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22 Abstract

23 Genome-wide and phenome-wide association studies are commonly used to identify 

24 important relationships between genetic variants and phenotypes. Most of these studies have 

25 treated diseases as independent variables and suffered from heavy multiple adjustment burdens 

26 due to the large number of genetic variants and disease phenotypes.  In this study, we propose 

27 using topic modeling via non-negative matrix factorization (NMF) for identifying associations 

28 between disease phenotypes and genetic variants. Topic modeling is an unsupervised machine 

29 learning approach that can be used to learn the semantic patterns from electronic health record 

30 data. We chose rs10455872 in LPA as the predictor since it has been shown to be associated with 

31 increased risk of hyperlipidemia and cardiovascular diseases (CVD). Using data of 12,759 

32 individuals from the biobank at Vanderbilt University Medical Center, we trained a topic model 

33 using NMF from 1,853 distinct phecodes extracted from the cohort’s electronic health records 

34 and generated six topics. We quantified their associations with rs10455872 in LPA. Topics 

35 indicating CVD had positive correlations with rs10455872 (P < 0.001), replicating a previous 

36 finding. We also identified a negative correlation between LPA and a topic representing lung 

37 cancer (P < 0.001). Our results demonstrate the applicability of topic modeling in exploring the 

38 relationship between the genome and clinical diseases. 

39

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2018. ; https://doi.org/10.1101/335745doi: bioRxiv preprint 

https://doi.org/10.1101/335745
http://creativecommons.org/licenses/by/4.0/


40 Author summary 

41 Identifying the clinical associations of genetic variants remains crucial in understanding 

42 how the human genome modulates disease risk. Traditional phenome-wide association studies 

43 consider each disease phenotype as an independent variable, however, diseases often present as 

44 complex clusters of comorbid conditions. In this study, we propose using topic modeling to 

45 model electronic health record data as a mixture of topics (e.g., disease clusters or relevant 

46 comorbidities) and testing associations between topics and genetic variants. Our results 

47 demonstrated the feasibility of using topic modeling to replicate and discover novel associations 

48 between the human genome and clinical diseases. 

49

50

51
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52 Introduction

53 Elucidating associations between genetic variants and human diseases creates new 

54 avenues for disease prevention and enables more precise treatment of diseases [1,2]. During the 

55 past two decades, genetic studies have uncovered thousands of genetic variants that influence 

56 risk for disease phenotypes [3], e.g., the discovery of a variant in proprotein convertase 

57 subtilisin/kexin type 9 (PCSK9[4]) associated with low plasma low-density lipoprotein, which 

58 led to a new therapeutic drug class that was approved by the US Food and Drug Administration 

59 in 2015. Many of these discoveries come from large-scale association analyses. The two most 

60 notable approaches are genome-wide (GWAS) and phenome-wide association studies (PheWAS) 

61 [2, 5]. For a given phenotype, GWAS scans hundreds of thousands to millions of single 

62 nucleotide polymorphisms (SNPs) across the genome in a hypothesis-free approach. PheWAS, 

63 on the contrary, analyzes thousands of disease phenotypes compared to a single SNP. In a 

64 GWAS, the outcome variable is a disease phenotype and predictor variables are SNPs. While in 

65 a PheWAS, the outcome variable is a SNP and predictor variables are disease phenotypes. 

66 Association analyses test a large number of predictor variables at one time and assume 

67 that each variable has an independent effect. However, diseases often occur together as a group 

68 of comorbidities, e.g. hyperlipidemia (HLD) and cardiovascular diseases (CVDs). Conventional 

69 association analyses may not capture the inter-connections among variables such as phenotypes 

70 and thus may not be sensitive enough to identify important genotype-phenotype relationships. 

71 Moreover, association analyses also face the challenge of scaling to an increasing number of 

72 phenotypes. Previously, we have described a “networked PheWAS” approach which can address 

73 interconnectivity but still requires a degree of supervised interpretation [6].

