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A fundamental goal of microbial ecology is to understand what determines the diversity, stability,
and structure of microbial ecosystems. The microbial context poses special conceptual challenges be-
cause of the strong mutual influences between the microbes and their chemical environment through
the consumption and production of metabolites. By analyzing a generalized consumer resource
model that explicitly includes cross-feeding, stochastic colonization, and thermodynamics, we show
that complex microbial communities generically exhibit a sharp transition as a function of available
energy fluxes from a “resource-limited” regime where community structure and stability is shaped
by energetic and metabolic considerations to a diverse regime where the dominant force shaping
microbial communities is competition. These two regimes have distinct species abundance patterns,
different functional profiles, and respond differently to environmental perturbations. Our model
reproduces large-scale ecological patterns observed across multiple experimental settings such as
nestedness and differential beta diversity patterns along energy gradients. We discuss the experi-
mental implications of our results and possible connections with disorder-induced phase transitions
in statistical physics.

Microbial communities inhabit every corner of our
planet, from our own nutrient-rich guts to the remote
depths of the ocean floor. Different environments harbor
very different levels of microbial diversity: e.g., in some
samples of non-saline water at mild temperature and pH,
nearly 3,000 coexisting types of bacteria can be detected,
whereas at ambient temperatures warmer than 40◦ C,
most cataloged samples contain fewer than 100 distinct
variants [43]. The functional structure of these commu-
nities is also highly variable, with functional traits often
reflecting the environment in which the communities are
found [23, 43]. A central goal of microbial community
ecology is to understand how these variations in diver-
sity, stability and functional structure [47] arise from an
interplay of environmental factors such as energy and re-
source availability [13, 30] and ecological processes such
as competition [9, 17, 28, 31] and stochastic colonization
[8, 24, 26, 46].

This endeavor is complicated by the fact that microbes
dramatically modify their abiotic environments through
consumption and secretion of organic and inorganic com-
pounds. This happens on a global scale, as in the Great
Oxidation Event two billion years ago [4, 38], and also
on smaller scales relevant to agriculture, industry and
medicine. In this sense, every microbe is an “ecosys-
tem engineer” [25]. Metabolic modeling and experiments
suggests that metabolically-mediated syntrophic interac-
tions should be a generic feature of microbial ecology
[19, 22, 50] and that complex microbial communities can
self-organize even in constant environments with no spa-
tial structure or predation [16, 19]. For these reasons,
there has been significant interest in developing new mod-
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els for community assembly suited to the microbial set-
ting [7, 20, 21, 42, 45].

Here, we present a statistical physics-inspired con-
sumer resource model for microbial community assembly
that builds upon the simple model introduced in [19] and
explicitly includes energetic fluxes, stochastic coloniza-
tion, syntrophy, and resource competition. We focus on
modeling complex communities with many species and
metabolites. By necessity, any mathematical model of
such a large, diverse ecosystem will contain thousands of
parameters that are hard to measure. To circumvent this
problem, we take a statistical physics approach where
all consumer preferences and metabolic parameters are
drawn from random distributions.

This approach to modeling complex systems has its
root in the pioneering work of Wigner on the spectrum
of heavy nuclei [48] and was adapted by May to ecological
settings [33]. Recently, there has been a renewed inter-
est in using these ideas to understand complex systems
in both many-body physics (reviewed in [10]) and com-
munity assembly [1, 3, 5, 6, 12, 15, 18, 19, 26, 45]. The
key insight underlying this approach is that generic and
reproducible large-scale patterns observed across multi-
ple settings likely reflect typical properties, rather than
fine tuned features of any particular realization or com-
munity. Consistent with this idea, it was recently shown
that a generalized consumer resource model with random
parameters can reproduce many of the patterns observed
in experiments where natural communities were grown in
synthetic minimal environments [19].

In this paper, we ask how varying the energy flux into
an ecosystem and the amount of cross-feeding affects mi-
crobial community assembly. We find that metabolic
communities generically exhibit a phase transition be-
tween a low diversity and a high diversity regime. These
two phases have qualitatively different functional struc-
tures, respond differently to environmental perturba-
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FIG. 1. Microbial communities engineer complex chemical environments using a single energy source. (A)
Schematic of microbe-mediated energy fluxes in the Thermodynamic Microbial Consumer Resource Model. Each cell of species
i (= 1, 2, . . . S) supplies itself with energy through import of resources, generating an incoming energy flux J in

iα for each resource
type α (= 1, 2, . . .M). A fraction lα of this energy leaks back into the environment in the form of metabolic byproducts, with
each byproduct type carrying an outgoing energy flux Jout

iβ =
∑
α lαDβαJ

in
iα. The remaining energy, Jgrow

i , is used to replicate
the cell. (B) Each species is defined by a vector of consumer preferences that encode its capacity for harvesting energy from
each resource type. These vectors comprise a consumer matrix ciα. (C) A regional pool of species is randomly generated, and
communities are initialized with random subsets of these species to simulate stochastic colonization. (D) Each community is
supplied with a constant flux κ0 of a single resource type (α = 0), and all resources are continuously diluted at a fixed rate
τ−1
R . (E) Consumer populations Ni and resource concentrations Rα as a function of time for two realizations of this model,
with low (l = 0.001) and high (l = 0.8) levels of uniform metabolic leakage (see Appendix for parameters).

tions, and give rise to distinct large-scale biodiversity
patterns. We show our model predictions are consistent
with data from the Tara Oceans database [41] and the
Earth Microbiome Project [43].

I. THERMODYNAMIC MICROBIAL
CONSUMER RESOURCE MODEL

The starting point for our analysis is a new model that
adapts MacArthur’s Consumer Resource Model [31] to
the microbial context by including energetics, stochas-
tic colonization, and the exchange and consumption of
metabolites. We consider the population dynamics of S
species of consumers (e.g., microbes) competing for M
types of resources. We are interested in large, diverse
ecosystems where S,M � 1. A schematic summarizing
our model is shown in Figure 1.

