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ABSTRACT 11	

Population-scale genomic datasets have given researchers incredible amounts of information 12	

from which to infer evolutionary histories. Concomitant with this flood of data, theoretical and 13	

methodological advances have sought to extract information from genomic sequences to infer 14	

demographic events such as population size changes and gene flow among closely related 15	

populations/species, construct recombination maps, and uncover loci underlying recent 16	

adaptation. To date most methods make use of only one or a few summaries of the input 17	

sequences and therefore ignore potentially useful information encoded in the data. The most 18	

sophisticated of these approaches involve likelihood calculations, which require theoretical 19	

advances for each new problem, and often focus on a single aspect of the data (e.g. only allele 20	

frequency information) in the interest of mathematical and computational tractability. Directly 21	

interrogating the entirety of the input sequence data in a likelihood-free manner would thus offer 22	

a fruitful alternative. Here we accomplish this by representing DNA sequence alignments as 23	

images and using a class of deep learning methods called convolutional neural networks (CNNs) 24	

to make population genetic inferences from these images. We apply CNNs to a number of 25	

evolutionary questions and find that they frequently match or exceed the accuracy of current 26	

methods. Importantly, we show that CNNs perform accurate evolutionary model selection and 27	

parameter estimation, even on problems that have not received detailed theoretical treatments. 28	

Thus, when applied to population genetic alignments, CNN are capable of outperforming 29	

expert-derived statistical methods, and offer a new path forward in cases where no likelihood 30	

approach exists.   31	
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INTRODUCTION 32	

Using genetic data to make inferences about the natural histories of populations represents a 33	

major goal of evolutionary research. As the ever-increasing throughput of DNA sequencing 34	

technologies makes the generation of large population genomic data sets more routine, 35	

researchers can leverage patterns of genetic variation across the genome to characterize the 36	

evolutionary forces at play (Hahn 2018). For example, advances have been made in identifying 37	

historical demographic events such as population size changes (Marth et al. 2004; Tennessen et al. 38	

2012; Gazave et al. 2014) and genetic exchange between populations and species (Martin et al. 39	

2013; Hellenthal et al. 2014; Sankararaman et al. 2014; Corbett-Detig and Nielsen 2017; Schrider 40	

et al. 2018). Population genomic analyses have also revealed the pervasive impact of selection on 41	

linked neutral polymorphism (Begun and Aquadro 1992; Begun et al. 2007; Langley et al. 2012; 42	

Elyashiv et al. 2016), both through positive selection (Maynard Smith and Haigh 1974; Kaplan et 43	

al. 1989) and purifying selection (Charlesworth et al. 1993). As the volume of population genomic 44	

data sets has increased, so too has the demand for powerful computational methods capable of 45	

using these data to learn about the fundamental evolutionary processes shaping genomic 46	

variation.  47	

To meet this need, myriad statistical and computational tools have been devised to 48	

answer evolutionary questions using population genetic data. One particularly common 49	

paradigm, which predates the high-throughput sequencing revolution, is that of the population 50	

genetic summary statistic: a value (or sometimes a vector of values) designed to capture the 51	

information present in a sequence alignment of individuals from one or more populations. When 52	

a particular evolutionary phenomenon acts on a population it alters the shapes of genealogies, 53	

and this effect is manifest in the observed sequence alignment. For example, a population 54	

expansion will result in genealogies with longer branches near the leaves of the tree, which will 55	

manifest as an excess of rare alleles. Many summary statistics seek to uncover the signature of 56	

these genealogical skews through their effect on the alignment; e.g. Tajima’s D will be negative 57	

following a recent expansion or recovery from a bottleneck (Tajima 1989; Simonsen et al. 1995). 58	

Ideally a summary statistic will only detect the signal of the evolutionary process it is being used 59	

to investigate, but in practice summary statistics are frequently confounded by other forces that 60	

may have similar effects on the shapes and/or sizes of genealogies. For example, Tajima’s D is 61	

sensitive to positive selection as well as population size changes (Simonsen et al. 1995). Moreover, 62	
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such summary statistics do not capture all of the information present in the alignment. Thus a 63	

major challenge of population genetic inference is to create methods that utilize as much 64	

information from the input data as possible in order to maximize our ability to distinguish among 65	

the numerous evolutionary processes that can give rise to an observed signal. 66	

One approach researchers have adopted to address this challenge is to incorporate a 67	

larger number of observations from the data into likelihood-based inference methods. However, 68	

calculating likelihoods of population genomic data sets is often mathematically and 69	

computationally intractable, and therefore such approaches often use composite likelihoods 70	

which ignore the non-independence of observations (e.g. Hudson 2001; Nielsen et al. 2005). For 71	

example, Nielsen et al.’s SweepFinder (2005), which examines allele frequencies at 72	

polymorphisms flanking a focal region to determine whether that region has experienced a recent 73	

selective sweep (Maynard Smith and Haigh 1974), treats each allele frequency as an independent 74	

observation despite the partially shared evolutionary histories linked alleles experience. Another 75	

drawback of most likelihood-based methods is that they generally compute the likelihood of only 76	

a few features of the data (often only one), and therefore additional information that could 77	

improve accuracy is ignored. For example, SweepFinder examines allele frequencies but ignores 78	

linkage disequilibrium (LD), which is elevated in areas flanking the selected site (Kim and Nielsen 79	

2004). Hidden Markov models (Hobolth et al. 2007; Boitard et al. 2009; Dutheil et al. 2009; Kern 80	

and Haussler 2010), including those based on the sequential Markov coalescent (Li and Durbin 81	

2011; Schiffels and Durbin 2014), have also proved effective at using population genetic 82	

observations along a recombining chromosome to make evolutionary inferences. 83	

More recently, population geneticists have begun to explore an alternative strategy of 84	

using a large set of complementary summary statistics for model selection and parameter 85	

estimation, an approach that often results in more powerful and robust inference (e.g. Lin et al. 86	

2011; Pybus et al. 2015; Gao et al. 2016; Schrider and Kern 2016; Sheehan and Song 2016). Each 87	

summary statistic seeks to measure a particular attribute of the genealogy, and one can thus 88	

design a customized set of summary statistics to more fully represent the genealogical information 89	

present in the sequence alignment. This view deploys summary statistics less for their individual 90	

links to underlying theory, and more for their collective ability to perform pattern recognition. 91	

The challenge then becomes extracting information about the underlying evolutionary processes 92	

from the set of summary statistics. Two exciting approaches for dealing with this challenge that 93	
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have garnered increasing attention in recent years are approximate Bayesian computation (ABC; 94	

reviewed in Beaumont 2010) and supervised machine learning (reviewed in Schrider and Kern 95	

2018). Both of these approaches make use of suites of user-defined summary statistics and 96	

training data generated under known parameters to identify reasonable evolutionary models and 97	

parameterizations that could have generated the observed data. Here we focus on the supervised 98	

machine learning approach, as it sets the scene for the convolutional neural networks described 99	

below.  100	

In the terminology of supervised machine learning, each summary statistic is called a 101	

feature, and the full set of statistics used is called a feature vector. To use supervised machine 102	

learning, a researcher must first obtain training data (often referred to as “labeled” data)—a set of 103	

data points each summarized by a feature vector (the explanatory variables) accompanied by a 104	

known outcome (the response variable). Next, a supervised machine learning algorithm is trained 105	

to predict the outcome given the feature vector using the labeled training data. Thus, the 106	

supervised machine learning technique automates the process of extracting information and 107	

constructing rules from a set of summary statistics. Across many areas of research, supervised 108	

machine learning techniques are fast replacing rules developed by human experts because they 109	

are often more accurate (LeCun et al. 2015).  110	

Supervised machine learning methods are increasingly being applied to numerous 111	

problems in population genetics (Schrider and Kern 2018). In this context, labeled training data 112	

are usually generated via population genetic simulation, an endeavor that has grown 113	

considerably more feasible given recent improvements in simulation flexibility and efficiency (e.g. 114	

