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Abstract16

Understanding pathogen outbreak and emergence events has important implica-17

tions to the management of infectious disease. Apart from preempting infectious18

disease events, there is considerable interest in determining why certain pathogens19

are consistently found in some regions, and why others spontaneously emerge or re-20

emerge over time. Here, we use a trait-free approach which leverages information21

on the global community of human infectious diseases to estimate the potential for22

pathogen outbreak, emergence, and re-emergence events over time. Our approach23

uses pairwise dissimilarities among pathogen distributions between countries and24

country-level pathogen composition to quantify pathogen outbreak, emergence,25

and re-emergence potential as a function of time (e.g., number of years between26

training and prediction), pathogen type (e.g., virus), and transmission mode (e.g.,27

vector-borne). We find that while outbreak and re-emergence potential are well28

captured by our simple model, prediction of emergence events remains elusive,29

and sudden global emergences like an influenza pandemic seem beyond the predic-30

tive capacity of the model. While our approach allows for dynamic predictability31

of outbreak and re-emergence events, data deficiencies and the stochastic nature32

of emergence events may preclude accurate prediction; but our results make a33

compelling case for incorporating a community ecology perspective into existing34

disease forecasting efforts.35
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Introduction36

The emergence of infectious diseases in humans and wildlife is a continuous and37

natural process that is nevertheless rapidly intensifying with global change (Jones38

et al., 2008). Around the world, the diversity, and frequency, of infectious out-39

breaks is rising over time (Smith et al., 2014; Jones et al., 2008), and the vast40

majority of pathogens with zoonotic potential still have yet to emerge in human41

populations, with an estimated 600,000 minimum viruses with zoonotic potential42

(Carroll et al., 2018). Intensifying pathways of contact between wildlife reser-43

voirs and humans, and rapid spread of new pathogens among human populations44

around the globe, are considered major drivers in this accelerating process (Cleave-45

land et al., 2007; Tatem et al., 2006). Changes in climate and land-use, as well46

as food insecurity and geopolitical conflict, are expected to exacerbate feedbacks47

between socio-ecological change and emerging infectious diseases (EIDs). In the48

face of these threats, the anticipation of disease emergence events is a seminal but49

elusive challenge for public health research (Morse et al., 2012).50

One forecasting approach recognizes that the drivers of emergence events are51

distributed non-randomly in space and time, and follow predictable regional pat-52

terns that inherently predispose some areas to a higher burden of EIDs (Allen53

et al., 2017). Different classes of emerging pathogens (e.g., new pathogens versus54

drug-resistant strains of familiar ones; vector-borne and/or zoonotically transmit-55

ted diseases) follow different spatial risk patterns at a global scale (Jones et al.,56

2008). In part, this can be explained by the non-random distribution of host57

groups that disproportionately contribute to zoonotic emergence events, like bats58

and rodents (Johnson et al., 2015a; Olival et al., 2017), and are likely to continue59

to do so (Han et al., 2016a,b, 2015). However, additional factors are strongly asso-60

ciated with the distribution of emerging infection risk; notably human population61

density, land cover, and land use change (Allen et al., 2017). In addition to these62
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factors, deterministic emergence of disease is influenced by social, cultural, and63

economic factors (Bonds et al., 2010; Farmer, 1996; McMichael, 2004; Murray &64

Schaller, 2010; Parkes et al., 2005).65

As a consequence of this heterogeneity in host distributions and other con-66

tributing factors, emerging pathogens may follow Tobler’s First Law (“near things67

are more related than distant things”; Tobler (1970)), and fall into a handful of68

global biogeographic regions with similar pathogen communities (Murray et al.,69

2015). However, with increasing global connectivity, both pathogens and the free-70

living organisms that host them are spreading around the world at an accelerating71

rate, and consequently the spatial structure of pathogen diversity is becoming less72

pronounced. One study examining a global pathogen-country network showed73

that modularity is decreasing while connectance is increasing over time: pathogen74

ranges are on average expanding, and over time, geographically-separate regions75

are facing more threats (Smith et al., 2007; Poisot et al., 2014). This process of76

biotic homogenization has critical implications for public health, as known diseases77

can become unfamiliar problems in novel locations, or can re-emerge in landscapes78

from which they were previously eradicated.79

Leveraging disease ecology in global health settings requires models that con-80

sider disease emergence as a long-term process over space and time, extending81

beyond initial spillover events. Work that models the impact of human mobil-82

ity networks has arisen out of the pandemic influenza literature (Balcan et al.,83