To set up a thermodynamically consistent model , we
keep track of energy fluxes (denoted by J) and mass
fluxes (denoted by ν) in the system. The rate at which
an individual of species i imports energy via resource α
depends on the resource concentration Rα as well as on
the consumer’s vector of resource preferences ciα through
the expression:

J in
iα = wαν

in
iα = wασ(ciαRα), (1)

where σ(x) encodes the functional response and wα is the
energy density of resource α. In the main text, we focus
on Type-I responses where σ(x) = x, but most of our

results also hold for the case where σ(x) is a Monod func-
tion. In the microbial context the consumer preferences
ciα can be interpreted as expression levels of transporters
for each of the resources.

We model leakage and secretion by letting a fraction
lα of this imported energy return to the environment, so
that the power available to the cell for sustaining growth
is equal to

Jgrow
i =

∑
α

(1− lα)J in
iα. (2)

By keeping lα between 0 and 1, we guarantee that the
community does not spontaneously generate usable en-
ergy in violation of the Second Law of Thermodynamics.
We assume that a fixed quantity mi of power per cell is
required for maintenance of species i, and that the per-
capita growth rate is proportional to the remaining en-
ergy flux, with proportionality constant gi. Under these
assumptions, the time-evolution of the population size Ni
of species i can be modeled using the equation

dNi
dt

= giNi [Jgrow
i −mi] . (3)

The leaked energy flux Jout
i =

∑
α lαJ

in
iα from each cell

of species i is partitioned among the M possible resource
types via the biochemical pathways operating within the
cell. We assume that all species share a similar core
metabolism, encoded in a matrix Dβα. Each element
of Dβα specifies the fraction of leaked energy from re-
source α that is released in the form of resource β. Note
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that by definition,
∑
β Dβα = 1. Thus, in our model the

resources that are excreted into the environment are inti-
mately coupled to the resources a cell is consuming. The
outgoing energy flux contained in metabolite β is given
by

Jout
iβ = wβν

out
iβ =

∑
α

DβαlαJ
in
α . (4)

The dynamics of the resource concentrations depend
on the incoming and outgoing mass fluxes νin

iα and νout
iα ,

which are related to the energy fluxes via the energy den-
sities wα. In terms of these quantities, we have

dRα
dt

= hα +
∑
j

Nj(ν
out
jα − νin

jα), (5)

with hα encoding the dynamics of externally supplied
resources. In this manuscript, we focus on the case where
the microbial communities are grown in a chemostat with
a single externally supplied resource α = 0 (Figure 1).
In this case, the resource dynamics can be described by
choosing hα = κα − τ−1

R Rα, with all the κα set to zero
except for κ0. These equations for Ni and Rα, along with
the expressions for J in

iα and Jout
iα , completely specify the

ecological dynamics of the model.
This model has been implemented in a freely available

open-source Python package “Community Simulator”
(Marsland et al. in preparation). The package can be
downloaded from https://github.com/robertvsiii/
community-simulator, which also contains a Jupyter
notebook with scripts for reproducing the figures.

II. RESULTS

To assess the typical community structure and resource
pool stability for ecosystems obeying Equations (1)-(5),
we randomly generated a binary S ×M consumer pref-
erence matrix ciα with S = 200 species and M = 100
resources, along with a sparse random chemistry Dαβ .
We chose ciα so that each species consumed an average
of 10 kinds of resource out of the 100 possible. The full
sampling procedure is detailed in the Supporting Infor-
mation, which also contains results with ciα drawn from
a Gaussian or Gamma distribution. We set the mean mi

equal to 1, with standard deviation 0.1, and set all the
wα equal to 1. Finally, we made all the leakage fractions
identical, with lα = l for all α. To assess the amount of
variability in the results, we initialized 10 different com-
munities by seeding each one with a random subset of
100 species from the full 200-species pool. This simu-
lates the stochastic colonization frequently observed in
microbial ecosystems, where the community composition
can randomly vary depending on the set of microbes this
particular local environment happened to be exposed to
[35]. Figure 1 shows typical dynamical trajectories in
the presence of high (l = 0.8) and extremely low leakage
(l = 0.001).

Resource-Limited Phase Diverse Phase(B)

S

E

C
(A)

FIG. 2. Steady-state richness as a function of
metabolic leakage l and externally supplied energy
flux w0κ0. We generated 200 species, initialized 10 com-
munities of 100 species each from this pool, and ran the dy-
namics to steady state under different combinations of w0κ0

and l (see main text and Appendix for parameters). (A) Heat
map summarizing all simulations, colored by the average num-
ber of surviving species per steady-state community (“Rich-
ness”). Slices through the heat map are plotted in Figure 11 of
the Appendix. (B) Community compositions are displayed as
rank-abundance curves for one example from each of the three
regimes (colored by community richness): syntrophy-limited
(S), energy-limited (E) and competition-limited (C). The lines
are assigned different shades for clarity. The first two regimes
are parts of the same resource-limited phase, manifesting sim-
ilar statistical properties. The plots are truncated at a relative
abundance of 0.5%; see Appendix for full data.