Thornton 2014; Kelleher et al. 2016; Haller and Messer 2017; Kelleher et al. 2018). To date, 115	

population genetic applications of machine learning include demographic inference (Pudlo et al. 116	

2016; Sheehan and Song 2016), local ancestry inference (Schrider et al. 2018), inferring 117	

recombination rates (Lin et al. 2013; Gao et al. 2016), and detecting genomic regions experiencing 118	

recent selective sweeps (Pavlidis et al. 2010; Lin et al. 2011; Ronen et al. 2013; Pybus et al. 2015; 119	

Schrider and Kern 2016). While such methods have great promise, they still rely on a user-120	

defined set of summary statistics (ranging in number from dozens to hundreds). Moreover, it is 121	

not known whether it is possible to construct a set of statistics that sufficiently captures all 122	

relevant information in the input data. 123	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/336073doi: bioRxiv preprint 

https://doi.org/10.1101/336073
http://creativecommons.org/licenses/by/4.0/


	 6	

Unlike other machine learning approaches, convolutional neural networks (CNN; LeCun 124	

et al. 1998) are pattern recognition algorithms that do not require a predefined feature vector. 125	

When fed labeled training data (e.g. a set of haplotypes simulated under a known biological 126	

scenario), a CNN discovers meaningful features, in essence making a feature vector, and then 127	

extracts information from these features in order to make inferences. CNNs have proved effective 128	

in a number of fields (reviewed in LeCun et al. 2015), and particularly in the field of image 129	

recognition, where they have achieved dramatic improvements over previous efforts (e.g. 130	

Lawrence et al. 1997; Krizhevsky et al. 2012; Simonyan and Zisserman 2014). The application of 131	

CNNs to population genomic inference is just beginning, and shows great promise (Chan et al. 132	

2018). Population genetic questions may be particularly well suited for CNN-based learning 133	

because they take matrices as inputs, and alignments of sequenced chromosomes are quite 134	

naturally represented in this manner.  135	

The goal of this paper is to assess the effectiveness of CNNs as a general strategy for 136	

population genomic inference. We demonstrate that CNNs can be successfully applied to a 137	

number of population genomic problems, in some cases achieving surprising accuracy. In 138	

particular, we use simulation to show that CNNs can leverage images of aligned sequences to 139	

accurately uncover regions experiencing gene flow between related populations/species, estimate 140	

recombination rates, detect selective sweeps, and make demographic inferences. Indeed, in most 141	

cases we observe performance that matches or exceeds that of current methods. We also use a 142	

CNN to accurately infer recombination rates from read coverage data in a simulated 143	

autotetraploid, demonstrating this approach’s flexibility in handling noisy data while solving a 144	

complex problem for which no theoretical solution exists. In light of these encouraging findings, 145	

we argue that population genetics researchers should consider CNNs as a potential solution to a 146	

variety of problems involving evolutionary inferences from sequence data. Because some readers 147	

may have little background with this tool, we also provide an overview of the inner workings of 148	

CNNs and explore several technical considerations that may impact performance. 149	

 150	

RESULTS 151	

Our goal is to use a CNN to make population genetic inferences from an alignment image, which 152	

can be thought of as matrices where each entry represents the allele present in a given 153	

chromosome at a given site. In particular, we focus on four distinct problems: identifying local 154	
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introgression, estimating the recombination rate, detecting selective sweeps, and inferring 155	

population size changes. We chose these four tasks because each represents a different challenge 156	

in population genetic inference, each with its own attendant branch of theory. To show the 157	

ability of CNNs to solve problems for which no statistical approaches have been proposed, we 158	

extended our recombination inference to infer recombination rates in autotetraploids with 159	

tetrasomic inheritance.  160	

Below, we address each of these problems in turn, providing a brief overview of the 161	

phenomenon in question and existing methodology before describing our results using CNNs. 162	

But prior to tackling these problems, we first give an overview of CNNs and discuss strategies for 163	

reorganizing our input data that we found helpful in making CNNs work more efficiently with 164	

population genetic alignments.  165	

 166	

Overview of convolutional neural networks 167	

Internally, a CNN is a type of artificial neural network – a collection of connected layers of 168	

combinatorially linked mathematical functions (termed artificial neurons) that take an input and 169	

transform it into an output value (Mitchell 1997). In a typical fully connected artificial neural 170	

network, the input values are fed through a series of layers of artificial neurons (fig. 1A), termed 171	

hidden layers, before reaching the output layer which transforms its inputs into a final prediction. 172	

The output for the jth neuron within one of the hidden layers is given by the following: 173	

𝑓 𝑤!"𝑥! +
!

!

𝑏!  

In the expression above, xi is the neuron’s ith input value (either an input value from the data or 174	

from a neuron in the previous layer’s output), and wij is the weight attached to the connection 175	

between that node (i) and the current node (j) and bj is the current node’s bias term. That is, to 176	

obtain the value of neuron j, we compute the linear combination of the vector containing all 177	

values from the previous layer and the jth neuron’s vector of weights; the results of this summation 178	

are in turn added to neuron j’s bias term and then fed as input to some function f, termed the 179	

activation function and which may be nonlinear. Thus, an artificial neural network is a 180	

mathematical function. 181	

Importantly, by changing the values of the weights and biases, an artificial neural network 182	

can be tuned to detect informative patterns in the input data in order to produce the desired 183	
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184	
output. In the case of image recognition, an image is first represented numerically, typically as a 185	

matrix of pixel intensities, and then transformed by the artificial neural network to produce an 186	

output, for example a prediction of the type of object in the image. CNNs (Fig. 1B–C) differ from 187	
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Fig. 1: Schematics of a standard feedforward neural network and two convolutional neural 

network designs used in this study. A) Diagram of a fully connected feedforward neural network. Gray 

circles represent input (left side), output (right side), or hidden (center) neurons. Blue circles represent 

collections of bias terms. With the exception of the input layer, the value of any given neuron is a linear 

combination of values from the previous layer plus a bias term; this sum is then passed to an activation 

function (not shown). Each edge represents a distinct weighted input or bias term. Outputs may represent 

class membership posterior probabilities or estimates of continuous variables. B) A diagram of a 2D CNN 

similar to that used in this study to infer demographic parameters. The input is an alignment represented 

as an image which is passed through a first convolutional layer in order to create a set of feature maps. 

These feature maps are then downsized via a pooling step which replaces the values of a 1 or 2D matrix 

within a feature map with a single value summarizing it (e.g. the mean or maximum value of that matrix). 