2009; Russell et al., 2008; Khan et al., 2009), and has recently been successful in84

developing a multi-scale approach to anticipating emergence risk for hemorrhagic85

viruses in Africa (Pigott et al., 2017). However, conceptually-similar work that86

models across global pathogen species is mostly unexplored. Murray et al. (2015)87

suggest that countries who share pathogens might be more likely targets during88

a given pathogen outbreak, but this approach does not leverage information on89
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the identity of the shared pathogens. Given the inherent need in estimating out-90

break potential, and the current availability of data on outbreak events, the need91

to leverage existing data for the dynamics prediction of outbreak potential is a92

pressing research need.93

Here, we examine the predictability of pathogen biogeography over time us-94

ing a similarity-based approach that utilizes data on all pathogen outbreaks in all95

countries, but does not require information on pathogen traits or spatial structure.96

In the process of modeling outbreak predictability, we test a basic but important97

hypothesis: do recurring outbreaks have a more predictable signal than emergence98

events (and, implicitly, are emergence events predictable)? Within emergences,99

we further note the subtle difference between emergence and re-emergence, and100

hypothesize the factors driving these might be subtly different. While both may101

be driven by genetic shifts in pathogens or changing land use patterns enhancing102

transmission risk, re-emergence events are more likely to be related to weakened103

healthcare infrastructure, prematurely-terminated eradication campaigns (Chiap-104

pini et al., 2013; Minor, 2004), or low detection long-term persistence of environ-105

mental pathogen reservoirs (e.g., anthrax spores in the soil; Carlson et al. (2018)).106

Finally, we examine whether pathogens show any differences in predictability107

based on agent, class, or transmission mode. Diseases of zoonotic origin (i.e. with108

animal hosts) and with vector-borne transmission might be harder to predict due109

to hidden constraints on their distribution and more complicated outbreak dynam-110

ics than directly-transmitted pathogens have. On the other hand, commonalities111

between species that share vectors or reservoir hosts might lead to similarities in112

distributions (a common notion in pathogen biogeography, as in how dengue mod-113

els were frequently used in the early days of the Zika pandemic, given the shared114

vector Aedes aegypti ; Bogoch et al. (2016); Carlson et al. (2016)). In this case,115

community-based prediction could be more powerful for zoonotic and vector-borne116

5

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 31, 2018. ; https://doi.org/10.1101/336065doi: bioRxiv preprint 

https://doi.org/10.1101/336065


diseases. Differential frequency of zoonotic and vector-borne transmission might117

also make different pathogen classes (viruses, bacteria, fungi, and macroparasites)118

more or less predictable, as might different dispersal ability on a global scale, with119

respiratory viruses usually presumed to spread the fastest, and macroparasites120

generally treated as the most dispersal-limited. Understanding how the role of121

community structure changes for these different pathogens can help contextualize122

the method we use, and understand how it might be built upon to account for123

these differences.124

Methods125

Pathogen emergence data126

Data from the Global Infectious Diseases and Epidemiology Network (GIDEON)127

contains pathogen outbreak information at the country level obtained from case128

reports, governmental agencies, and published literature records (Berger, 2005; Yu129

& Edberg, 2005). Records with multiple etiological agents (e.g., “Aeromonas and130

marine Vibrio infx.”) and unresolved to agent level (e.g., “Respiratory viruses -131

miscellaneous”) were excluded from the model. In a handful of cases, we kept divi-132

sions between clinical presentations from the same pathogens, like cutaneous versus133

visceral leishmaniasis. The data obtained were yearly records between 1990 and134

2016, and consisted of pathogen outbreak and emergence events for 234 pathogens135

across 224 countries. While there are some data for pathogen events between 1980136

and 1990, the number of pathogen events reported was fewer than from 1990 on-137

ward, suggesting some potential reporting or sampling bias in these earlier years.138

Therefore, we restrict our analyses to pathogen occurrences after 1990. Based139

on supplemental data from Smith et al. (2007) and updated with recent litera-140

ture given several misclassifications, each was manually classified as a bacterial,141
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viral, fungal, protozoan, or macroparasitic disease, and as vector-borne and/or142

zoonotic or neither. In some rare cases, these were left as unknown; for example,143