Available energy fluxes drive a phase transition
between a “Resource-Limited” and “Diverse" Phase

Our numerical simulations indicate that there is an
abrupt and sharp transition between two qualitatively
different community structures as we vary the externally
supplied energy flux w0κ0 into the ecosystem at suffi-
ciently high levels of leakage/syntrophy l. This transi-
tion is reminiscent of phase transitions commonly seen
in disordered systems in physics (see Discussion and Ap-
pendix). One clear signature of this transition is the
sudden change in diversity, as illustrated in Figure 2. At
low energy flux or leakage, the diversity is severely lim-
ited by resource availability. It is helpful to divide this
resource-limited phase into two regimes, based on the
detailed mechanism of diversity limitation: a “syntrophy-
limited” regime at low l where diversity is limited by the
number of available metabolic niches, and an “energy-
limited” regime at low w0κ0 where diversity is limited by
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FIG. 3. Structure and stability of resource dynam-
ics depend on ecological phase. (A) Consumed energy
fluxes (1 − l)J in

iα for each of the ten surviving species in the
steady state of a community in the resource-limited phase
(l = 0.6, w0κ0 = 28). The black portion of the bar is the flux
(1− l)J in

i0 due to the externally supplied resource, and the col-
ored bars represent the contributions of the other resources.
Since these communities have reached the steady state, Equa-
tion (3) implies that the total height of each bar equals the
maintenance cost mi of the corresponding consumer species.
(B) Same as previous panel, but for an example of the di-
verse phase (l = 0.9, w0κ0 = 1000). (C) Simpson diversity
Meff
i of steady-state flux vector J in

iα for each species in all 10
communities in the two phases (same parameters as panels
A and B). (D) Logarithm of susceptibility log10 ∂R̄α/∂κα of
community-supplied resources (α 6= 0) to addition of an ex-
ternally supplied flux κα (same parameters as panels A and
B).

the amount of energy supplied to the ecosystem. At high
leakage, increasing w0κ0 causes a sudden increase in di-
versity at a certain threshold value. The diversity of this
phase is limited only by the level of inter-species com-
petition within the regional species pool, in accordance
with classical niche-packing theory [31] as we will discuss
below.

The resource-limited and diverse phase have distinct
functional structures

To better understand these two phases, we examined
the functional traits of members of typical communities
in each phase. In the resource-limited phase, many sur-
viving species derive most of their energy directly from
the externally supplied resource (Figure 3A). In the di-
verse phase, by contrast, only a minority of the steady-
state community members can consume this resource at
all, and even these species receive most of their energy
from a diverse array of metabolic byproducts (Figure
3B). We quantified this observation using the Simpson
Diversity M eff

i of the incoming resource flux vectors J in
iα,

which measures the effective number of resources con-
sumed by each species, and is closely related to the in-

verse participation ratio in statistical physics. The Simp-
son Diversity is defined by

M eff
i =

[∑
α

(
J in
iα

J in
i

)2
]−1

, (6)

where J in
i =

∑
α J

in
iα is the total incoming energy flux for

each cell of this species. M eff
i approaches 1 for species

that obtain the bulk of their energy from a single re-
source type and approaches M when all resource types
are consumed equally. In the resource-limited phase, the
distribution of these values is sharply peaked between 1
and 2. In the diverse phase, the peak is located around
10, which is the average number of resources with high
transporter expression in our binary sampling scheme for
ciα. This shows that most community members in the
diverse phase utilize multiple energy sources, with the
incoming flux spread evenly over all resource types they
are capable of consuming.

Responses to resource perturbations differ in two
phases

Another important property of microbial ecosystems is
how they respond to environmental perturbations. Pre-
vious theoretical studies have shown that sufficiently di-
verse communities can “pin” the resource concentrations
in their local environment to fixed values, which are in-
dependent of the magnitude of externally supplied fluxes
[37, 42, 44]. In these studies, resource pinning occurs
only when the community saturates the diversity bound
imposed by the principal of competitive exclusion, i.e.
when the number of coexisting species is at least as large
as the number of resource types. Such maximally diverse
communities typically require fine-tuning of the resource
utilization profiles or imposition of universal efficiency
tradeoffs in cellular metabolism.

In our stochastically assembled communities, the di-
versity is always much lower than the number of re-
source types, so we hypothesized that the resource con-
centrations should not be pinned. To test this idea, we
measured the response of the steady-state concentrations
R̄α to changes in external supply rates κα, in terms of
the “resource susceptibilities” ∂R̄α/∂κα plotted in Fig-
ure 3D [1]. Our hypothesis was valid in the resource-
limited phase, where many resource susceptibilities are
comparable to the susceptibility in the empty chemostat
∂R̄α/∂κα = τR = 1. But in the diverse phase, we were
surprised to find that the susceptibilities are 100 times
smaller than this maximum value. This suggests that re-
source pinning may be a generic phenomenon, observable
in real ecosystems when the energy supply is sufficiently
large.
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FIG. 4. Richness of diverse phase depends on general-
ized niche-overlap. We took the values of supplied energy
flux w0κ0 and leakage fraction l from the three examples high-
lighted in Figure 2, and varied the average niche overlap 〈ρij〉
between members of the metacommunity. For each w0κ0, l
combination and each value of 〈ρij〉, we generated 10 pools
of 200 species, initialized 10 communities of 100 species each
from this pool, and ran the dynamics to steady state. The
steady-state richness of each community is plotted against the
niche overlap. Points are colored by their phase, and solid
lines are linear regressions. Inset: ciα matrices that define
the regional pool for two different levels of overlap, with dark
squares representing high consumption coefficients.

Competition between microbes limits richness in
diverse phase

In the diverse phase, the number of coexisting species
(“richness”) is not limited by energy availability or by ac-
cess to secreted metabolites, but is still much less than
the maximal value ofM = 100 set by the competitive ex-
clusion principle [28]. We hypothesized that the diversity
in this phase is limited by the intensity of competition
between members of the regional species pool. This can
be quantified in terms of the niche overlap, which mea-
sures the similarity between consumer preferences, with a
bigger niche overlap resulting in greater competition be-
tween members of the ecosystem [9, 32]. Figure 4 shows
how the richness varies as a function of the average niche
overlap 〈ρij〉 in the regional pool, defined by

〈ρij〉 ≡
〈 ∑

α ciαcjα√∑
α c

2
iα

∑
α c

2
jα

〉
=

〈ciα〉2√
〈c2iα〉〈c2jα〉

. (7)

In the diverse phase the mean richness decreases approx-
imately linearly with increasing overlap. The richness of
the resource-limited phase, on the other hand, has only
a very weak dependence on the niche overlap. These
results suggest that competition for resources is the pri-
mary driver of community assembly in the diverse phase.
Importantly, competition limits the number of coexist-
ing species well below the upper bound imposed by the

(A)

(B)

(C)

(D)

FIG. 5. Resource-limited phase features community-
level environmental filtering. (A) Presence (black) or ab-
sence (white) of all species in all 1,000 communities from the
original simulations of Figure 2. (B, C, D) We initialized 200
new communities for each of the three examples highlighted
in Figure 2A, by randomly choosing sets of 100 species from
the regional pool. Each panel shows the projection of final
community compositions {Ni} onto the first two principal
components of the set of compositions.

competitive exclusion principle.