For example, a 2D pooling operation of size 2 will reduce the size of a feature map by a factor of 4, as 

each adjacent 2×2 matrix within the input feature map is replaced by a single value (e.g. the maximum of 

those four values). These downsized feature maps are then passed through a second convolutional filter 

and pooling step, and the resulting output is flattened into a one dimensional vector and passed as input 

into a fully connected feedfoward layer (bias terms not shown). Also passed into this layer is output from 

a second branch of this network: the vector of positions of segregating sites in the alignment which have 

been passed through their own fully connected layer. Finally, the last fully connected neural network layer 

yields the predicted output values. C) Similar to panel B, but showing a 1D CNN with three convolutional 

layers (each followed by a pooling step), as used for our recombination rate estimator. 
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standard artificial neural networks in that they begin with one or more convolutional layers, in 188	

which a series of smaller weight matrices referred to as “filters” slide across the input image—189	

mimicking the manner in which animal cortical neurons each focus on input only from a small 190	

receptive field—and perform a matrix convolution at each step until a series of filtered image 191	

matrices are produced (LeCun et al. 1998). These filters are constructed during training (see 192	

below). Each convolutional layer is often followed by a pooling layer (see Fig 1B and caption) 193	

which reduces the size of these filtered image matrices while maintaining potentially important 194	

discriminatory information obtained by the convolutional filters. Finally, these matrices are 195	

flattened into one-dimensional vectors and then fed into a fully connected (or “dense”) artificial 196	

neural network (for an accessible overview see LeCun et al. 2015). Thus, salient features derived 197	

from the image matrix by the convolutional and pooling layers are passed into one or more 198	

layers of a fully connected neural network whose output layer then yields our predicted response 199	

value.  200	

 CNNs allow for two types of convolutional layers: 1-dimensional and 2-dimensional, 201	

which differ only with respect to the possible shapes that the convolutional filter can take (Fig. 202	

1B–C). 1-dimensional (1D) convolutions are often used in the application to time-series data (e.g. 203	

Dieleman and Schrauwen 2014; Kim 2014), and are thus applicable to sequence alignment 204	

matrices. Despite its name, a 1D filter is not a vector but rather a rectangular matrix that spans a 205	

user-defined number of entries (called the “kernel size”) in one dimension in the input data (in 206	

our case this dimension is that of the polymorphic sites in the alignment), and stretches entirely 207	

across the other dimension (in our case across all chromosomes in the sample). A 2-dimensional 208	

(2D) convolutional filter, which is more often used with image data, allows the user to specify 209	

both dimensions of the filter matrix (often using a square matrix). Whether 1- or 2-dimensional, 210	

the benefit of incorporating convolutions is that it allows the CNN to take advantage of structural 211	

information in the input data. For example, from an image of a face, a CNN can learn to detect 212	

the repeated pattern of the eye shape and the location of both eyes relative to one another and to 213	

other features. When there is meaningful structural information such as this, CNNs tend to 214	

outperform non-convolutional neural networks.  215	

Here our input data is an alignment of linked segregating sites with partially shared 216	

evolutionary histories. Our hope is that a CNN can discover structural information in these data 217	

in order to make evolutionary inferences—for example, locating the valley in diversity at the 218	
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center of a sweep (Maynard Smith and Haigh 1974), the “shoulders” on the flanks of a sweep 219	

where linkage disequilibrium and allele frequencies are both elevated (Schrider et al. 2015), or 220	

even the spatial relationship between these patterns. We also note that neural networks such as 221	

CNNs can have multiple “branches” each with separate architectures and input types—in some 222	

of the cases discussed in this paper we incorporate an additional network branch whose input is 223	

the vector of the positions of the segregating sites (Fig. 1B–C).  224	

Like all supervised machine learning methods, a CNN must be trained on labeled 225	

training data before it can make predictions on unlabeled data (i.e. data whose response variables 226	

are unknown). Training is accomplished by tuning the weights and biases that control the 227	

behavior of its artificial neurons so that together they maximize the accuracy of the outputs on 228	

the training data. Note that the weights determined during the training process include the values 229	

of the convolutional filter matrices, and thus different filters will be algorithmically created for 230	

each task we address in this paper. This tuning occurs over a number of iterations using the 231	

backpropagation algorithm (Rumelhart et al. 1986), which in modern implementations feeds a 232	

small number of training examples (a “mini-batch”) through the network and then estimates the 233	

error gradient on the output vectors produced for these examples. The error gradient is then 234	

propagated in reverse through the network—a given hidden neuron’s contribution to the error is 235	

proportional to the linear combination of its weight vector and the errors associated with each 236	

neuron in the next layer. The weights are then updated using one of the many flavors of 237	

stochastic gradient descent (e.g. Kingma and Ba 2014). This process repeats until each training 238	

example has been fed through the network, marking the completion of a single training iteration. 239	

Training continues for a number of these iterations (often called epochs) until a specified stopping 240	

criterion is reached (e.g. a predefined number of iterations has been performed, accuracy on the 241	

validation set has not improved relative to the previous iteration, etc.). 242	

In the context of population genetics, the CNN’s input could be a matrix of allelic states 243	

at each polymorphic site (Fig. 2). For example, an alignment of haploid individuals M, where 244	

Mij=0 if the ith individual has the ancestral allele at the jth segregating site in the alignment, and 1 245	

if this individual has the derived allele (an input format that can easily be altered to allow for 246	

multiallelic polymorphisms); we adopt this approach and variants of it below. The output can be 247	

a categorical indicator (e.g. whether or not the genomic window experienced a recent selective 248	

sweep) in which the problem is referred to as a classification task in machine learning 249	
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terminology, a quantitative value (e.g. the population recombination rate) in which case the task 250	

is referred to as regression, or a vector containing both categorical and quantitative values. Once 251	

the CNN has been trained to produce the desired output, it can be applied to unlabeled data (e.g. 252	

sequence from natural populations). 253	

 254	

 255	
Because supervised machine learning relies on predictive functions tuned algorithmically 256	

from training data, CNNs can be applied to any problem for which a training set can be 257	

obtained, and therefore our inference is not limited to problems for which appropriate likelihood 258	

models or statistics have been derived and implemented. In a population genetics context, 259	

coalescent simulations provide a versatile and computationally efficient (Hudson 2002; Teshima 260	

and Innan 2009; Ewing and Hermisson 2010; Kelleher et al. 2016; Kern and Schrider 2016) 261	

means to generate training data. In this paper we relied exclusively on coalescent simulations to 262	

produce training data for the CNN. However, compute-intensive forward population simulations 263	

may offer greater flexibility than coalescent simulations in some situations, and recent advances 264	

are making them more computationally feasible (Kelleher et al. 2018).  265	

 266	

Using a CNN to make inferences from an alignment: a simple test case 267	

We evaluated the performance impact of transposing the alignment matrix (so that columns 268	

rather than rows correspond to chromosomes) and sorting the chromosomes in the alignment 269	

matrix by genetic similarity. We did this using a 1D CNN trained to estimate the population-270	

C
hr

om
os

om
es 0

10

20
0                    20                  400                    20                  40 0                    20                  40

Segregating Sites

Fig. 2: Example population genetic alignments visualized as black-and-white images. An unsorted 

alignment matrix (left) and this same matrix sorted by genetic similarity among chromosomes (right) are 

shown. Each row represents one of twenty chromosomes in the sample and each column represents one 

of forty segregating sites. Derived and ancestral states are encoded as black and white, respectively.	
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scaled mutation rate, θ, in an equilibrium population. We found that both of these techniques 271	

accelerate the decline in root-mean-square error (RMSE; Fig. 3), showing that they help the 272	

network achieve better performance. Transposing the alignment matrix so that chromosomes are 273	

represented by rows and polymorphisms by columns has a particularly notable effect (compare 274	

blue and black lines in Fig. 3). Additionally, sorting the chromosomes by genetic similarity further 275	

increases the accuracy of the CNN when combined with the matrix transposition above 276	

(magenta line); alternatively, using a permutation-invariant network architecture would obviate 277	

any need for this step (Chan et al. 2018). The effect of transposition should disappear when using 278	

2D convolutions because in those cases we always used a square convolutional filter matrix 279	

(Methods), but we found that 1D CNNs often performed as well as 2D CNNs (data not shown). 280	

Thus, unless otherwise specified we use 1D convolutions for the tasks discussed below. 281	

 282	

283	
CNN’s can accurately detect introgressed loci 284	

R
M

S
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n 
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a

Training iteration

Fig. 3: The impact of input data reorganization on accuracy. We show the root mean squared error 