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2018. ; https://doi.org/10.1101/335745doi: bioRxiv preprint 

https://doi.org/10.1101/335745
http://creativecommons.org/licenses/by/4.0/


74 This study aimed to test the feasibility of topic modeling for identifying relationships 

75 between genetic variants and disease phenotypes. Topic modeling is an unsupervised machine 

76 learning method that was initially introduced as a text mining technique [7].  It has been 

77 demonstrated to extract latent topics or themes from documents, aiding in the understanding of 

78 large amounts of data [8]. Compared to traditional clustering approaches such as K-means 

79 clustering that partitions a collection of documents into several disjoint clusters (i.e., topics) 

80 based on a similarity measure, topic modeling assigns a document to multiple clusters with 

81 different scores. Therefore, each document is characterized by one or more topics. In addition to 

82 its wide adoption in the text mining field, topic modeling has achieved many successes in 

83 computer vision and biomedical science. Recently, a few groups have used this approach to 

84 analyze electronic health records (EHRs) [9,10] and genetic data to capture the characteristic of 

85 data [11,12]. 

86 We hypothesized that topic modeling would be useful in replicating known findings and 

87 uncovering previously unidentified relationships between genetic variants and disease 

88 phenotypes. To test this hypothesis, we used topic modeling via non-negative matrix 

89 factorization (NMF)  [13,14] to identify latent topics (e.g. disease clusters or relevant 

90 comorbidities) from EHR data. We then tested associations between the EHR-derived topics and 

91 a LPA SNP (rs10455872). We chose the SNP because previous studies have shown that high-

92 levels of the LPA product (Lp(a)) is associated with increased risks of developing HLD and 

93 CVD [15]. Specifically, rs10455872, as a single variant, explains 20-30% of the variation in 

94 circulating Lp(a) levels, which makes it an ideal candidate for this study [16].
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95 Results

96 We applied a topic modeling algorithm using NMF on the dataset of 12,759 individuals 

97 and obtained six potentially meaningful topics from the EHRs (Fig 1). The learned topics (i.e., 

98 clusters of disease phenotypes) were consistent with the comorbidities associated with the 

99 phenotypes most prevalent in the cohort. For example, topic #0 represented diseases of 

100 respiratory failure, topic #2 defined diseases related to CVD (e.g., HLD, hypertension, and 

101 chronic ischemic heart disease), topic #3 represented phenotypes relevant to lung cancer and its 

102 treatment, topic #4 was related to diabetes and its comorbidities; and topic #5 was related to liver 

103 disease and its sequelae. 

104

105 Fig 1. Word clouds for six topics. The size of the words (phecode) in each cloud 

106 indicate the weights of the phenotypes on the topic. Phenotypes with larger-sized words had 

107 greater influence on the topic compared to phenotypes with smaller-sized words. For each word 

108 cloud, we listed the top 60 words to provide a better visual presentation of what each topic 

109 represents.

110 Fig 2 shows the distribution of the numbers of topics in the cohort. Topic #2 was the most 

111 prevalent (33%) topic in the cohort. Topics #1 and #3 were the second and third most prevalent 

112 topics in the cohort.

113

114 Fig 2. Topic distribution in the cohort. To visualize the prevalence of each topic in the 

115 cohort, we assigned an individual to the topic with the maximum score.

116 We also used t-Distributed Stochastic Neighbor Embedding (t-SNE) [17] to transform the 

117 individual-phenotypes matrix (W) into a 2-dimensional (2D) space to visualize the quality of 
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118 topic modeling (Fig 3). Each data point in the figure corresponds to one individual. We labeled 

119 each individual with the assigned topic. 

120

121 Fig 3. t-SNE plot of visualizing the patient clusters in a projected 2D metric map.  

122 The perplexity was set to 30. We used PCA initialization as it is more globally stable. Each point 

123 represents an individual. Topic #2 contains the most individuals in the cohort.

