longer peptides include leucine, tryptophan, arginine, 

valine, phenylalanine, histidine and isoleucine. Many of them tend to induce 

structured conformations of polypeptides, further indicating that, on average, longer 

HLA-I ligands tend to be less structured at non-anchor positions. As noted in previous 

studies (4, 7), we also observed a very low frequency of cysteine at all peptide 

lengths, which is likely due to the fact that cysteine modifications are not included in 

standard MS spectral searches. 

 

Multiple specificity in HLA-I ligands 

To study cases of multiple specificity, we applied the new version of the MixMHCp 

algorithm to each dataset of HLA-I ligands, treating separately peptides of different 

lengths (Materials and Methods). All cases were manually reviewed and our results 

revealed several instances of multiple specificity (Fig. 4). These include the 

previously reported multiple specificity of HLA-B07:02 (3), as well as cases of C-

terminal extensions in 10-mers for HLA-A03:01 and HLA-A68:01 (orange boxes in 

Fig. 4) (9). For HLA-B07:02, the multiple specificity predicts mutual exclusivity of 

positively charged residues at P3 and P6. In our previous work, we had proposed a 

structural explanation for this observation, involving the presence of aspartate in the 

HLA binding site at position 114 which can interact with one, but not two positively 

charged residues in the peptide (3). A similar multiple specificity pattern is observed 

for HLA-C16:01 (Fig. 4, red boxes), and this allele has also aspartate at position 114. 
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For HLA-B35:08, existing structures indicate that R156 can interact with residues at 

P3 (PDB: 2AXF (41)) or P5 (PDB: 2FZ3 (42)) (Fig. 5A), which is consistent with the 

mutual exclusivity of negatively charged residues observed at these 2 positions in MS 

data (Fig. 4, cyan boxes).	

For two alleles (HLA-A03:01 and HLA-B51:01), we set out to validate these 

predictions. For HLA-A03:01, the multiple specificity model predicted that the 

binding of peptides with R/K at P9 should not be much influenced by the amino acid 

at P7, while peptides with Y/H at P9 should show additional specificity for leucine at 

P7. These predictions could be validated by observing that L7A mutation of peptides 

with K at P9 did not affect the binding, while L7A mutation decreased the binding of 

peptides with Y or H at P9 (Fig. 5B). For HLA-B51:01, peptides with sequences 

predicted to follow the two binding specificities (i.e., L1P2 and D1A2), as well as the 

other possibilities (i.e., D1P2 and L1A2) were tested. The latter are predicted to display 

weaker binding, although the single 9-mer logo of HLA-B51:01 would naively 

predict D1P2 to show the highest stability (Fig. 4). For both 9-mers and 8-mers, we 

could confirm the predictions of the multiple specificity analysis by observing that 

peptides with either L1P2 or D1A2 displayed higher stability than ligands with D1P2 or 

L1A2 (Fig. 5C). Comparison of HLA-B51:01 crystal structures in complex with two 

different ligands (L1P2 in blue and T1A2 in orange in Fig. 5D) (43) indicates that the 

polar group of T1 interacts with R62, which is consistent with the specificity for 

negatively charged or polar residues seen in MS data at P1. Reversely, in the presence 

of L1, the sidechain of R62 points towards the solvent. In addition, superposition of 

the two structures suggest that proline at P2 may not be compatible with the position 

of the threonine sidechain at P1. This suggests a possible explanation for the multiple 

specificity of HLA-B51:01. If alanine is found at P2, then negatively charged or polar 

amino acids are preferred at P1 and can make interactions with R62. Reversely, if 

proline is found at P2, amino acids at P1 cannot make direct interactions with R62, 

which is then pointing towards the solvent, and hydrophobic sidechains are preferred 

at P1. It is also interesting to note that one of the first neo-antigens identified by MS 

(DANSFLQSV) in melanoma samples (44) matches very precisely the second motif of 

HLA-B51:01 identified in this work. 

 

Incorporating peptide length distribution and multiple specificity in HLA-I ligand 

predictors 
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To incorporate peptide length distribution and multiple specificity in HLA-I ligand 

predictors, and explore whether this would lead to improved predictions of naturally 

presented HLA-I ligands, we developed a new version of MixMHCpred (v2.0.1). 

Peptide length distribution information was incorporated by adding a penalty so that 

the length distribution of the top 1% of peptides predicted from a pool of 700’000 

random peptides (100’000 of each length L=8,...,14) follows by construction the 

distribution observed in MS data (Eq. 5 and Materials and Methods). For all alleles 

displaying multiple specificity, their binding specificity was modeled with multiple 

Position Weight Matrices (PWMs) (Eq. 6 and Materials and Methods). 