(RMSE) of a 1D CNN’s predictions of θ as assessed on 1,000 test alignments after a given number of 

training iterations. Each line is the average of 10 runs. The blue line shows accuracy after training using 

alignment matrices with each row representing one chromosome. The black line shows accuracy after 

transposing all matrices so that chromosomes correspond to columns; this makes 1D convolutional filters 

examine each individual at a group of adjacent segregating sites. The magenta line shows the impact of 

transposing matrices, and sorting the chromosomes in the alignment matrix by genetic similarity. 
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Recent studies indicate that closely related species often exchange genes (Kulathinal et al. 2009; 285	

Martin et al. 2013; Brandvain et al. 2014; Fontaine et al. 2015). There are several motivations for 286	

locating genomic segments introgressed from one species into another. For one, the occurrence 287	

of cross-species gene flow raises the possibility of adaptive introgression, wherein a beneficial 288	

allele enters a population via migration from a related species (reviewed in Hedrick 2013). 289	

Discovering introgressed loci can therefore identify alleles underlying rapid ecological adaptation 290	

as well as the source of these alleles. In addition, uncovering genomic regions that are and are not 291	

porous to cross species gene flow may help to illuminate the genomic basis of reproductive 292	

isolation (Turner et al. 2005).  293	

 294	
Researchers have thus sought to devise methods capable of detecting introgressed regions 295	

from multispecies population genomic data sets. These include methods that attempt to infer the 296	

ancestry for each individual at each site (e.g. Price et al. 2009; Lawson et al. 2012; Sohn et al. 2012) 297	

and those that explicitly seek to discriminate between introgressed and non-introgressed loci 298	

A B

Fig. 4: Performance of classifiers for detecting introgression. We use confusion matrices to show the 

performance of a CNN trained to detect genomic regions of introgression between two closely related 

species (panel A), and a competing method that uses a vector of summary statistics to the same end 

(FILET; panel B). These classifiers were both trained and tested on the same data sets which were 

simulated under a joint demographic history inferred from a sample of Drosophila simulans and D. 

sechellia individuals (as described in the Methods) with and without introgression. The classifiers seek to 

discriminate among three classes: no introgression in the genomic window being examined, introgression 

from D. sechellia to D. simulans, and introgression from D. simulans into D. sechellia. Each entry in the 

matrix shows the fraction of test examples belonging to the class specified on the y-axis that were 

inferred by the method to belong to the class specified on the x-axis. Correct classifications are those 

found along the diagonals, while all off-diagonal entries represent incorrect classifications. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/336073doi: bioRxiv preprint 

https://doi.org/10.1101/336073
http://creativecommons.org/licenses/by/4.0/


	 14	

(Sankararaman et al. 2014; Geneva et al. 2015; Rosenzweig et al. 2016; Schrider et al. 2018). We 299	

trained a CNN to identify introgression in a scenario modeled after the demographic history of 300	

the Drosophila simulans-D. sechellia species pair (Methods), for which there is evidence for recent 301	

gene flow (Garrigan et al. 2012).  302	

Fig. 4A displays the results of these tests in the form of confusion matrices, which show 303	

the fraction of test examples correctly predicted for each class (diagonal values) as well as the 304	

fractions incorrectly assigned (off-diagonal values). To compare the performance of our CNN to 305	

competing approaches, Fig. 4B displays the confusion matrix for FILET, a method previously 306	

shown to outperform several methods, including two statistics for detecting introgression (Joly et 307	

al. 2009; Geneva et al. 2015), and a tool that infers local ancestry tracks for each individual 308	

(Lawson et al. 2012). Overall, this CNN classified 88.5% of test simulations correctly (95% 309	

confidence interval: 87.7–89.2%). The most difficult scenario for the CNN was introgression 310	

from D. simulans into D. sechellia, which it misclassified as “no introgression” 23% of the time. For 311	

the other two classes the CNN accuracy was >95%. Importantly, for every class this CNN 312	

achieved greater accuracy than FILET (overall accuracy of 82.5%; 95% confidence interval: 313	

81.7%–83.4%), a machine learning approach that leverages a vector of 31 summary statistics 314	

(Schrider et al. 2018). Thus, it is a useful measuring stick for assessing the CNN’s accuracy, and 315	

the CNN’s success in this comparison is encouraging. 316	

 317	

Estimating historical recombination rates 318	

Recombination creates new combinations of alleles, and the degree of linkage between selected 319	

sites affects the efficiency with which natural selection can act on each individual site (Hill and 320	

Robertson 1966). The interplay of selection and recombination also influences the landscape of 321	

diversity across the genome (Begun and Aquadro 1992). Knowledge of recombination rates is 322	

thus key to population genetics research. As a more practical alternative to estimating rates 323	

directly (e.g. from pedigrees; Kong et al. 2010), one can infer recombination rates from 324	

population genetic data by examining associations among alleles at different sites. A number of 325	

methods have been proposed to solve this problem, including summary statistic estimation 326	

approaches (e.g. Hudson and Kaplan 1985; Hudson 1987; Hey and Wakeley 1997), composite 327	

likelihood-based methods (e.g. Hudson 2001; McVean et al. 2004; Chan et al. 2012), and machine 328	

learning tools using a vector of statistics (Lin et al. 2013; Gao et al. 2016). We sought to determine 329	
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330	
whether a CNN taking an alignment image as input could be trained to tackle this task. To 331	

address this problem, we first trained a CNN to estimate the historical population recombination 332	

rate ρ=4Nr (where r is the crossover rate per base pair per meiosis) from phased chromosomes. 333	

This is the simplest scenario, as the arrangement of alleles on chromosomes is completely 334	

resolved. Following training, we compared the CNN’s performance to that of LDhat (McVean 335	

et al. 2004), a widely used composite likelihood method, on the same testing data (Fig. 5). We 336	

generated a test set of alignments whose values of ρ spanned three orders of magnitude, from 337	

Fig. 5: Accuracy of recombination rate estimates from LDhat and our CNN. Panels A and B show 

the real ρ values per base pair on the x-axes and LDhat’s (A) and the CNN’s (B) predictions on the y-

axes. Panel C again shows the real ρ values on the x-axis, and the probability that the CNN was more 

accurate than LDhat (black line) on the y-axis. This probability was calculated by scoring estimates where 

the CNN outperformed LDhat as one and the reciprocal as zero, and then smoothing these values with a 

lowess curve with a span of 15%. The red line represents the expectation if both methods had identical 

accuracy. Panel D shows the results from the simulated autotraploid model, with the real ρ values on the 

x-axes and the CNN prediction on the y-axes. 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/336073doi: bioRxiv preprint 

https://doi.org/10.1101/336073
http://creativecommons.org/licenses/by/4.0/


	 16	

0.0002 to 0.2 (expressed per bp). Overall, both approaches performed well at predicting the true 338	

value of ρ. LDhat had an R2 = 0.77 and an RMSE = 0.016, whereas the CNN had a R2 = 0.86 339	

and an RMSE = 0.011 (Fig. 5A,B). LDhat appears to estimate ρ slightly better than the CNN 340	

for lower recombination rates, whereas the CNN performs better at the higher values of ρ (Fig. 341	