124 We then applied the Pearson correlation coefficient (PCC) to examine the association 

125 between each topic and rs10455872. Statistical test results suggest that topic #2 and #3 were 

126 significantly associated with rs10455872 (Table 1). Topic #2, a group of lipid and cardiovascular 

127 diseases, had a positive correlation with rs10455872 (r=0.072, p=5.8e-16). We also found that 

128 topic #3, a group of phenotypes relevant to lung cancer, had a negative correlation with 

129 rs10455872 (r=-0.039, p=8.5e-6). Although the r coefficient is weaker than the topic#2, these 

130 correlations are highly statistically significant.

131 Table 1. Pearson correlation between LPA variant for each topic

Topic Top phenotypes in this topic r P value

#0 Respiratory failure, Pneumonia, Pleurisy, Pulmonary 

collapse; interstitial/compensatory emphysema, Hypotension 

NOS, Tachycardia NOS, Other dyspnea, Hypopotassemia, 

Sepsis, Septicemia

0.011 0.199

#1 Pain in joint, Other tests, Back pain, Pain in limb, Malaise 

and fatigue, Cough, Nonspecific chest pain, Essential 

hypertension, Osteoarthrosis NOS, Abdominal pain

-0.008 0.358
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#2 Coronary atherosclerosis, Essential hypertension, 

Hyperlipidemia, Congestive heart failure NOS, Nonspecific 

chest pain, Atrial fibrillation, Chronic ischemic heart disease, 

Shortness of breath, Nonrheumatic mitral valve disorders, 

Cardiomegaly

0.072 5.8e-16 

#3 Chemotherapy, Tobacco use disorder, Lung cancer, Other 

diseases of lung, Malaise and fatigue, Secondary malignancy 

of lymph nodes, Secondary malignancy of lung, Nausea and 

vomiting, Nonspecific chest pain, Shortness of breath

-0.039 8.5e-6

#4 Type 2 diabetes, Hypertensive chronic kidney disease, 

Chronic renal failure, Insulin pump user, Type 2 diabetic 

neuropathy, Chronic Kidney Disease, Stage III, Type 2 

diabetic nephropathy, Type 1 diabetes, Polyneuropathy in 

diabetes, Acute renal failure

0.002 0.783

#5 Ascites (nonmalignant), Abdominal pain, Cirrhosis of liver 

without mention of alcohol, Thrombocytopenia, Liver 

abscess and sequelae of chronic liver disease, Portal 

hypertension, Chronic nonalcoholic liver disease, Disorders 

of liver, Esophageal bleeding, Nausea and vomiting

 -0.02 0.021

132
133 Discussion

134 Topic modeling has been widely used in the field of text mining. In this paper, we applied 

135 this technique to explore associations between disease phenotypes and genetic variants. We 
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136 assumed that some disease phenotypes found simultaneously in a large EHR have correlated 

137 semantic meanings and thus can be learned as topics. We examined the associations between a 

138 LPA variant (rs10455872) and the six topics derived from EHRs. We observed the expected 

139 association between rs10455872 and a topic representing CVD/HLD.  We also found a novel 

140 association, as of this writing [18],  between the LPA variant and a lung cancer topic. 

141 The LPA gene encodes lipoprotein (a), a major component of the Lp(a) particle. 

142 Individuals with elevated Lp(a) levels are more likely to develop CVD compared to those with 

143 normal or low Lp(a) level [16,19]. Approximately 70% of Lp(a) variation can be attributed to 

144 variants at the LPA locus [20–22], and rs10455872 alone explains ~25% variation in circulating 

145 Lp(a) levels [16]. Further, a previous genetic study suggested that LPA variants were strong 

146 predictors for CVD risk [16]. In a more recent study of >10,000 patients taking statins, our group 

147 found that rs10455872 predicted residual CVD risk while on lipid-lowering treatment [23].  This 

148 study’s finding of a significant association between rs10455872 and the CVD/HLD topic 

149 demonstrates the feasibility of topic modeling as a critical tool for uncovering genotype-

150 phenotype relationships. 