To validate this new version of our predictor in an independent dataset, we measured 

the HLA peptidome of 10 new meningioma samples, resulting in 27,882 unique 

peptides of length 8 to 14 (Materials and Methods and Supplemental Table III). We 

then attempted to predict these peptides by adding 4 times more negative data 

consisting of 8- to 14-mer peptides randomly sampled from the human proteome 

(Materials and Methods). Fig. 6 shows the results in terms of precision in the top 20% 

of the predictions (which is equal to recall since we have a 4-fold excess of negative 

data) and Area Under the receiver operating Curve (AUC) values. In all cases, we saw 

clear improvement by adding correction for peptide length distributions (compare 1st 

and 3rd bars, as well as 2nd and 4th bars in Fig. 6A and 6B). Moreover, in all but two 

samples containing alleles that were shown to display multiple specificity (stars in 

Fig. 6), we observed that including multiple specificity led to equal or better results 

(compare 1st and 2nd bars, as well as 3rd and 4th bars in Fig. 6). When comparing with 

the other predictor of naturally presented HLA-I ligands that includes MS data in its 

training (i.e., NetMHCpan4.0 (17)), we could observe better performance in precision 

for all samples and in AUC values for all but one sample (compare 4th and 5th bars in 

Fig. 6). We repeated the AUC analysis in the presence of 99-fold excess of randomly 

selected negatives (Fig. 6C), and observed that here as well our predictor displayed 

higher accuracy compared to other predictors trained on MS data. 
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Discussion 
In-depth and unbiased sampling of naturally presented HLA-I ligands is a powerful 

approach to unravel new properties of HLA-I molecules (3, 4, 6–9, 16, 40). In this 

work, we capitalized on these data to explore peptide length distribution and multiple 

specificity of HLA-I molecules at a much larger scale than previous studies. Our work 

revealed clear clustering of HLA-I alleles based on their peptide length distribution, 

which could guide investigation of the structural properties underlying the preference 

for peptides of different lengths. One clear pattern that emerged from our analysis is 

the restriction of HLA-C alleles to mainly 8- and 9-mers (8), likely reflecting both the 

biased distribution towards 9-mers of peptides in the ER (16) and the lower binding 

stability observed in Fig. 2C. Reversely, the similar binding stability observed 

between 8- and 9-mers suggests that the lower frequency of 8-mers among HLA-C 

naturally presented ligands is primarily due to their lower frequency in the pool of 

peptides available for loading in the ER (16), at least for HLA-C06:02. The restriction 

of HLA-C alleles to short peptides may also have functional implications. In addition 

to T Cell Receptors (TCRs) that can somatically rearrange their sequences to bind a 

wide range of HLA-I restricted targets, HLA-C alleles are the main targets of Natural 

Killer (NK) receptors which are germline encoded. Numerous crystal structures 

indicate the NK receptors bind to HLA-I alleles on top of the F pocket  (12, 45). 

Longer peptides bulging out or extending at the C-terminus (9, 10, 13), may therefore 

interfere with the binding of NK receptors (12). This could explain why HLA-C 

alleles have evolved to preferentially bind to 8- and 9-mers. 

Our work further enabled us to demonstrate, for the first time to our knowledge, that 

peptide length distributions can be predicted directly from HLA-I sequences, as 

shown in our cross-validation study. 

The multiple specificity observed in this work suggests that, for some alleles, 

correlations between amino acid positions play an important role in binding to the 

HLA-I molecules (e.g., L1P2 and D1A2 being much more frequent to D1P2 or L1A2 in 

B51:01). These types of correlations, which we implicitly modelled with multiple 

PWMs, can also be captured with more complex machine learning frameworks, such 

as neural networks. It is worth noting that, from a mathematical point of view, 

multiple PWMs share many similarities with hidden nodes in neural networks, with 

the main difference being that the inputs of nodes in standard neural networks are 
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combined with a logistic regression, whereas we use linear combinations in Eq. 6. As 

already observed for peptide recognition domains (19, 21, 22), an important 

advantage of the multiple PWMs framework is the straightforward visualization, 

which is useful to guide structural interpretation and experimental validation of the 

predictions. Nevertheless, the fact that only 10% of HLA-I alleles displayed clear 

multiple specificity and the modest improvement in prediction obtained by 

incorporating multiple specificity (Fig. 6) suggest that the assumption of positional 

independence is still a good first approximation for modeling the specificity of many 

HLA-I alleles (23). 

Our performance estimates in Fig. 6 are only meant to compare between different 

methods and not to provide actual estimates of the success rate. The latter is 

unfortunately more difficult to assess in the absence of experimentally validated large 

negative datasets. In particular, in our benchmarking with 99-fold excess of randomly 

generated ‘negatives’ (Fig. 6C), we expect roughly 1% of them to be binders. This 

corresponds to the same number as the actual positives used in this benchmark and 

would make precision values in the top 1% more difficult to interpret. 

Altogether, our work provides the first large-scale analysis of peptide length 

distributions and multiple specificity in naturally presented HLA-I ligands across a 

large panel of alleles. Including these two features into our predictor led to improved 

predictions of peptides presented  on the surface of meningioma samples, and may 

therefore contribute to accelerating (neo-)antigen discovery in cancer immunotherapy. 
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Figures 

 

 
FIGURE 1: A: Median fraction of predicted contaminants in HLA peptidomics 

studies based on transfected soluble alleles, mono-allelic cell lines or pooled samples. 