5C). Additionally, the CNN appears to provide a roughly unbiased estimator of ρ, while LDhat’s 342	

estimates appear downwardly biased.  343	

 Because the CNN was capable of estimating ρ independent of θ, we were interested to see 344	

how well it could interpolate between the θ values it was trained with. The CNN was trained with 345	

a large gap between N = 20,000 and N = 50,000 (and thus a large gap in θ; see Methods), so we 346	

used coalescent simulations to generate an additional test set with N values drawn uniformly 347	

among 30,000, 35,000, 40,000, and 45,000. When tested on these data the CNN’s predictions 348	

had an R2 = 0.82 and an RMSE = 0.017. This represents a slight decrease in accuracy from the 349	

values obtained when tested on the same N values used in training, but nonetheless shows that 350	

the CNN can interpolate between training parameters without a dramatic loss in accuracy. This 351	

could be a useful property, for example in cases where N (or θ) is unknown, but where one can 352	

generate coalescent simulations across a range of plausible values. 353	

Further complications arise when estimating ρ from unphased data. Under this scenario 354	

the arrangement of alleles on chromosomes is not known. One work-around is to first phase the 355	

alleles and then infer ρ as above, but not all data sources are easily phased, and phasing errors 356	

will, of course, reduce accuracy. Another approach is to analyze the unphased data directly. The 357	

relevant theory required to tackle this problem in a probabilistic manner has been worked out for 358	

unphased diploids (Auton and McVean 2007), but expanding this theory to higher ploidies would 359	

require a substantial effort. Take for example an autotetraploid with tetrasomic inheritance, 360	

where there are five possible genotypes (AAAA, AAAa, AAaa, Aaaa, and aaaa). To further 361	

complicate things, after sequencing an autotetraploid genome to a moderate depth of coverage 362	

and identifying polymorphisms, the true underlying genotype may be uncertain. For example, 363	

given a site with 10 reads supporting A and 10 supporting a, the true genotype could be AAAa, 364	

AAaa, or Aaaa. To show the utility of CNNs in addressing novel population genomic inference 365	

problems, we designed a CNN capable of inferring ρ from a simulated set of sequence reads from 366	

an unphased autotetraploid population sample.  367	
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We used a simple simulation scheme to produce read counts for each allele at each site 368	

for each individual in a sample of 12 autotetraploids, each with approximately 25X expected 369	

genome-wide coverage (see Methods). Rather than allelic assignments, the input matrix for this 370	

CNN contains for every site in each individual the fraction of reads bearing the a allele. Deriving 371	

a likelihood function for ρ under this formulation may be challenging, and such a solution has not 372	

yet been attempted. However, appropriately designed artificial neural networks are universal 373	

approximators, meaning that they have the potential to approximate any continuous function 374	

over a compact input space (Hornik 1991). Thus it is possible for a CNN to approximate the 375	

desired likelihood function, even in its absence. To this end we trained a CNN with a similar 376	

architecture to the one used above on phased haploid chromosomes (see Methods). We evaluated 377	

the performance of this CNN on a set of simulations where ρ again ranged from 0.0002 to 0.2 378	

(still scaling by 4N, rather than 8N which would be appropriate for tetraploids, so the result can 379	

be compared to those above). The CNN’s predictions had an R2 = 0.83 and an RMSE = 0.012 380	

(Fig. 5D). As before, the estimate of ρ was made independent of θ, which varied over an order of 381	

magnitude. The fact that this autotetraploid network performed only slightly worse than the 382	

haploid version demonstrates that a CNN can solve problems for which no model-based 383	

likelihood (or even composite likelihood) approach has been obtained, empowering empiricists 384	

untrained in methods development to address questions specific to their biological system.  385	

 386	

CNNs can accurately detect and categorize signatures of recent positive selection 387	

When a new mutation is immediately favored by positive selection, it rapidly increases in 388	

frequency until it fixes (i.e. completely replaces all other alleles at that site). This phenomenon, 389	

referred to as a hard selective sweep, drastically reduces the amount of linked neutral variation 390	

(Maynard Smith and Haigh 1974), and produces characteristic skews in the allele frequency 391	

spectrum (Fay and Wu 2000) and linkage disequilibrium at linked sites (Kim and Nielsen 2004). 392	

Alternatively, in a process known as a “soft sweep” populations may adapt via selection on a 393	

polymorphism that has been segregating for some time, such that the adaptive allele exists on 394	

numerous haplotypes (Hermisson and Pennings 2005). To uncover the mode of recent 395	

adaptation and the genomic regions underlying recent adaptation, a large number of methods 396	

have been devised to detect and characterize selective sweeps. These include summary statistics 397	

(Kelly 1997; Fay and Wu 2000; Kim and Nielsen 2004; Voight et al. 2006; Garud et al. 2015), 398	
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composite likelihood-based approaches (Kim and Stephan 2002; Kim and Nielsen 2004; Nielsen 399	

et al. 2005; Vy and Kim 2015), and supervised machine learning approaches using a vector of 400	

statistics to obtain greater power than individual tests/statistics (Lin et al. 2011; Pybus et al. 2015; 401	

Schrider and Kern 2016; Sheehan and Song 2016; Sugden et al. 2018). Although these efforts 402	

have led to considerable progress, detecting and distinguishing between hard and soft sweeps 403	

remains a major challenge. 404	

We built a CNN to detect selective sweeps and to discriminate between hard sweeps and 405	

soft sweeps. This CNN follows the S/HIC method of Schrider and Kern (2016) by casting the 406	

problem as a classification task where the genomic region being examined is assigned to one of 407	

five disjoint classes: a recent classic “hard” sweep, a recent “soft” sweep, a region linked to a 408	

nearby hard sweep, a region linked to a nearby soft sweep, or a neutrally evolving region.  409	

 410	
Like FILET for the problem of detecting introgression, comparing the CNN’s accuracy to 411	

that of S/HIC is informative because S/HIC was previously shown under a variety of simulated 412	

scenarios to have greater power than a number of competing methods (Schrider and Kern 2016). 413	

Rather than adopting S/HIC’s approach of using a large vector of statistics, the CNN takes an 414	

alignment image as input. We tested both methods against data simulated under a challenging 415	

demographic history estimated from human population data (Methods). As evidenced by the 416	

A B

Fig. 6: Confusion matrices showing accuracies of two methods that seek to detect recent positive 
selection by discriminating among hard sweeps, soft sweeps, unselected regions closely linked to 

hard and soft sweeps, and neutrally evolving regions. (A) Confusion matrix summarizing the 

performance of our CNN, which uses an alignment image as input. (B) Performance of S/HIC, which uses 

a vector of summary statistics each measured in windows surrounding the region to be classified. These 

two classifiers were both trained and tested on the same data sets described in the Methods. 
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confusion matrices in Fig. 6, the CNN has slightly higher overall accuracy than S/HIC (60.6% 417	

with 95% confidence interval: 58.8–62.3% for the CNN; versus 58.5% with 95% confidence 418	

interval: 56.7%–60.2% for S/HIC). While S/HIC appears to be somewhat more sensitive to 419	

sweeps, the CNN is achieves a more than 3-fold reduction in false positive rate: 2% of neutral 420	

simulations are classified as sweeps by the CNN, versus 6.35% for S/HIC; all of these false 421	

positives are classified as soft sweeps. This quality may be particularly desirable when scanning 422	

genomes where sweeps are relatively rare and thus a high degree of specificity is required to 423	

maintain a low false discovery rate, although the proclivity of either classifier to produce false 424	

positives versus false negatives can be adjusted by imposing a posterior probability cutoff. Note 425	

that these classifiers were both trained under the same demographic history from which the test 426	

data were generated. We would not expect this CNN to match S/HIC’s robustness to 427	

demographic misspecification given that S/HIC’s feature vector was designed with this in mind, 428	

though we did not test this. Nonetheless, the fact that the CNN has similar accuracy to S/HIC 429	

under this difficult test scenario is highly encouraging.  430	

 431	

CNNs can extract demographic information from alignments 432	

A major focus of population genetics research is to use genomic data to elucidate species’ 433	

demographic histories—the extent and timing of population size changes, and the history of 434	

population splits and migration events. For example, a host of population genetic approaches 435	

have been devised to infer the times and intensities of population contractions and expansions 436	

over the course of a species’ recent history (e.g. Marth et al. 2004; Schiffels and Durbin 2014; Liu 437	

and Fu 2015), and to elucidate the history of population splits and subsequent gene flow (Nielsen 438	

and Wakeley 2001; Hey 2009), and population merging events (e.g. Lipson et al. 2013; Loh et al. 439	