151 We also observed a negative correlation between the LPA variant and the cancer/lung 

152 cancer topic, i.e., possessing this variant is protective. Previous epidemiological studies have 

153 reported that individuals with low Lp(a) levels had increased risk of all-cause and cancer-related 

154 mortality [24].  Mieno et al. found that hypolipoproteinemia(a) is a risk factor for cancer except 

155 for lung cancer.  Nevertheless, there are few reports on a relationship between cancer and LPA 

156 polymorphism or expression levels. Our previous PheWAS analysis of a separate cohort 

157 identified an association between rs10455872 and cancer diagnosis code with borderline 

158 significance [23]. To further explore this association between rs10455872 and the cancer/lung 
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159 cancer topic, we queried gene2pheno (https://imlab.shinyapps.io/gene2pheno_ukb_neale/), 

160 which is a publicly available database for testing associations between predicted gene expression 

161 levels and phenotypes using data from the UK Biobank. Genetically predicted LPA expression 

162 levels were associated with death from T cell lymphomas (p=6.9 e-5, Underlying (primary) 

163 cause of death: ICD10: C84.5 Other and unspecified T-cell lymphomas). Given that lung cancer 

164 is strongly mediated by environmental exposure and that tobacco use disorder was also part of 

165 topic #4, it is possible that the SNP is a marker for propensity to smoking, e.g., similar to what 

166 was shown for rs16969968 [25]. Further genetic and epidemiological studies are needed to 

167 elucidate the relationship between Lp(a) levels and cancer incidence. 

168 Topic modeling approaches require pre-specification of the number of topics. In this 

169 study, we set k=6, because we aimed to capture the most prevalent diseases such as CVD and to 

170 quantify the association. Increasing k allows the quantification of associations between genetic 

171 variants and rare diseases but risks fracturing common phenotype clusters. It can be seen that 

172 (Fig 3), except for topic #4 (diabetes), the learned topics formed distinct clusters, indicating a 

173 good quality of topic modeling. Some of points in topic #4 (diabetes) were close with topic #2 

174 (CVD), which was expected, because type II diabetes is an important risk factor that increases 

175 the risk of developing CVD. Compared to the other topics, #1 (Pain), #2 (CVD), and #3 (Lung 

176 Cancer) have more concentrated clusters.

177 For optimal selection of k , common approaches have used different values of k to look at 

178 the error in optimization and selected the best value by having domain experts review the topics 

179 to identify which set of topics are most meaningful, and have estimated k using singular value 

180 decomposition (SVD) to look at the decay of singular values [26–28]. To provide evidence for 
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181 the stabilities of our results, we also set different numbers of topics k=10, 20, 30 (Supplementary 

182 Table 1) and examined the PCC. Results were consistent with topics at k=6. 

183 In summary, unlike traditional PheWAS that have treated each disease phenotype as a 

184 distinct variable, topic modeling via NMF generates more abstract latent factors from disease 

185 phenotypes and significantly reduces the number of multiple tests. Our results demonstrate the 

186 power of topic modeling in the detection of comorbidities and previously unexplored genotype-

187 phenotype relationships among a large cohort.

188 Limitations

189 There are several limitations in this study. First, we tested only one genetic variant in one 

190 gene. Rs10455872 explains approximate 25% change in circulating Lp(a) levels according to 

191 previous studies; however, it would be interesting to generate a genetic risk score for Lp(a) levels 

192 and test its association with disease phenotypes in the future. Second, we used a binary value to 

193 indicate if an individual had a diagnosis code. A method accounting for disease severity (e.g., 

194 counts of diagnosis codes) could be used in future studies. Finally, the current study was limited 

195 to using billing codes to phenotype individuals. We did not include other information, e.g. 

196 laboratory test and medications, to assign more accurate phenotypes. This problem can be solved 

197 in the future using more sophisticated “deep” phenotyping methods that include more features 

198 from EHRs.  