Nestedness and other large scale beta-diversity
patterns

To test our model against existing data from surveys
of natural communities, we asked about the consequences
of the above observations for large-scale patterns of bio-
diversity. We began by re-examining the simulations
in Figure 2. Since all species in the simulations come
from the same regional pool, we asked which species are
present in each of final communities across all energy
fluxes and leakage rates. We found that when we sorted
species by prevalence (rows in Fig. 5A) and samples by
richness (columns in Fig. 5A) , the community composi-
tion generically exhibited a nested structure – less diverse
communities had a subset of the species prevalent in the
more diverse communities [29, 36]. This suggests that
nested structures may generically emerge in community
assembly through the interplay of stochastic colonization,
competition, and environmental filtering.

Next, we asked if we large-scale beta-diversity pat-
terns could be used to distinguish the resource-limited
and diverse phases.We initialized 200 new communities
with 100 randomly chosen members from the full regional
species pool and simulated these communities to steady
state in both the resource-limited and diverse phases (see
Appendix for details). This sub-sampling of the full re-
gional species pools mimics the effect of stochastic colo-
nization, where a different random subset of species seeds
each community. To better understand beta-diversity
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(A)

(B)

(C)

FIG. 6. Ecological phases and nestedness in mi-
crobiome data. (A) Rank-abundance plots for 16S OTU’s
above 0.5% relative abundance for tropical samples from the
Tara Oceans database [41]. (See Appendix for full curves).
“Surface water layer” samples were collected at a depth of 5
meters, while the deep-sea “Mesopelagic Zone” extends from
200 to 1,000 meters, with significantly less access to solar
energy. (B) Projections of all community compositions from
each environment on their first two principle components. (C)
Presence (black) or absence (white) of each OTU above 0.5%
relative abundance across all Tara Oceans samples.

signatures in the two phases, we performed a Principal
Component Analysis (PCA) on community composition
and projected the data onto the first two principal com-
ponents, as shown in Figure 5B-D. In the resource-limited
phase, the communities form distinct clusters that are
distinguished by different highly abundant species. This
suggests that harsh environments only allow a few species
from the regional pool to rise to dominance, and that
these dominant species induce clustering of communities.
Such “enterotype”-like behavior is a common feature ob-
served in many microbial settings [2] . In contrast, the
diverse phase exhibited neither well-defined clusters nor
dominant, highly abundant species.

Comparison to microbial datasets

The preceding results suggest that the resource-limited
and diverse phases can be distinguished using beta-
diversity patterns. To test this prediction, we looked for

a publicly available dataset containing a well-defined gra-
dient of energy supply. The Tara Oceans survey collected
samples from a range of depths across the world’s oceans,
and the resulting gradient of solar energy flux provided
the desired context (http://ocean-microbiome.embl.
de/companion.html)[41]. We analyzed the 16S OTU
composition of tropical ocean communities for all 30 sea-
surface samples, where solar energy is plentiful, and all 13
samples from the dark deep-sea Mesopelagic Zone where
energy fluxes are limited. We focused on species that
reached 0.5% relative abundance in at least one of the
samples, since the population dynamics of the vast num-
bers of trace species are likely to depend on environ-
mental heterogeneity and other effects not included in
our model. The sea surface data resembles our diverse
phase, with relatively uniform biomass distribution over
species and a continuum of possible community composi-
tions. In contrast, the Mesopelagic Zone is similar to our
resource-limited phase: the dominance of the most abun-
dant species is much more pronounced, and the composi-
tions cluster into four discrete types. While these results
are consistent with our model predictions, more samples
will have to be collected and analyzed in order to make
a definitive comparison.

As mentioned above, our model also gives a natural
explanation for the nestedness in the Earth Microbiome
Project [43], suggesting that it may be a natural byprod-
uct of complex microbial communities shaped by compe-
tition, environmental heterogeneity, and stochastic colo-
nization. To test how generic this feature is, we plotted
presence/absence community compositions of all samples
from the Tara Oceans dataset, sorting samples by rich-
ness and OTU’s (“species”) by prevalence. To obtain a
sufficiently large range of richnesses, we imposed a 0.5%
relative abundance threshold for an OTU to count as
“present”. The resulting pattern in Figure 6 is qualita-
tively similar to our simulations (Fig. 5D), and to the
phylum-level data of the Earth Microbiome Project [43].

III. DISCUSSION

Advances in sequencing technology have opened new
horizons for the study of microbial ecology, generating
massive amounts of data on the composition of both nat-
ural and synthetic communities. But the complexity of
these systems make it difficult to extract robust general
principles suitable for guiding medical and industrial ap-
plications. Numerical simulations provide a powerful tool
for addressing this problem. By rapidly iterating numer-
ical experiments under a variety of modeling choices with
random parameters, one can identify robust patterns and
use the resulting insights to guide targeted experiments.

Following this strategy, we developed a thermody-
namic consumer resource model that explicitly includes
energetic fluxes and metabolically-mediated cross-feeding
and competition. Using this model, we identified two
qualitatively distinct phases in these simulations as we
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varied the amount of energy supplied to ecosystem and
the fraction of energy leaked back into the environment:
a low diversity “resource-limited” phase and a “diverse”
phase. The structure of the resource-limited phase is
strongly constrained by species- and community-level en-
vironmental filtering. Each community is dominated by a
handful of species, making the community properties sen-
sitive to the idiosyncratic characteristics of these species
and susceptible to environmental fluctuations. In the di-
verse phase, communities exhibit more universal features
because they substantially engineer their environments.
In particular, the concentrations of resources at steady
state are narrowly distributed and roughly independent
of the type and amount of externally supplied resource.
More over, each species draws its energy roughly equally
from all resources rather than subsisting on the externally
supplied resource as in the resource-limited phase.