2013). We asked whether CNNs can effectively extract demographic information from alignment 440	

images, focusing on the task of inferring population size histories. In particular, we attempted to 441	

train a CNN to estimate the parameters of a three-epoch model of instantaneous effective 442	

population size changes. There are five such parameters: the ancestral population size (N2), the 443	

time of the more ancient population size change (T2), the population size after this change (N1), 444	

the time of the more recent change (T1), and the present-day population size (N0); our response 445	

variable is the vector of these 5 real-valued parameters. Thus this analysis also allows us to assess 446	

the ability of CNNs to predict multiple population parameters simultaneously. 447	
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 448	

 449	
We simulated 50 haploid chromosomes under a variety of randomly selected population 450	

size histories, and trained a CNN to estimate the demographic model parameters. The simulated 451	

region was roughly equivalent in length to 1.5 Mbp of the human genome (Methods). Because 452	

we found this problem to be comparatively difficult, we experimented with a variety of 453	

hyperparameters governing the neural network structure and input/output format. In 454	

supplementary table S1 we show the optimal RMSE (i.e. the minimum RMSE across training 455	

iterations) for each hyperparameter combination examined. This experiment revealed several 456	

general trends. First, 1D convolutional networks tended to fare slightly better than their 2D 457	

counterparts (median RMSE of 0.52 across all hyperparameter combinations with 1D 458	

convolutional filters, and median RMSE 0.54 for 2D convolutions; p=1.1×10-4; Mann-Whitney 459	

Fig. 7: Accuracy of demographic inference CNN. The scatterplots show the correlation between true 

and predicted demographic parameter values using our best-performing CNN for this task when applied 

to an independent test set. Note that there may be some monotonicity in the relationship between the true 

and predicted values of some of these parameters, which may affect calculations of the Spearman 

correlation coefficients shown above each scatterplot. These estimates should thus be viewed as a rough 

summary of this relationship, while the RMSE values reported in the text better summarize our accuracy. 

The inset on the bottom right shows the demographic model and its five parameters. 
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U test); however several 2D networks performed nearly as well as the best 1D network, achieving 460	

an RMSE of <0.5 while the best score obtained overall was 0.43. Second, smaller convolutional 461	

filters tended to perform slightly better than larger ones—we observed a positive correlation of 462	

kernel size with RMSE across hyperparameter combinations (ρ=0.26; p=6.9×10-4; Mann-463	

Whitney U test). For example, the median validation RMSE was 0.51 for a kernel size of 2 versus 464	

0.56 for a kernel size of 10. Third, log-scaling the demographic parameters to be estimated 465	

increased accuracy (RMSE decreased from 0.55 to 0.52; p=0.020; Mann-Whitney U test). For 466	

this problem sorting chromosomes by relatedness resulted in a small improvement (RMSE 467	

decreased from 0.54 to 0.53; p=0.034). Encoding ancestral and derived alleles as ‘0’ and ‘255’ 468	

(i.e. black and white in a grayscale image), respectively, versus ‘-1’ and ‘1’ had a significant 469	

influence on accuracy, with the former yielding better performance than the latter (RMSE of 470	

0.51 vs. 0.60; p=1.5×10-15). Finally, using dropout resulted in a slight decrease in accuracy 471	

(median RMSE increased from 0.52 to 0.55) though this was not statistically significant 472	

(p=0.092). We note that these trends may change if the amount of training data is increased or 473	

decreased, and may not necessarily hold for other tasks.  474	

In Fig. 7, we show the correlation between the true and inferred values for each of these 5 475	

parameters for the best performing network. For N0 and T0, these correlations are quite high, 476	

implying that our CNN can recover the true values reasonably well. However, for the remaining 477	

parameters, the correlation is lower (though still highly significant), and our CNN produces 478	

downwardly biased estimates when the values of these parameters are larger. Although our 479	

accuracy is far from perfect, we consider these results fairly encouraging because we are only 480	

examining a single moderately sized genomic region, while other modern demographic inference 481	

methods use data from across the genome. For example, ∂a∂i (Gutenkunst et al. 2009) uses allele 482	

frequencies measured at a large number of polymorphisms (e.g. those found in all distal 483	

intergenic regions across the genome; Gazave et al. 2014). PSMC and MSMC (Li and Durbin 484	

2011; Schiffels and Durbin 2014) take data from a single very large recombining region such as 485	

an entire chromosome. In essence, we are currently only able to utilize information about the 486	

coalescent histories of the region in question—and this collection of histories may not match that 487	

of the entire population, which would be more accurately reflected in genome-wide data. In the 488	

Discussion, we address prospects for incorporating genome-scale data in demographic inference. 489	

 490	
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DISCUSSION 491	

Convolutional neural networks are well suited for population genetic problems 492	

Population geneticists have devised a wide array of computational methods to make evolutionary 493	

inferences from genomic data. Typically the goal of these efforts is to aggregate information 494	

across genomic sites in order to make an accurate inference. These methods include likelihood-495	

based approaches (e.g. Kim and Stephan 2002; Nielsen et al. 2005; Gutenkunst et al. 2009; Liu 496	

and Fu 2015), probabilistic graphical models such as hidden Markov models (e.g. Turner et al. 497	

2005; Boitard et al. 2009; Lawson et al. 2012), and those that rely on the use one or more 498	

summary statistics designed to characterize patterns of variation within a genomic region (e.g. 499	

Tajima 1989; Fu and Li 1993; Kelly 1997; Fay and Wu 2000; Kim and Nielsen 2004; Voight et 500	

al. 2006; Ferrer-Admetlla et al. 2014). While these approaches differ substantially from one 501	

another, they all have one thing in common: they make use of population genomic theory to 502	

connect the features of a data set to the underlying evolutionary process. Here we have 503	

demonstrated the potential of an alternative approach: treating population genetic inference as 504	

an image recognition problem where the “image” is the population genetic alignment, which is 505	

directly fed as input to a CNN. In contrast to most mainstream approaches, this CNN approach 506	

makes use of the entirety of the data, rather than using theoretically derived estimators or closed-507	

form likelihood functions to connect a small number of features of the data to an evolutionary 508	

process. 509	

Here we have shown that CNNs perform remarkably well on a number of problems in 510	

population genetics. We developed CNNs with comparable if not greater power to detect 511	

selective sweeps, identify introgressed loci, and infer local recombination rates when compared to 512	

current methods on simulated data sets. The CNNs for detecting sweeps and introgression 513	

demonstrate the ability to use an alignment image to distinguish among multiple evolutionary 514	

models, while the recombination rate estimator demonstrates that continuous parameters can 515	

also be inferred. Finally, although our demographic parameter estimates were fairly imprecise, 516	

they were only based on a short stretch of the genome, and nonetheless demonstrate that CNNs 517	

have the potential to infer multiple parameters from a sequence alignment. While we were in the 518	

process of preparing this manuscript, Chan et al. completed an important study demonstrating 519	

that a CNN can accurately detect recombination hotspots (Chan et al. 2018). Taken together 520	
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these results suggest that CNNs have enormous potential as a general paradigm for population 521	

genetic inference. 522	

The effectiveness and generality of CNNs in population genetic inference should not be 523	

surprising. CNNs offer a number of intrinsic advantages that make them particularly amenable 524	

to population genetic data. First, there have been a number of efforts to move in the direction of 525	

making inferences on the basis of the full complement of data present in an alignment rather 526	

than one or more summary statistics (Li and Stephens 2003; Lawson et al. 2012; Smith et al. 527	