Oropouche virus is vector-borne but its sylvatic cycle remains uncertain, while the144

environmental origin of Bas-Congo virus is altogether unknown.145

While much can be gained by leveraging data on multiple pathogens to predict146

outbreak or emergence potential, there are some drawbacks. The most pronounced147

is that pandemic events may strongly influence model predictions, such that a pan-148

demic of one pathogen will decrease model performance when attempting to predict149

outbreak or emergence potential of other pathogens. We explore this further in the150

supplement, where we see the inclusion of influenza and the corresponding 2009 flu151

pandemic noticeably affects our model performance. As such, we remove influenza152

from the main text analyses, and place analyses containing flu in the supplement153

for comparison.154

We distinguish between three different types of pathogen events; outbreak, re-155

emergence, and emergence. Outbreaks are pathogen events are recurrent pathogen156

events, quantified as having occurred in a given country within three years of a157

given year. Re-emergence events are those that did not occur within three years,158

but have occurred at some time in a given country in the past (a cutoff we chose159

inspired by World Health Organization guidelines for certifying regional eradica-160

tion of poliovirus or dracunculiasis). Lastly, emergence events were considered as161

the first record of a pathogen within a country.162

Model structure163

We developed a dissimilarity-based approach to forecast pathogen outbreak and164

emergence events that does not require country-level or pathogen traits data. Ap-165

plying tools from community ecology, we calculated mean pairwise dissimilarity166

(Bray-Curtis index, BC) values for countries (how dissimilar are the pathogen167
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communities between countries) and pathogens (how dissimilar are the geographic168

distributions of pathogens). For a given pair of countries a, b with Pa and Pb169

pathogens each, and S shared pathogens among those, the Bray-Curtis index is170

given as:171

BCa,b = 1 − 2S

PaPb

(1)

This can be treated as a measure of dissimilarity between different countries’172

pathogen communities. We then considered the potential for a pathogen to be173

found in a country proportional to the product of these dissimilarity values. We174

also included year as a covariate, resulting in a set of four variables for model175

training.176

Using these data, we applied a statistical approach previously used for species177

distribution modeling (Drake & Richards, 2017) and link prediction in ecologi-178

cal networks (Dallas et al., 2017a) called plug-and-play (PNP). This approach179

utilizes information on pathogen occurrence events, and also on background in-180

teractions — country-pathogen pairs which did not have a recorded outbreak —181

to estimate the suitability of a country for pathogen emergence from a particular182

pathogen (Figure 1). These suitability values can then be used to quantify model183

performance on data not used to train the model. Model performance was quanti-184

fied using Area Under the Curve (AUC), which captures the ability of the classifier185

to rank positive instances higher than negative instances.186

Assessing model performance187

We used the PNP modeling approach to address the possibility of predicting188

pathogen outbreak and emergence events, specifically examining three different189

potential scenarios. First, we examined how the inclusion of pathogen events from190

previous years influenced model accuracy. That is, we predicted pathogen events191
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of 2016 using data starting at 2015 and then including additional years until 1995.192

This was performed to determine the amount of data necessary to make accurate193

forecasts. Second, we examined how predictive accuracy was maintained as we at-194

tempted to predict both past (hindcast) and future (forecast) pathogen events. To195

do this, we trained models on a ten year period (either 2005-2015 for hindcasting,196

or 1990-2000 for forecasting), and used these models to predict pathogen events197

between 1990 and 2004 for hindcasting, and between 2001 and 2015 for forecast-198

ing. Lastly, we examined how the accuracy of predictions might have changed199

over time. Given increased surveillance in more recent years, predictive accuracy200

might be dependent on the time period at which models are trained and predic-201

tions made. To test this, we trained models along a rolling window of 4 years from202

1990-2015, using these models to predict pathogen events in the year following the203

final year of model training (e.g., a model trained on 1990-1994 would be used to204

predict pathogen events in 1995).205

Results206

We find that our dissimilarity-based model can predict outbreak events accurately,207

re-emergence events slightly less accurately, and emergence events only slightly bet-208

ter than random. This makes intuitive sense, as outbreak events occur repeatedly,209

providing not only ample data for model training, but also a clear tendency of a210

pathogen to occur in a country. That is, if the model is allowed to see 5 years211

of data, and the country has an outbreak of a particular pathogen in 4 of the 5212

years, a naive model would predict that an outbreak will likely occur with an 80%213

probability. Meanwhile, emergence events are determined by many unique drivers214