Our model complements other recent efforts at under-
standing microbial community ecology. Taillefumier et
al. proposed a similar model of metabolite exchange,
and focused on the case where the number of resource
types M is equal to 3 [42]. In this case, repeated inva-
sion attempts from a large regional species pool produced
optimal combinations of metabolic strategies. Goyal et
al. examined the opposite limit, with M = 5, 000, but
allowed each species to consume only one type of re-
source [21]. This generated communities with a tree-like
metabolic structure, where each species depends directly
on another species to generate its unique food source. In
our model, the large number of resource types (M = 100
in the current study) makes spontaneous optimization
extremely unlikely. In addition, the consumption pref-
erences in the model generically overlap, giving rise to
trophic networks qualitatively different from the special-
ist communities of Goyal et al.. The absence of highly
specialized metabolic structure in our model makes it
especially well-suited for interpreting patterns in large-
scale sequence-based datasets such as the Earth Micro-
biome Project [43].

Our model predictions can also be directly tested us-
ing experiments with natural communities in synthetic
laboratory environments [11, 19]. Our model predicts
that beta diversity patterns can be significantly altered
by increasing the ecosystem’s energy supply to induce a
transition from the resource-limited to the diverse phase.

In the experimental set-up in [11], this can be done by
directly adding chitinase enzymes to the sludge reactor
to increase the degradation of chitin-based organic par-
ticles on which the ocean-derived microbial communities
exist.

In this work we have largely confined ourselves to
studying steady-state properties of well-mixed microbial
communities. Complex microbial communities often ex-
hibit complex temporal dynamics with well-defined suc-
cessions [11, 14, 49]. It will be interesting to explore
these dynamical phenomena using our model. It is also
well established that spatial structure can give rise to new
ecological phenomena [27, 34] and an important area of
future work will be to better explore the role of space in
microbial community assembly.

Finally, the phase transition observed here is likely
closely related to disorder-induced transitions in statisti-
cal physics. We suspect that the transition observed in
our numerical simulations is closely related to a replica
symmetry breaking transition [5] but much more analytic
work needs to be done in order to see if this is indeed the
case. More generally, this adds to a series of works sug-
gesting that ecological communities fall into distinct eco-
logical phases that are qualitatively different from each
other and that communities can undergo phase transi-
tions in response to environmental and ecological vari-
ables [3, 5, 6, 12, 15, 26, 39, 40, 45]. These ecological
phases often display distinct biodiversity patterns that
emerge from the interplay of stochastic processes and
competition and may explain the origins of some of the
reproducible large-scale patterns seen in sequencing data
across multiple environments and communities.
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V. APPENDIX

In this appendix, we provide a full explanation of the
model and its numerical implementation, as well as ad-
ditional data illustrating the robustness of the qualita-
tive results. All data and code for generating figures
can be found at https://github.com/robertvsiii/
community-simulator, in the ‘phase-transition’ folder.

A. Model details

1. Generalities

We begin by defining an energy flux into a cell J in,
an energy flux that is used for growth Jgrowth, and an
outgoing energy flux due to byproduct secretion Jout.
Energy conservation requires

J in = Jgrowth + Jout (8)

for any reasonable metabolic model. Now consider a
model with M resources Rβ with β = 1 . . .M each with
“energy” or quality wβ . It will be useful to divide the
input and output energy fluxes that are consumed/se-
creted in metabolite β by J in

β and Jout
β respectively. We

define the fraction fout
β of the output energy secreted as

resource β by

Jout
β ≡ fout

β Jout. (9)

We can define corresponding mass fluxes by

νout
β ≡ Jout

β /wβ (10)

and

νin
β ≡ J in

β /wβ (11)

In general, all these fluxes depend on the species under
consideration and will carry an extra roman index i in-
dicating the species.

We will assume that growth is proportional to the
energy flux Jgrowth with some proportionality constant.
Thus, we can model the growth of species i by

dNi
dt

= giNi(J
growth
i −mi), (12)

where gi converts energy fluxes to growth and mi is some
minimum maintenance energy for species i.
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We can model the resource dynamics by functions of
the form

dRα
dt

= hα(Rα)−
∑
j

Njν
in
jα +

∑
j

Njν
out
jα , (13)

where the function hα describes the resource dynamics
in the absence of other consumers. We can consider two
kinds of dynamics: renewable and non-renewable. For
renewable, we take a linearized form of the dynamics:

hrenew
α (Rα) = κα − τ−1

α Rα (14)

while for non-renewable we take a logistic form for the
dynamics

hnon−renew
α (Rα) = rαRα(Kα −Rα). (15)

In the present study, we only consider renewable dynam-
ics.

These equations specify the general dynamics of all
the models we consider. Metabolism is encoded in the
relationship between input, output, and growth fluxes.

2. Adding structured metabolism

We will now specify the form of the input fluxes νin
β

and the output partitioning fout
β . This involves specify-

ing how an input resource is turned into an metabolic
byproducts. To try to capture metabolic structure, we
will divide the M resources into T classes (e.g. sug-
ars, amino acids, etc.), each with MA resources where
A = 1, . . . T and

∑
AMA = M . We will be interested

in capturing coarse metabolic structure (i.e. metaboliz-
ing sugars outputs carboxylic acids, etc). We will limit
ourselves to considering strictly substitutable resources.

In all consumer resource models, we assume that

νin
iβ = σ(ciβRβ) (16)

where σ encodes the response function of consumer i for
resource α. We will work with three kinds of response
functions: Type-I, linear response functions where

σI(x) = x, (17)

a Type-II saturating Monod function,

σII(x) =
x

1 + x
K

(18)

and a Type-III Hill or sigmoid-like function

σIII(x) =
xn

1 +
(
x
K

)n , (19)

where n > 1.
In all the simulations of this paper, we assume that

resources independently contribute to the growth rate.