2018). CNNs represent a natural way of examining the entirety of an alignment in order to 528	

increase inferential power. The development of novel CNN architectures to better handle spatial 529	

associations in the data across multiple scales (Yu and Koltun 2015) has the potential to improve 530	

CNN-driven population genetic inference even further. For example, improved ability to detect 531	

both the localized reduction in diversity at a sweep (Maynard Smith and Haigh 1974) as well as 532	

the potentially confounding skews in patterns of diversity produced in its flanking regions 533	

(Schrider et al. 2015) would be beneficial in sweep detection.  534	

Another desirable property of CNNs is that they effectively perform automated feature 535	

detection (LeCun et al. 2015). Because they discover discriminatory information directly from the 536	

image, there is no need to manually construct an optimal set of features. CNNs may thus 537	

outperform methods based on a set of manually curated features as observed here, although this 538	

may not be the case for all tasks (e.g. Bellot et al. 2018). This brings up perhaps the strongest 539	

quality of CNNs in the context of evolutionary inference: because CNNs can make inference in 540	

the absence of statistics or a likelihood function, they can make predictions for phenomena for 541	

which there exists no analytical expectation.  542	

Indeed, CNNs can tackle problems for which no relevant summary statistics have been 543	

devised—vectors of such statistics are required for other likelihood-free methods such as ABC 544	

(Beaumont 2010) or traditional supervised machine learning techniques (Schrider and Kern 545	

2018). On a related note, neural networks are particularly amenable to the incorporation of 546	

disparate data types with no prior knowledge of their relationships. For example, here we have 547	

included both genotype information and positional information for segregating sites as branches 548	

to our networks, allowing both to be used together in prediction despite the fact that our network 549	

isn’t instructed how these two pieces of information relate to one another. All that is required is 550	

appropriate training data. Thus, we may not have to wait for theoretical advances in order to 551	
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draw inferences from data, provided we are concerned with evolutionary models for which 552	

training data can be obtained from simulation—including the wide range of scenarios that could 553	

potentially be investigated via increasingly flexible and efficient forward simulators (Thornton 554	

2014; Haller and Messer 2017; Kelleher et al. 2018). 555	

This point is driven home by the success of our CNN for estimating recombination rates 556	

in autotetraploids from read pileup information alone—despite the input’s lack of genotype calls, 557	

let alone phased haplotypes, these inferences are nearly as accurate as those that we obtained 558	

from haplotype alignments. This result also suggests that CNNs may be well suited for other 559	

inferences where genotype calls are unreliable (e.g. low coverage sequencing data; Korneliussen et 560	

al. 2014) or unobtainable (e.g. pooled population sequencing; Schlötterer et al. 2014). Given 561	

CNNs’ flexibility, future studies should evaluate their potential to tackle not only those problems 562	

examined in this paper, but the myriad additional important challenges in evolutionary genetics 563	

to which they could be readily applied, including but not limited to uncovering adaptive 564	

introgression (Racimo et al. 2016), joint inference of selective and demographic histories (Sheehan 565	

and Song 2016), and even inferring structured outputs such as ancestral recombination graphs 566	

(Rasmussen et al. 2014). 567	

	568	

To what extent are CNNs robust to model misspecification? 569	

Another particularly encouraging result of our recombination rate estimation analysis is that we 570	

were able to infer rates for data generated from a range of parameter values to which the CNN 571	

had not been exposed during training with very little decrease in accuracy. This ability to 572	

interpolate between training values is a particularly desirable property. First, it implies that 573	

CNNs can be used to create flexible inference tools using a modest training data set, and second 574	

that researchers can focus training between reasonable parameter bounds, without knowing the 575	

true (and often unknowable) underlying parameters; future efforts must explore the possibility of 576	

training networks to be robust to more extreme cases of model misspecification. 577	

One illustrative example of the potential pitfalls of model misspecification is the problem 578	

of detecting selective sweeps without accounting for confounding demographic events. For 579	

example, population bottlenecks will skew genealogies in a manner similar to sweeps (Simonsen et 580	

al. 1995), and thus may result in a large fraction of false positives (Jensen et al. 2005; Nielsen et al. 581	

2005). Schrider and Kern (2016) were able to mitigate this problem by designing a feature vector 582	
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that is sensitive to the spatial skews in patterns of variation created by a sweep but insensitive to 583	

genome-wide skews produced by demographic events. Although this strategy is not possible with 584	

CNNs because they perform automated feature extraction, it may be that incorporating training 585	

examples generated under potentially confounding scenarios could alleviate this issue.  586	

Therefore, future work must thoroughly 1) assess how CNNs trained on data simulated 587	

under one range of evolutionary parameters fare when applied to different parameterizations, 588	

and 2) determine whether robustness to such misspecification might be achieved by training a 589	

CNN under a wide range of parameter values that are likely to encapsulate the correct values—590	

the recombination rate estimator’s successful interpolation suggests that this may be a possibility. 591	

Model misspecification is not a concern for tasks where training data may be obtained without 592	

simulation (e.g. detecting selective constraint; Schrider and Kern 2015), though in such cases one 593	

must take care to prevent dependencies between training and test examples because of shared 594	

evolutionary histories due to physical linkage or paralogy/orthology relationships (Washburn et 595	

al. 2018).	596	

 597	

Outstanding practical challenges associated with the application of CNNs to 598	

sequence data 599	

Although the CNN approach outlined above has great potential, there are several outstanding 600	

challenges with applying CNNs to a wider spectrum of problems. One important obstacle is the 601	

large amount of training data required by CNNs, which makes applications requiring alignments 602	

of large regions (e.g. entire chromosomes) more difficult. This challenge includes both the 603	

generation of large labeled training examples, and time- and memory-efficient training with these 604	

large examples given limited computational resources. Fortunately, continued improvements in 605	

simulation speed (Kelleher et al. 2016; Kelleher et al. 2018) and the efficiency of CNN training 606	

(Chilimbi et al. 2014; Yu and Koltun 2015; Jouppi et al. 2017; Köster et al. 2017) is mitigating this 607	

problem. Such advances would be a boon for efforts to infer demographic parameters, which 608	

require simultaneously examining data sampled from across the genome or along an entire 609	

chromosome, unlike scans to infer locus-by-locus histories of 610	

selection/recombination/introgression. Advances in handling large or high-resolution images 611	

may also prove fruitful. For example, CNN-based strategies that simultaneously examine a 612	

number of smaller “patches”, each covering a portion of the image rather than the entirety of the 613	
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image (e.g. Lu et al. 2015), may aid efforts to extract demographic information from genome-614	

scale data.  615	

Another challenge with the application of CNNs is that their performance can be 616	

sensitive to network architecture (Szegedy et al. 2015). There is no underlying theory for selecting 617	

optimal network architecture, though improved architectures are sure to continue to arise, and 618	

automated methods exist for optimizing the many hyperparameters of a given architecture (e.g. 619	

Snoek et al. 2012). Though we uncover some promising CNN architectures for population 620	

genetic inference, we suspect that substantial improvements can still be made. 621	

We have also demonstrated that CNNs are sensitive to the input format of the population 622	

genetic alignment, and our work has yielded several insights along this front. First, we found that 623	

the ordering of haplotypes within the alignment can impact accuracy, and our results suggest that 624	

it is often beneficial to reorder haplotypes so that more similar chromosomes appear next to one 625	

another. This may be a suboptimal solution, and more creative approaches may be required to 626	

provide a more general strategy. To this end, research into permutation-invariant neural 627	

networks (Zaheer et al. 2017) may prove promising when dealing with sequence alignments. This 628	

is evidenced by Chan et al.’s recent findings that a permutation-invariant architecture improves 629	

both training speed and final accuracy of their CNN for detecting recombination rate hotspots 630	