199
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200 Materials and methods

201 Study cohort

202 We used data from BioVU, the de-identified DNA biobank at Vanderbilt University 

203 Medical Center (VUMC), to conduct this study. BioVU contains DNA samples from >250,000 

204 individuals that are linked with their de-identified EHRs, including diagnostic and procedure 

205 codes, clinical notes, laboratory values and medications. We identified 12,759 adult individuals 

206 of European ancestry (F/M: 6,018/6,741; age: 70.3±12.3) who had both EHRs and genotyped 

207 data of rs10455872 available. 

208 rs10455872 Genotyping

209 We extracted each individual’s rs10455872 information from existing genotyped data. 

210 All genotyping was previously conducted using commercially available genome-wide SNP 

211 arrays with quality control criteria for variants followed by a standard imputation process using 

212 1000 Genomes Project allele frequency estimates.

213 Among the cohort of 12,759 individuals, we observed 85.2% AA, 14.2% AG, 6.1% GG. 

214 The minor allele frequency (MAF) of the rs10455872 G allele is 7.7% in our cohort, consistent 

215 with the 7% MAF in the European population [29]. We used 0, 1, 2 to represent the number of 

216 LPA rs10455872 G alleles that an individual carry.

217 Disease Phenotypes

218 Following established protocols used in past studies [30], we grouped each individual’s 

219 ICD-9-CM (International Classification of Disease, 9th edition) codes into disease phecodes. 
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220 There were 1853 phecodes present in the 12,759 individuals. For each phecode, we labeled 

221 individuals without the phecode with a ‘0’ and those with the phecode with a ‘1’.

222 We applied a topic modeling algorithm using NMF on the dataset of 12,759 individuals 

223 to learn potentially meaningful topics from the EHRs. Then, we quantified the association 

224 between each learned topic with rs10455872 using PCC. The workflow of this experiment is 

225 demonstrated in Fig 4.

226

227 Fig 4. Illustration of topic modeling on EHRs using NMF

228 Topic modeling via Non-negative Matrix Factorization (NMF)

229 We used NMF as our topic modeling approach. NMF is a low-rank matrix approximation 

230 algorithm that has been widely used for feature reduction for high-dimensional data. The 

231 assumption is that given a large and sparse matrix X of size n m representing a collection of n 

232 high dimensional data points in Rm. X is low rank which means that most data points can be 

233 approximately represented by a linear combination of a small set of k basis vectors . 𝐻 ∈ 𝑅𝑘 × 𝑛

234 The linear combination is a coefficients matrix  providing a lower-dimensional 𝑊 ∈ 𝑅𝑛 × 𝑘

235 encoding for X, which result in a feature reduction for a high-dimensional data. Since NMF 

236 restricts the X non-negative and enforces the H and W to be also non-negative, NMF has good 

237 interpretability and has been commonly used as a topic modeling approach in text mining.  

238 We considered each individual’s EHR as one document, and each document was 

239 described by disease phenotypes represented by the phecodes (Fig 1). Since we had 12,759 (n) 

240 individuals’ EHRs and 1,853 (m) unique phecodes, we used matrix  to represent the 𝑋 ∈ 𝑅𝑛 × 𝑚

241 input data, where each row of X represented an individual, and each column of X was a phecode. 

242 The entry of the matrix  was a binary value (0 or 1) indicating whether ith individual had 𝑋𝑖𝑗 ∈ 𝑋
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243 the jth phecode. This representation is similar with the bag-of-word model, where each document 

244 is associated with a set of words, and word ordering in the documents does not matter.