(Allen et al., 2017), which may not be consistent across any two given emergence215

events, and which we evidently lack sufficient data to predict using our method.216
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While our model allows for dynamic predictability of outbreak and re-emergence217

events, data deficiencies and the stochastic nature of emergence events may thus218

preclude accurate prediction.219

Our predictive model was sensitive to the number of training years (Figure 2),220

with accuracy plateauing around 5-10 years of training data; however, models also221

just trained on a single year (the temporally closest community matrix) seemed to222

perform disproportionately well, which would make sense if the community changes223

in a Markov-like process. We further examined the limits of predictability in terms224

of both hindcasting and forecasting pathogen outbreak and emergence events by225

training the model on a known period of 10 years, and then either forecasting or226

hindcasting t years into the past or future (Figure 3). Interestingly, our accuracy227

– measured as area under the receiver operating characteristic – did not decline228

at the same rate when hindcasting and forecasting. That is, model accuracy was229

higher when hindcasting relative to the accuracy of forecasts of the same duration230

of time away from the training data (Figure 3). This perhaps indicates that as231

the country-pathogen network becomes asymptotically more connected and stable232

(Poisot et al., 2014), the network accumulates information content, reducing the233

time sensitivity of hindcasting performance.234

Examining a rolling window of t years (t = 4 years) over the last two decades,235

we failed to detect evidence that the enhanced reporting and surveillance in more236

recent years influenced our model’s predictive ability (Figure 4). This also suggests237

that even though there were annual variations in the sample size of both pathogens238

and countries, there was still consistency in the structure of the country-pathogen239

interaction matrix over time. We explore the sensitivity of this finding to the size240

of the rolling window in the Supplemental Materials.241

Differences in PNP model accuracy among pathogen types existed when ex-242

amining the effect of the amount of data used for model training (Figure 2), with243
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viruses having lower accuracy relative to bacteria, fungi, or other parasites. The244

simplest explanation for this is that accuracy is sensitive to the number of events.245

However, the average number of viral occurrences over time (x̄ = 179) was only246

slightly less than the average number of bacterial (x̄ = 185) occurrences, and far247

greater than the average number of fungal (x̄ = 10) or macroparasite (x̄ = 17.7) or248

protozoan parasite (x̄ = 22.5) occurrence events. The average number of pathogen249

occurrences over time is qualitatively proportional to the number of unique viruses250

(n = 83), bacteria (n = 81), fungi (n = 14), macroparasites (n = 38), and pro-251

tozoans (n = 15) we examined. Interestingly, differences among pathogen types252

were not found when examining the ability of the modeling approach to hind-253

cast/forecast (Figure 3) or when examining predictive accuracy along a rolling254

window (Figure 4).255

For our 2016 explanatory PNPmodel, differentiating pathogens based on zoonotic256

and vector-borne transmission modes suggested that both classes of pathogens257

were more difficult to forecast (Figure 2). Though we suspected data imbalance258

might drive this pattern, this seems unlikely: the majority of pathogens (144 of259

228) were zoonotic, and many (59 of 233) were vector-borne. A more compelling260

explanation is that this year was an anomalous result; transmission mode did not261

influence accuracy when hindcasting/forecasting (Figure S5) or when models were262

trained along a rolling window (Figure 4), though there was notable year-to-year263

variation in the latter.264

Discussion265

Community ecology and biogeography have a history as deeply linked fields, and266

both play an increasingly significant role in emerging infectious disease research.267

(Johnson et al., 2015b; Murray et al., 2015; Stephens et al., 2016) However, research268
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connecting the two for global pathogen diversity is fairly limited so far. Our269

goal was to examine whether the intrinsic structure of pathogen biogeography,270

approached as a bipartite network, was predictable enough to enable forecasting of271

different outbreak types—even in the absence of any other mechanistic predictors,272

like transmission mode, phylogenetic data, or environmental covariates.273

Despite obvious stochasticity and data limitations, the modeling approach per-274

formed well with as little as 7 to 10 years of training data, and when predicting275

country-pathogen network structure across large time windows. The model was276

able to capture pathogen outbreak and re-emergence potential well, suggesting277

that, at least at administrative levels, pathogen outbreak and re-emergence events278

are both recurrent and predictable (and that community assembly patterns are279

structured and predictive of outbreak potential). However, our model generally280