We define a leakage fraction 0 ≤ lα ≤ 1 for resource α
such that

Jout
α = lαJ

in
α . (20)

A direct consequence of energy conservation (Equation
(8)) is that

Jgrowth
i =

∑
α

(1− lα)J in
iα =

∑
α

(1− lα)wασ(ciαRα) (21)

All that is left is now specifying a structure of the
probability of producing a byproduct β when consuming
α. Let us denote byDβα the fraction of the output energy
that is contained in metabolite β when a cell consumes
α. Note that by definition

∑
β Dβα = 1. These Dβα and

lα uniquely specify the metabolic model for independent
resources and we can write all fluxes in terms of these
quantities.

The total energy output in metabolite β is thus

Jout
iβ =

∑
α

DβαlαJ
in
iα =

∑
α

Dβαlαwασ(ciαRα). (22)

This also yields

νout
iβ =

∑
α

Dβαlα
wα
wβ

σ(ciαRα) (23)

We are now in position to write down the full dynamics
in terms of these parameters

dNi
dt

= giNi

[∑
α

(1− lα)wασ(ciαRα)−mi

]
dRα
dt

= hα(Rα)−
∑
j

Njσ(cjαRα)

+
∑
jβ

Njσ(cjβRβ)

[
Dαβ

wβ
wα

lβ

]
(24)

Notice that when σ is Type-I (linear) and lα = 0 for all α
(no leakage or byproducts), this reduces to MacArthur’s
original model.

3. Choosing consumer preferences

We will now choose consumer preferences as follows.
We assume that each specialist family has a preference for
one resource class A (where A = 1 . . . F ) with 0 ≤ F ≤ T .
The index of the preferred class A will also serve as the
name of the family. We will also consider generalists
that have no preferences. Let us denote the consumer
coefficients for family A by cAiα. Let us also denote the
consumer coefficients of the generalist family by cgen

iα . We
will consider three kinds of models: one where the coef-
ficients are drawn from Gaussian distributions, another
where they are drawn from Gamma distributions (which
ensure positivity of the coefficients), and finally a dis-
crete, binary preference model.
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a. Gaussian consumer preferences The Gaussian
model allows a continuous gradation of transporter ex-
pression levels. We assume that the variance is fixed to
so that for all coefficients for all families

〈(δcAiα)2〉 = 〈(δcgen
iα )2〉 = σ2

c . (25)

In the generalist family, the mean is also the same for all
resources, and is given by

〈cgen
iα 〉 =

µc
M
. (26)

The specialist families sample from a distribution with a
larger mean for resources in their preferred class:

〈cAiα〉 =

{
µc
M

[
1 + M−MA

MA
qA

]
, if α ∈ A

µc
M (1− qA), otherwise,

(27)

where MA is the number of resources in class A, and
qA controls how much more species from family A prefer
resources from class A.
b. Gamma consumer preferences We will also con-

sider the case where consumer preferences are drawn from
Gamma distributions, which guarantee that all coeffi-
cients will be positive. We choose the parameters of the
Gamma distribution such that the variance remains fixed
for all coefficients for all families:

〈(δcAiα)2〉 = 〈(δcgen
iα )2〉 = σ2

c , (28)

while the mean takes the same values as in the Gaussian
case.
c. Choosing binary preferences In the binary model,

there are only two possible expression levels for each
transporter: a low level c0 and a high level c0 + c1. The
elements of cAiα are given by

cAiα = c0 + c1Xiα, (29)

where Xiα is a binary random variable that equals 1 with
probability

pAiα =

{
µc
Mc1

[
1 + M−MA

MA
qA

]
, if α ∈ A

µc
Mc1

(1− qA), otherwise
(30)

for the specialist families, and

pgen
iα =

µc
Mc1

(31)

for the generalists.

4. Constructing the metabolic matrix

We choose the metabolic matrix Dαβ according to a
three-tiered secretion model. The first tier contains a
preferred class of byproducts, such as carboyxlic acids
for fermentative and respiro-fermentative bacteria, which

includes Mc members. The second contains byproducts
of the same class as the input resource. For example,
this could be attributed to the partial oxidation of sugars
into sugar alcohols, or the antiporter behavior of various
amino acid transporters. The third tier includes every-
thing else. We encode this structure in Dαβ by sampling
each column of the matrix from a Dirichlet distribution
with concentration parameters dαβ that depend on the
byproduct tier, so that on average a fraction fc of the se-
creted flux goes to the first tier, while a fraction fs goes
to the second tier, and fo = 1− fc − fs to the third:

dαβ =


d0

fc
Mc
, ifα = c

d0
fs

MA(β)
, ifα 6= c and A(α) = A(β)

d0
fo

M−MA(β)−Mc
, otherwise.

(32)

The parameter d0 controls the randomness of the parti-
tioning, ranging from the maximum value where all the
weight is put on a single resource for d0 = 1, to deter-
ministic partitioning as d0 →∞.

B. Simulation and data analysis

1. The Community Simulator

We implemented the above modeling framework in a
Python package called “community-simulator,” which can
be downloaded and installed from https://github.com/
robertvsiii/community-simulator. Once this pack-
age is installed, the Jupyter notebook included in the
‘phase-transition’ folder of the repository can be used to
regenerate all the figures.