245 Given that non-negative input matrix  , and an expected number of topics , ∈ 𝑅𝑛 × 𝑚 𝑘 ≤ 𝑚

246 NMF generates two matrices, , and . Both  and  are non-negative 𝑊 ∈ 𝑅𝑛 × 𝑘 𝐻 ∈ 𝑅𝑘 × 𝑚 𝑊 𝐻

247 entries, such that

248                                                                                 (1)min
𝑊 ≥ 0, 𝐻 ≥ 0

‖𝑋 ‒ 𝑊𝐻‖2
𝐹 + 𝜆𝑅(𝑊,𝐻)

249 ) is a latent topic – phenotype matrix. Specifically, each row of  corresponds to a 𝐻(𝑘,: 𝐻

250 disease topic, and each topic is represented by a set of relevant phenotypes that co-occurred in 

251 several individuals’ EHRs, with specific cores indicating their relevance to this topic. Through 

252 ), we extracted a semantic meaning of each topic, e.g. what kind of diseases or 𝐻(𝑘,: 

253 comorbidities are represented by the topic. 

254  is an individual-topic matrix. Each row of W corresponds to an individual’s score 𝑊(𝑖,𝑘)

255 on each topic that indicates the diseases and comorbidities carried by the individual. An 

256 individual that has a large score for a disease topic indicates that there a higher probability for an 

257 association between individual and the topic.  is then used for the association calculation 𝑊(𝑖,𝑘)

258 between the topics and rs10455872, which is described further below.

259 R(W, H) is the regularization term that combines L1 and L2 norms, which is defined as:

260 ,                     (3)𝑅(𝑊,𝐻) = γ(‖𝑊‖𝐹 +  ‖𝐻‖𝐹) +  
1
2(1 ‒ 𝛾)(‖𝑊‖2

𝐹 + ‖𝐻‖2
𝐹) 

261 where  is the ratio for L1 penalty. Adding the regularization term is necessary for 

262 balancing the sparsity of the topics, meaning that an individual may have several topics at the 

263 same time. Moreover, addition of the regularization term minimizes the effect of outliers on the 

264 model. 
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265 Statistical analysis 

266 We applied the PCC to quantify the association between each individuals’ scores on 

267 specific topic and each individual’s rs10455872 status, for each learned topic. PCC measures the 

268 strength of a linear association between two variables.  PCC also can generate a correlation 

269 coefficient denoted by , which shows the direction of the correlation. 𝑟 ∈ [ ‒ 1,1]

270 We used the individual-topic matrix,  ,generated by NMF to calculate the PCC  𝑊 ∈ 𝑅𝑛 × 𝑘

271 with the genetic variants. Each column vector of of the matrix W represented a topic 𝑊(:,𝑗) 

272 vector with scores on all the individuals. We used each column vector as the predictor variable x 

273 and the number of minor alleles (0, 1, or 2) at rs10455872 of each patient as variable y. 

274 References

275 1. Denny JC, Van Driest SL, Wei W-Q, Roden DM. The Influence of Big (Clinical) Data and 
276 Genomics on Precision Medicine and Drug Development. Clinical Pharmacology & 
277 Therapeutics. 2018;103: 409–418. doi:10.1002/cpt.951

278 2. Manolio TA. Genomewide Association Studies and Assessment of the Risk of Disease. Feero 
279 WG, Guttmacher AE, editors. New England Journal of Medicine. 2010;363: 166–176. 
280 doi:10.1056/NEJMra0905980

281 3. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS 
282 Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42: D1001-
283 1006. doi:10.1093/nar/gkt1229

284 4. Cohen JC, Boerwinkle E, Mosley TH, Hobbs HH. Sequence variations in PCSK9, low LDL, 
285 and protection against coronary heart disease. N Engl J Med. 2006;354: 1264–1272. 
286 doi:10.1056/NEJMoa054013

287 5. Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K, et al. 
288 PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene–disease 
289 associations. Bioinformatics. 2010;26: 1205–1210. doi:10.1093/bioinformatics/btq126

290 6. Warner JL, Denny JC, Kreda DA, Alterovitz G. Seeing the forest through the trees: 
291 uncovering phenomic complexity through interactive network visualization. J Am Med 
292 Inform Assoc. 2015;22: 324–329. doi:10.1136/amiajnl-2014-002965