failed to forecast pathogen emergence events. This is maybe unsurprising, as pre-281

dicting when and where the next major public health threat will emerge is an282

incredibly difficult task which remains unsolved despite having received decades283

of attention (Allen et al., 2017; Jones et al., 2008; Morse et al., 2012). However,284

the failure of community information to help anticipate local emergences is still285

disappointing, especially given the proposal that biogeographic “co-zones” could286

be useful strategic tools for pandemic forecasting. (Murray & Schaller, 2010)287

We found some indications of differences in the predictability of pathogen288

events as a function of pathogen type and transmission modes. In the 2016289

model breakdown, bacteria were the most predictable while viruses were dispro-290

portionately unpredictable, as were zoonotic and vector-borne pathogens. Given291

how clearly unpredictable emergence events were, this might make intuitive sense:292

zoonotic pathogens make up the majority of emerging diseases (Jones et al., 2008),293

and single-stranded RNA viruses (many vector-borne) have been responsible for294

many of the biggest recent emergence events (Johnson et al., 2015a). However, this295
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pattern did not appear to hold up across all or even most years, and the factors296

that reduce model performance on a year-by-year basis are mostly unclear at the297

community level.298

One contributor to interannual variation is large-scale events such as pan-299

demics, which appeared to strongly influence prediction of the entire country-300

pathogen network. While pandemic spread may be predictable using detailed infor-301

mation on climate, human movement, and local environmental suitability (Morse302

et al., 2012; Tizzoni et al., 2012; Zhang et al., 2017), our approach lacks these mech-303

anistic predictors and is sensitive to these black swan events. This can be seen in304

reduced model performance during the 2009 flu pandemic, including for pathogens305

with no relationship to flu, although viruses and vector-borne pathogens are more306

severely affected (see Supplemental Materials). So while the model benefits from307

pathogen community data, rare and widespread events can strongly reduce model308

accuracy. Future work to differentially weight these stochastic events would prob-309

ably improve model performance.310

While this approach enhances estimation of outbreak and emergence potential311

for rare pathogens or poorly sampled countries, it is also worth nothing that our312

approach is not a valid standalone forecasting tool. This is in large part due to313

how time is used in the model: though year is a covariate, the model itself is not314

temporally explicit, meaning that the model can predict a certain link following on315

previous years, but it would be erroneous to interpret that as a forecast for a given316

point in time. However, the tool can be used to investigate pathogen outbreak and317

emergence potential under different pathogen range expansion scenarios. That318

is, researchers could construct artificial data which differs from empirical data319

slightly, and quantify the ability of the model to predict those novel events. Since320

the method is based on dissimilarity of countries and pathogen distributions at321

its core, it is possible to examine the expected outcome as pathogen distributions322
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become more (or less) homogeneous, or countries become more (or less) dissimilar323

in their pathogen communities.324

Within infectious disease ecology, a disproportionate focus has emerged on the325

drivers and predictability of emergence events. (Allen et al., 2017) Recent work326

offers a compelling case that community ecology might bring predictive tools to327

bear on that problem (Johnson et al., 2015b), and modeling work suggests that328

community assembly data can be leveraged to better predict how pathogens spread329

(Murray et al., 2015), the host range of emerging diseases (Dallas et al., 2017b;330

Johnson et al., 2015a), and the dynamics of diseases within an ecosystem (Parker331

et al., 2015; Johnson et al., 2013). Our results show how a simple model considering332

the entire pathogen community captures important global geographic variation333

in outbreak potential, but as a standalone tool, still struggles to predict when a334

pathogen will first arrive in a new region. Though this casts doubt on biogeographic335

tools like “co-zones” as standalone tools for surveillance or outbreak response,336

our study is a compelling indicator that community data could be very easily337

leveraged alongside other socioecological predictors to forecast disease emergence338

as an ecosystem process rather than a single-species one. With a Nipah virus339

outbreak in India and an Ebola virus outbreak in the Democratic Republic of the340

Congo alone both concurrent to the completion of this manuscript, the priority of341

prediction in emerging disease research only continues to grow.342
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Figure captions469

Figure 1: The dissimilarity-based model used takes mean dissimilarity values of
pathogen distributions and between countries in a given year, and uses this infor-
mation in addition to the product of these two values to train the PNP model.
Pathogen occurrences among countries are present or absent (black dots in panel
a indicate pathogen occurrences), and the density of dissimilarities where the
pathogen occurred relative to the overall density of dissimilarities provides in-
formation on the suitability of pathogen occurrence in a given country (b), and
forms the basis of the PNP model approach.