Community Simulator is designed to run dynamics on
multiple communities in parallel, inspired by the paral-
lel experiments commonly performed with 96-well plates.
The central object of the package is a Community class,
whose instances are initialized by specifying the initial
population sizes and resource concentrations for each
parallel “well,” along with the functions and parameters
that define the population dynamics. This class contains
two core methods, also based on this experimental setup.
Propagate(T) sends each community to a separate CPU
(for however many CPU’s are available), runs the given
population dynamics for a time T using the SciPy func-
tion odeint, and updates the population sizes and re-
source concentrations in each well to the time-evolved
values. Passage(f) initializes a fresh set of wells by
adding a fraction fµν of the contents of each old well
ν to each new well µ. (Fresh media can also be added
at this point, but this feature was not relevant for the
current work). The resulting values of Ni are converted
from arbitrary concentration units to actual population
sizes using an optional scale factor, and then integer pop-
ulation sizes are obtained by multinomial sampling based
on these values.
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The Community Simulator package also contains a
set of scripts for generating models and randomly
sampling parameters. MakeConsumerDynamics and
MakeResourceDynamics from the usertools module
take a dictionary of assumptions concerning the re-
sponse type, metabolic regulation and resource replen-
ishment (as described above), and generate the corre-
sponding functions for dNi/dt and dRα/dt. The func-
tion MakeMatrices, from the same module, samples the
consumer matrix ciα and the metabolic matrix Dαβ ac-
cording to the scheme described in the previous section.

2. Simulation Details

For this paper, we generated a binary consumer matrix
with c0 = 0.01, c1 = 1 and µc = 10, and a metabolic
matrix with d0 = 0.2. This matrix defined a regional
pool of S = 200 species, consuming M = 100 possible
resource types. We used F = 4 families and T = 4
resource class, but set q = 0 and fs = fc = 0.25 so
that class membership had no functional consequence,
but merely served as a neutral label. We set wα = gi = 1
for all i and α, and set the lα for all resources equal
to each other. For the multinomial sampling described
above, we worked in units where Ni = 1 corresponds
to a population of 106 cells. We generated dynamics
with Type-I response, no regulation, and a “renewable”
resource replenishment model. Only resource type 0 was
supplied externally, with flux κ0, and all the other κα’s
were set to zero.

To simulate stochastic colonization, we initialized each
of 10 wells with 100 randomly chosen species from the re-
gional pool, with a population size of 106 cells per species
per well. We propagated each well under Equations (24)
for a time ∆t = 11, 500, which is much longer than the
maximum time required to relax to the steady state for
any of the parameter regimes sampled. We used the
Passage method with fµν = δµν to periodically elimi-
nate species whose populations became too small. For
the large steady-state population sizes we consider here
(∼ 104 − 109, see Figure 9 below), the multinomial sam-
pling results in near-deterministic elimination of species
whose populations are heading for extinction. We pas-
saged after every 5 time units of propagation from the
beginning of the simulation up to time t = 500, then ev-
ery 100 time units until time t = 1, 500, and finally every
1,000 time units up to the final time t = 11, 500.

The timeseries shown in Figure 1E was generated un-
der these assumptions, with w0κ0 = 500.

We propagated these 10 initial states using this proce-
dure for 100 different combinations of externally supplied
energy flux w0κ0 and leakage fraction l, with 10 w0κ0

values evenly spaced on a logarithmic scale from 10 to
100, and 10 l values evenly spaced from 0 to 0.9. Figure
2 of the main text plots the mean richness over the 10
parallel wells for each combination of w0κ0 and l. The
richness is defined as the number of species with non-zero

abundance at the end of the simulation.
We focused on one example from each of the three

regimes for further analysis:

• Syntrophy-Limited: w0κ0 = 1000, 〈lα〉 = 0.1

• Energy-Limited: w0κ0 = 28, 〈lα〉 = 0.6

• Competition-Limited: w0κ0 = 1000, 〈lα〉 = 0.9.

The rank-abundance plots in Figure 2 of the main text
show the population sizes in all 10 wells from each of these
examples, after normalizing them by the total biomass∑
iNi. The plots were truncated at a relative abundance

of 0.5% for clarity. Rank-abundance plots for these same
three examples in absolute units with no truncation can
be found in Figure 9 below.

3. Susceptibilities

One important property of an ecosystem is its sensi-
tivity to changes in environmental conditions. Figure 3
of the main text quantifies this sensitivity in terms of a
set of susceptibilities, defined by

χαβ ≡
∂R̄α
∂κβ

(33)

ηiβ ≡
∂N̄i
∂κβ

(34)

where N̄i, R̄α are the steady-state consumer popula-
tions and resource concentrations, respectively.

For the case of renewable resource dynamics and Type-
I growth, setting Equations (24) equal to zero and differ-
entiating with respect to κβ yields:

0 =
∑
α

(1− lα)wαciαχαβ (35)

−τ−1
α δαβ =

∑
γ

∑
j

cjγNj

[
Dαγ

wγ
wα

lγ − δγα
]
− τ−1

α δγα


×χγβ +

∑
jγ

cjγ

[
Dαγ

wγ
wα

lγ − δγα
]
Rγηjβ (36)

For each value of β, this system of linear equations can
be solved for χγβ and ηjβ by simply inverting a matrix
(once the terms corresponding to extinct species have
been removed).

The histograms of Figure 3D in the main text contain
the diagonal elements χαα for all resources except for the
one supplied externally (α = 0), which might be expected
to behave somewhat differently. The χαα values from all
10 parallel communities are included in the histogram.
We generated one histogram for the competition-limited
regime, and one for the energy-limited regime, using the
parameters listed at the end of Section VB2 above.
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4. Niche Overlap

To find out what controls the diversity of the diverse
phase, we varied the niche overlap, which controls the
intensity of competition within the regional species pool.
We did this by holding µc fixed, and varying c1 from its
original value of 1 down to a minimum value of 0.12. For
each value of c1, we generated 10 ciα matrices, which each
defined a regional pool of 200 species. We then repeated
the procedure of Section VB2 above for each of these
regional pools: initializing 10 wells with 100 species and
running them to the steady state with the same sequence
of propagation and passage steps. The final richness of
each community is plotted in Figure 4 of the main text
as a translucent point, such that more common richness
values are darker. We included all three examples defined
at the end of Section VB2 in the plot, and colored both
examples from the resource-limited phase blue, while the
competition-limited regime (diverse phase) was colored
red.