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2018. ; https://doi.org/10.1101/335745doi: bioRxiv preprint 

https://doi.org/10.1101/335745
http://creativecommons.org/licenses/by/4.0/


293 7. Arora S, Ge R, Moitra A. Learning Topic Models – Going Beyond SVD. Proceedings of the 
294 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science. Washington, DC, 
295 USA: IEEE Computer Society; 2012. pp. 1–10. doi:10.1109/FOCS.2012.49

296 8. MacMillan K, Wilson JD. Topic supervised non-negative matrix factorization. 
297 arXiv:170605084 [cs, stat]. 2017; Available: http://arxiv.org/abs/1706.05084

298 9. Pinoli P, Chicco D, Masseroli M. Enhanced probabilistic latent semantic analysis with 
299 weighting schemes to predict genomic annotations. 13th IEEE International Conference on 
300 BioInformatics and BioEngineering. 2013. pp. 1–4. doi:10.1109/BIBE.2013.6701702

301 10. Wahabzada M, Mahlein A-K, Bauckhage C, Steiner U, Oerke E-C, Kersting K. Plant 
302 Phenotyping using Probabilistic Topic Models: Uncovering the Hyperspectral Language of 
303 Plants. Scientific Reports. 2016;6: 22482. doi:10.1038/srep22482

304 11. McCoy TH, Castro VM, Snapper LA, Hart KL, Perlis RH. Efficient Genome-wide 
305 Association in Biobanks Using Topic Modeling Identifies Multiple Novel Disease Loci. Mol 
306 Med. 2017;23: 285–294. doi:10.2119/molmed.2017.00100

307 12. Backenroth D, He Z, Kiryluk K, Boeva V, Pethukova L, Khurana E, et al. FUN-LDA: A 
308 Latent Dirichlet Allocation Model for Predicting Tissue-Specific Functional Effects of 
309 Noncoding Variation: Methods and Applications. The American Journal of Human Genetics. 
310 2018;102: 920–942. doi:10.1016/j.ajhg.2018.03.026

311 13. Sra S, Dhillon IS. Generalized Nonnegative Matrix Approximations with Bregman 
312 Divergences. In: Weiss Y, Schölkopf B, Platt JC, editors. Advances in Neural Information 
313 Processing Systems 18. MIT Press; 2006. pp. 283–290. Available: 
314 http://papers.nips.cc/paper/2757-generalized-nonnegative-matrix-approximations-with-
315 bregman-divergences.pdf

316 14. Kim H, Park H. Sparse non-negative matrix factorizations via alternating non-negativity-
317 constrained least squares for microarray data analysis. Bioinformatics. 2007;23: 1495–1502. 
318 doi:10.1093/bioinformatics/btm134

319 15. Nordestgaard BG, Chapman MJ, Ray K, Borén J, Andreotti F, Watts GF, et al. Lipoprotein(a) 
320 as a cardiovascular risk factor: current status. Eur Heart J. 2010;31: 2844–2853. 
321 doi:10.1093/eurheartj/ehq386

322 16. Clarke R, Peden JF, Hopewell JC, Kyriakou T, Goel A, Heath SC, et al. Genetic Variants 
323 Associated with Lp(a) Lipoprotein Level and Coronary Disease. New England Journal of 
324 Medicine. 2009;361: 2518–2528. doi:10.1056/NEJMoa0902604

325 17. Maaten L van der, Hinton G. Visualizing Data using t-SNE. Journal of Machine Learning 
326 Research. 2008;9: 2579–2605. 

327 18. rs10455872 - SNPedia [Internet]. [cited 23 May 2018]. Available: 
328 https://www.snpedia.com/index.php/Rs10455872

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2018. ; https://doi.org/10.1101/335745doi: bioRxiv preprint 

https://doi.org/10.1101/335745
http://creativecommons.org/licenses/by/4.0/


329 19. Khera AV, Emdin CA, Drake I, Natarajan P, Bick AG, Cook NR, et al. Genetic Risk, 
330 Adherence to a Healthy Lifestyle, and Coronary Disease. New England Journal of Medicine. 
331 2016;375: 2349–2358. doi:10.1056/NEJMoa1605086