Figure 2: Pathogen events from previous years increased model predictive accuracy
after an initial small decrease, suggesting that five years or more of data improves
predictions, but accuracy could actually decrease in some data sparse situations
where only two or three years of data were available.

Figure 3: Predictive accuracy decreased when attempting to forecast far into the
past or future. Models were trained on either the period between 2005-2015 (for
prediction into the past) or 1990-2000 (for prediction into the future).

Figure 4: Using a rolling window (t = 4 years), we found that predictive accuracy
did not increase as a result of enhanced surveillance and data collection of more
recent years.
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Figure 3477
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Figure 4480
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Supplemental materials483

Effect of rolling window size484

The size of the rolling window we used for model training prior to prediction485

could influence model performance. To examine this possibility, we used a rolling486

window of 7 years (compared to the 4 year window used in the main text), finding487

qualitatively similar results when flu was included (Figure S1) or excluded (Figure488

S2). We explored this further by examining rolling windows of 2, 4, and 6 years489

(Figure S3), with qualitatively similar findings. For this analysis, we excluded490

influenza, as we did in the main text.491
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Figure S1: Rolling window size did not strongly influence model performance when
considering next year prediction, as a window of 7 years produced qualitatively
similar results to the window of 4 years we examine in the main text.
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Figure S2: Rolling window size did not strongly influence model performance when
considering next year prediction, as a window of 7 years produced qualitatively
similar results to the window of 4 years we examine in the main text.
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Figure S3: Examining rolling windows of 2, 4, and 6 years provides evidence that
rolling window size did not strongly influence model performance.
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Effect of pathogen traits on model hindcasting/forecasting492

ability493

Here, we further explore the effect of pathogen type on model performance when494

hindcasting or forecasting pathogen outbreak or emergence event suitability. There495

was no predictable variation in model performance as a function of pathogen type496

(Figure S4) or whether the pathogen is classified as zoonotic or vector-borne (Fig-497

ure S5).498
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Figure S4: Predictive accuracy decreased when attempting to forecast far into the
past or future, independent of pathogen type. Models were trained on either the
period between 2005-2015 (for prediction into the past) or 1990-2000 (for prediction
into the future).
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Figure S5: Predictive accuracy decreased when attempting to forecast far into the
past or future. This was insensitive to whether the pathogen is considered zoonotic
or vector-borne. Models were trained on either the period between 2005-2015 (for
prediction into the past) or 1990-2000 (for prediction into the future).
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The effect of including influenza499

The 2009 influenza A pandemic fundamentally changed the network of countries500

and pathogens through the addition of many links to one pathogen (Figure S6).501

This may be an issue for approaches such as ours, which relies on extracting infor-502

mation from the similarity between pathogens in their distributions among coun-503

tries, and similarity between countries in their pathogen composition. When the504

model wasn’t expected to predict a pandemic event, the inclusion of influenza did505

not substantially influence model predictions when trained on differing numbers506

of years (Figure S7) or when forecasting or hindcasting to different time periods507

(Figure S8). However, the effect of the 2009 influenza pandemic can be seen in the508

substantial declines in model performance when attempting to forecast one year509

ahead after training on a rolling window of 4 years (Figure S9). Interestingly, the510

exclusion of influenza results in lower mean performance when the model doesn’t511

have data on many years, likely because influenza is widespread and can influence512

the pathogen and country dissimilarity values used to train the model. However,513

once sufficient data is provided, model performance with and without influenza is514

nearly identical.515
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Figure S6: The number of countries with at least one outbreak event and the
number of pathogens has increased over time, likely due to more vigilant sampling
and description of emerging pathogens in a larger number of countries.
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Figure S7: Pathogen events from previous years increased model predictive ac-
curacy after an initial small decrease, suggesting that five years or more of data
improves predictions, but accuracy could actually decrease in some data sparse
situations where only two or three years of data were available.
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Figure S8: Predictive accuracy decreased when attempting to forecast far into the
past or future. Models were trained on either the period between 2005-2015 (for
prediction into the past) or 1990-2000 (for prediction into the future).
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Figure S9: Using a rolling window (t = 4 years), we found that predictive accuracy
did not increase as a result of enhanced surveillance and data collection of more
recent years.
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