B: Median fraction of contaminants among eluted peptides of different lengths. 
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FIGURE 2: A: Low dimensionality representation (t-SNE) of HLA-I alleles with 

available MS data based on their peptide length distribution similarity. Different 

colors stand for different clusters and different shapes indicate HLA-A/-B/-C or -G 

alleles. B: Average peptide length distributions in each cluster. The logos shown in 

inset display the amino acid distribution at position 97 in the HLA-I alleles of each 
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cluster. C: Binding stability of 8-, 9-, 10-  and 11-mer peptides in complex with HLA-

C06:02 obtained by ELISA (all values are renormalized by the 9-mer at t=0h). 

Residues shown in colors indicate those added in 9-mers (purple), 10-mers (orange) 

and 11-mers (cyan). Y-axis values correspond to ELISA absorbance signal 

normalized the signal for 9-mers at time t=0h. D: Distribution of the smallest 

distances between residues in the beta sheet and residues at P3-P8 in the peptide for 

alleles with available X-ray structures in each cluster (distances are measured between 

heavy atoms). E: Comparison of HLA-B57:01 and HLA B58:01 binding motifs and 

X-ray structures (PDB: 2RFX for HLA-B57:01 (35)  and PDB: 5IND for HLA-

B58:01 (36)). The two non-conserved residues in the HLA-I binding site are 

highlighted in green (M45 and V97 for HLA-B57:01 and A45 and R97 for HLA-

B58:01). Peptide residues (P3 to P8) are displayed with yellow sticks. The smallest 

distance between residue 97 and the peptide (P3 to P8) is displayed in red. P-values 

correspond to Mann-Whitney U test. F: Normalized average B-factors of Ca atoms at 

P3-P8 in the peptide for alleles with available X-ray structures in each cluster.  
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FIGURE 3: Average amino acid frequencies <f(x)> at non-anchor positions (P5 – 

PW-2) divided by the frequency in the human proteome (Px) as a function of peptide 

length. Each point represents the average over all alleles with at least 20 peptides for 

each length. Error bars represent standard deviations across these alleles. The black 

line corresponds to the linear fit. P-values correspond to the p-value of the correlation 

coefficient. Graphs have been ordered based on the slope of the black line. 
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FIGURE 4: Cases of multiple specificity identified in this work for different alleles 

and different peptide lengths. The number of peptides supporting each motif is 

448 297

396721

B5101

C1601

A0207

A0301

A3001

A6801

B0702

B0801

B3508

B5101

C1601

A0301

A3001

A6801

B0702

8-
m

er
s

9-
m

er
s

10
-m

er
s

Allele Single motif Multiple motifs

B5108

51 34
B5108

A6802

G0101

10871251 

4030 1626 

485 268 

18502449

489804 

15032471 694 690

1391 2065

281 127 

840 619 

307 179

9801789 578

982 1036

2232617 

113135

2352426

6741082

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

740 714 

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1168 1901

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

B4402

B4403

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 7, 2018. ; https://doi.org/10.1101/335661doi: bioRxiv preprint 

https://doi.org/10.1101/335661
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 36	

indicated. The red, respectively cyan, rectangles highlight cases of mutual exclusivity 

of positively, respectively negatively, charged residues. The orange rectangles 

highlight C-terminal extensions. The y-axis scale is the same for all logos (max at 

log2(20)). 

 

 
FIGURE 5: A: Superposition of X-ray structures of HLA-B35:08, indicating that 

R156 can interact with amino acids at P3 (PDB:2FZ3, grey) and P5 (PDB:2AXF, 

orange), consistent with the mutual exclusivity of negatively charged amino acids 

observed at these two positions in MS data (Fig. 4, cyan boxes). B: Validation of 

HLA-A03:01 multiple specificity: peptides with (K) at P9 do not show some 

specificity at P7, while peptides with Y at P9 do show specificity for L at P7. C: 

Validation of HLA-B51:01 multiple specificity: peptides with L1P2 or D1A2 display 

higher stability than peptides with L1A2 or D1P2. D: Superposition of X-ray structures 

of HLA-B51:01 in complex with two peptides matching the two motifs identified in 

MS data: ligand L1P2 in blue and HLA-B51:01 in grey (PDB:1E27); ligand T1A2 in 

orange and HLA-B51:01 in pale orange (PDB:1E28). 
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FIGURE 6: Improved predictions of naturally presented HLA-I ligands in 10 newly 

generated meningioma samples by explicitly modeling peptide length distribution and 

multiple specificity in MixMHCpred. A: Precision observed in the top 20% of the 

predicted peptides in the presence of 4-fold excess of randomly generated negative 

data (equivalent to recall). B: AUC values in the presence of 4-fold excess of 

randomly generated negative data. C: AUC values in the presence of 99-fold excess 

of randomly generated negatives. Stars indicate samples with at least one allele 

displaying multiple specificity. 
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Supplemental Figure 1: Peptide length distributions estimated from HLA peptidomics data for 
the 84 HLA-I alleles with >200 naturally presented ligands studied in this work.
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