332 20. Barlera S, Specchia C, Farrall M, Chiodini BD, Franzosi MG, Rust S, et al. Multiple QTL 
333 influence the serum Lp(a) concentration: a genome-wide linkage screen in the PROCARDIS 
334 study. Eur J Hum Genet. 2007;15: 221–227. doi:10.1038/sj.ejhg.5201732

335 21. Berglund L, Ramakrishnan R. Lipoprotein(a): an elusive cardiovascular risk factor. 
336 Arterioscler Thromb Vasc Biol. 2004;24: 2219–2226. 
337 doi:10.1161/01.ATV.0000144010.55563.63

338 22. Sandholzer C, Hallman DM, Saha N, Sigurdsson G, Lackner C, Császár A, et al. Effects of 
339 the apolipoprotein(a) size polymorphism on the lipoprotein(a) concentration in 7 ethnic 
340 groups. Hum Genet. 1991;86: 607–614. 

341 23. Wei W-Q, Li X, Feng Q, Kubo M, Kullo IJ, Peissig PL, et al. LPA Variants are Associated 
342 with Residual Cardiovascular Risk in Patients Receiving Statins. Circulation. 2018; 
343 CIRCULATIONAHA.117.031356. doi:10.1161/CIRCULATIONAHA.117.031356

344 24. Low Lipoprotein(a) Concentration Is Associated with Cancer and All-Cause Deaths: A 
345 Population-Based Cohort Study (The JMS Cohort Study) [Internet]. [cited 14 May 2018]. 
346 Available: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0031954

347 25. Lips EH, Gaborieau V, McKay JD, Chabrier A, Hung RJ, Boffetta P, et al. Association 
348 between a 15q25 gene variant, smoking quantity and tobacco-related cancers among 17 000 
349 individuals. Int J Epidemiol. 2010;39: 563–577. doi:10.1093/ije/dyp288

350 26. Bioucas-Dias JM, Nascimento JMP. Estimation of signal subspace on hyperspectral data. 
351 Image and Signal Processing for Remote Sensing XI. International Society for Optics and 
352 Photonics; 2005. p. 59820L. doi:10.1117/12.620061

353 27. Tan VYF, Févotte C. Automatic Relevance Determination in Nonnegative Matrix 
354 Factorization with the /spl beta/-Divergence. IEEE Transactions on Pattern Analysis and 
355 Machine Intelligence. 2013;35: 1592–1605. doi:10.1109/TPAMI.2012.240

356 28. Kanagal B, Sindhwani V. Rank Selection in Low-rank Matrix Approximations: A Study of 
357 Cross-Validation for NMFs. : 5. 

358 29. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang 
359 HM, et al. A global reference for human genetic variation. Nature. 2015;526: 68–74. 
360 doi:10.1038/nature15393

361 30. Martin PA, Thorburn MJ, Smith-Read EH. Chromosomal rearrangements in three 
362 generations of a Jamaican family. A possible further example of recombinational imbalance. 
363 Cytogenetics. 1970;9: 360–368. 

364

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2018. ; https://doi.org/10.1101/335745doi: bioRxiv preprint 

https://doi.org/10.1101/335745
http://creativecommons.org/licenses/by/4.0/


365 Supporting Information

366 S1 Table. Results with topic k=10, 20,30

367

368

369

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2018. ; https://doi.org/10.1101/335745doi: bioRxiv preprint 

https://doi.org/10.1101/335745
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2018. ; https://doi.org/10.1101/335745doi: bioRxiv preprint 

https://doi.org/10.1101/335745
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2018. ; https://doi.org/10.1101/335745doi: bioRxiv preprint 

https://doi.org/10.1101/335745
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2018. ; https://doi.org/10.1101/335745doi: bioRxiv preprint 

https://doi.org/10.1101/335745
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2018. ; https://doi.org/10.1101/335745doi: bioRxiv preprint 

https://doi.org/10.1101/335745
http://creativecommons.org/licenses/by/4.0/