5. Beta Diversity

To examine the beta diversity patterns in each regime,
we initialized 200 wells with 100 randomly chosen species
from the regional pool of 200 species, and propagated
them to steady state following Section VB2 under the
three different choices of w0κ0 and l listed at the end
of that section. To visualize the variation among these
communities, we used the Python package scikit-learn to
compute the first two principle components of the set of
composition vectors in each regime. We then projected
the compositions onto the plane spanned by these vec-
tors, and generated a scatter plot of the results. We also
computed the percentage of the total variance accounted
for by each of these two principal components, and indi-
cated the value in parentheses on each axis.

C. Data Format

The output of all the simulations was saved to a set
of Microsoft Excel spreadsheets, which can be easily im-
ported into Python for analysis using the Pandas pack-
age. Each simulation generated four files: final consumer
populations (‘Consumers’), final resource compositions
(‘Resources’), a metadata summary (‘Parameters’),
and initial conditions (‘Initial_State’). The ciα and
Dαβ matrices as well as the mi and wα were pickled into
a binary file (‘Realization’). The file names also include
the date on which the data was generated, and a task ID
when multiple files were generated on the same day.

The first column in the consumer and resource tables
is the index of the simulation run. The second and
third columns of the consumer file are the family ID
and species ID, respectively. In the resource file, these

columns contain the class ID and resource ID. The re-
maining columns contain the populations/concentrations
for each well. The consumer populations are in units of
106 cells.

All the parameters that change between runs are in-
cluded in the metadata file (‘Parameters’). The first col-
umn of this file is the simulation run index, corresponding
to the index in the consumer and resource files.

The initial conditions file contains the initial popula-
tion sizes for each of the wells, which were the same for
all runs within a simulation.

D. Robustness of qualitative results

In this section, we test the robustness of our qualita-
tive results by modifying the modeling assumptions in
five ways. We have given each way a descriptive name,
which can be used to look up the raw data files from the
supplemental data folder using the file_list.csv table:

• main_dataset is the data from the main text

• type_II uses a Type II functional response, with
K = 20.

• dense_metabolism has a dense metabolic matrix
with d0 = 0.001.

• randomness adds (quenched) random variation to
wα and lα, with standard deviations 0.1 and 0.03,
respectively.

• Gaussian_sampling samples the ciα’s from Gaus-
sian distributions, with the same mean 0.11 and
standard deviation 0.3 as the binary matrix used
in the main text.

• Gamma_sampling samples the ciα’s from Gamma
distributions, with the same mean and variance.

The following sections describe each of these choices in
more detail. Figures 8, 9, 12 and 13 show the key plots
from the main text along with the new versions gener-
ated under all these modified assumptions. Figures 10
and 11 display another diversity measure not discussed
in the main text: the Simpson Diversity (S. D.). This is
defined analogously to the “effective number of resources
consumed” presented in Equation (6) of the main text:

S.D. =

[∑
i

(
Ni
N

)2
]−1

(37)

where N ≡∑iNi. As discussed in the main text in con-
nection with resource fluxes, this quantity approaches 1
when there is one large Ni ≈ N and all the other popula-
tions are very small. It approaches the number of species
(i.e., the richness) as the biomass distribution becomes
more uniform.
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1. Type-II Growth

We chose the Monod parameter K = 20 in the Type-II
growth simulations in order to ensure that at least one
species would survive in the steady state in all simula-
tions. The maximum possible incoming energy flux in
the Type-II model is equal to 0.1K when wα = 1 and
l = 0.9, and this must exceed mi ≈ 1 for a species to
survive. K = 20 provides a maximum flux of 2 in this
case.

2. Metabolic Matrices

The metabolic matrices Dβα are plotted in Fig-
ure 7 for main_dataset and dense_metabolism (all
other simulations use the same metabolic parameters
as main_dataset). We see that d0 = 0.2 leads to a
very sparse matrix, with only a few secreted byprod-
ucts per input resource, while the secretion fractions for
d0 = 0.001 are much more uniform.

3. Randomness in wα and lα

To relax the assumption of all the wα’s and lα’s being
equal, we sampled these two vectors from Gaussian dis-
tributions. We chose the standard deviations of the dis-
tributions to be small enough that both quantities would
almost always be positive, and lα would remain less than
1.

4. Gaussian and Gamma Sampling

Sampling consumer preferences from the continuous
Gaussian and Gamma distributions makes the differential
equations much stiffer than in the binary case. To ensure
stable operation of the integrator, we “passaged” the cells
every 0.1 time units. Each call of the “passage” method
zeros out small negative values of resource concentration
or consumer population that arise because of numerical
error, in addition to setting small consumer populations
to zero. This high frequency of passaging made the simu-
lation more computationally intensive, so we only propa-
gated these simulations for 300 time units. We confirmed
that the norm of the vector of between per-capita growth
rates

√∑
i[(1/Ni)(dNi/dt)]

2 was much less than 1 in all
simulations to verify convergence.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2018. ; https://doi.org/10.1101/335893doi: bioRxiv preprint 

https://doi.org/10.1101/335893
http://creativecommons.org/licenses/by-nc-nd/4.0/


15

FIG. 7. “Sparse” and “dense” metabolic matrices Dβα Each pixel in the two panels represents an element of the metabolic
matrix Dβα. Panels are labeled by the name of the dataset they came from.
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FIG. 8. Richness vs. w0κ0 and 〈lα〉 We generated 200 species, initialized 10 communities of 100 species each from this pool,
and ran the dynamics to steady state under different combinations of w0κ0 and 〈lα〉, for each of the six model choices listed.
The color of each square indicates the mean number of non-extinct species at the end of the simulation, over all 10 communities
at each combination of w0κ0 and 〈lα〉.
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FIG. 10. Simpson Diversity vs. w0κ0 and 〈lα〉. Simpson Diversity was computed according to Equation (37), using the
same data as Figure 8.
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