(Chan et al. 2018). Chan et al.’s network avoids any convolution or pooling operations that 631	

combine information across individuals until an operation that collapses each column of the 632	

(filtered) alignment matrix down to a single value in an order-invariant manner (e.g. site-wise 633	

maximum). This design choice means that permuting the order of individuals within the 634	

alignment will have no impact on their network’s output. We also observed that 1D convolutions 635	

in the proper orientation perform as well as the more widely used 2D convolutions in many 636	

cases. Also, scaling response variables for regression problems (both log-scaling and 637	

standardization) may also affect accuracy. We therefore recommend that users experiment with 638	

these different ways of representing their data, as well as different CNN architectures, in order to 639	

find the design that works best for the task at hand. 640	

Another important consideration of CNNs is that once trained, they are specialized to a 641	

particular problem as defined by the training set. That is, a CNN trained to infer recombination 642	

rates under a European demographic history may have reduced accuracy when applied to an 643	

African sample. Training under a variety of demographic scenarios may make a CNN more 644	
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robust to this problem, but a question for further study is whether this can be accomplished 645	

without a loss in power relative to a more specialized CNN. Even a change as subtle as adding 646	

another chromosome to a dataset will make one of our previously trained CNNs inapplicable, as 647	

the input matrix would no longer be the proper size and either a new CNN must be trained or 648	

the data subsampled. Importantly, Chan et al. (2018) describe an architecture that can allow for 649	

variation in the number individuals in the input matrix. In spite of these limitations, recent 650	

advances have greatly simplified training CNNs, and it will often be practical—or even 651	

preferable—for a researcher to create a CNN tailored to their specific data set.  652	

 653	

Are CNNs a black box? 654	

Artificial neural networks are algorithms that seek to maximize their predictive accuracy by 655	

optimizing their internal mathematical operations on training data and CNNs are an extremely 656	

flexible subclass of these methods because they can act directly on the input data matrix (in our 657	

case a sequence alignment). However, one consequence of this is that CNNs are in some ways a 658	

“black box”. For example, a CNN cannot “explain” why it made a particular prediction given its 659	

input. Supervised machine learning algorithms in general have perhaps been unfairly maligned 660	

with this “black box” label. These methods can in principle reveal much about underlying 661	

processes by determining which features are most informative under certain scenarios (i.e. feature 662	

ranking; see Breiman 2001). For example, the observation that certain features are highly 663	

informative for recent but not ancient introgression (Schrider et al. 2018) suggests some key 664	

differences between the genealogies produced under these two scenarios. Due to their complex 665	

inner workings, less progress has been made in breaking through the CNN “black box” as 666	

compared to more traditional supervised machine learning techniques. However, some successful 667	

explanatory tools are available for CNNs (Ribeiro et al. 2016), and there is ongoing research in 668	

this area. Moreover, because the CNN framework we adopt here works on images, it may be 669	

possible to translate future breakthroughs in CNN interpretation from other fields (e.g. image 670	

recognition) into population genetic inference. Thus a more optimistic view is that as CNNs and 671	

related methods become more interpretable, these likelihood-free image recognition approaches 672	

may help to reveal theoretical insights into evolutionary processes. 673	

In the near-term, CNNs may remain useful only as a predictive tool, and we will continue 674	

to rely on theoretical advances to improve our understanding of population genetic processes. In 675	
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spite of the shortcomings noted above, the highly encouraging results that we have laid out here 676	

suggest that CNNs are able to discover information about the underlying genealogies from 677	

alignment images and to use this information to more accurately elucidate the evolutionary 678	

phenomena that have shaped these genealogies. CNNs have enormous potential for population 679	

genomic inference. We believe that progress on a host of problems could accelerate appreciably 680	

were this technology to be embraced by the field. Indeed, when it comes to the business-end of 681	

population genetics—drawing accurate evolutionary inferences from data—we predict that 682	

increasingly, likelihood-free approaches such as the ones we have describe here will prove most 683	

effective at solving existing problems, and expand the universe of problems that researchers can 684	

investigate. 685	

 686	

MATERIALS AND METHODS 687	

 688	

Computational environment for training CNNs  689	

All CNNs used in this study were developed using two open source Python packages: Keras 690	

(version 2.0.6; https://keras.io/) to define neural network architecture and orchestrate training 691	

and testing, and TensorFlow (version 1.1.0; https://www.tensorflow.org/) as the backend (i.e. 692	

TensorFlow performs the computation during training/testing). CNN training is computationally 693	

intensive, but cloud-based GPU resources have made it affordable. As an example, our network 694	

for detecting selective sweeps was trained on a cloud-based system with one Nvidia K80 GPU. It 695	

took 6.6 hrs to train, and at $0.90 US dollars per hour the total cost was under $7. All code used 696	

for training is available online (https://github.com/flag0010/pop_gen_cnn). 697	

 698	

CNN validation strategy 699	

For each task, we divided our simulated inputs into three sets: a training set, a validation set, and 700	

a test set. The training set was used to optimize the weights and biases of the CNN. The 701	

validation set was used during training to determine how well the CNN generalizes to unseen 702	

data, and adjustments were made to the CNN to improve its performance on the validation data. 703	

We also used the validation set to terminate training once accuracy on this set appeared to 704	

plateau—this process took different numbers of iterations for different tasks. Finally, the test set 705	

was used to obtain a performance assessment of the final trained network. Importantly, this test 706	
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set was previously unseen by the CNN and therefore yields an unbiased evaluation of its 707	

accuracy. We used binom.test in R to estimate 95% confidence intervals for classification 708	

accuracies. 709	

 710	

Evaluating techniques for rescaling and reordering inputs to improve CNN 711	

accuracy 712	

To evaluate the impact of alternative data preparation techniques, we developed a simple CNN 713	

that estimates the locus-wide population mutation rate θ=4NμL where μ is the mutation rate per 714	

base pair per generation and L is the physical length of the locus being examined. This CNN is 715	

trained using alignment images with forty chromosomes and θ drawn uniformly between 10 and 716	

50 as simulated for a panmictic, constant sized population by ms (Hudson 2002). We trained this 717	

CNN to minimize the root mean squared error (RMSE) between its prediction and the true value 718	

of θ using 4,000 training matrices. Then its accuracy was scored on 1,000 test matrices that the 719	

CNN was never trained on. These values were compared under different data preparation 720	

approaches described below.  721	

First, the matrices output by most coalescent simulation software, including ms, encode 722	

ancestral and derived alleles for bialleleic sites as 0 and 1, respectively, and present the matrix 723	

with phased haploid chromosomes as rows and sites as columns. When doing 1D convolutions, 724	

we sought to use row-wise convolutional filters (Fig. 1C), i.e. those that examine each 725	

chromosome in our sample across a small number of contiguous segregating sites (specified by 726	

the “kernel_size” parameter in Keras) before sliding the filter forward one site (our stride length, 727	

“strides” in Keras, was always set to 1). At present Keras does not allow for row-wise 1D 728	

convolutions, so we accomplished this by transposing the alignment matrix and performing 729	

column-wise convolutions.  730	

We also assessed the impact on accuracy of sorting the chromosomes in the alignment by 731	

genetic similarity. For example, the matrices in Fig. 2 contain identical information, but 732	

chromosomes in the matrix on the left are randomized, while on the right they are sorted by 733	

genetic similarity. We offer a fast algorithm for sorting matrices by genetic similarity 734	

(https://github.com/flag0010/pop_gen_cnn/blob/master/sort.min.diff.py).  735	

 736	

Introgression detection 737	
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To detect introgression, we simulated phased haploid training and test examples with msmove 738	

(https://github.com/geneva/msmove) from the same demographic model that Schrider et al. 739	

(2018) used to train the FILET classifier for detecting introgression between Drosophila simulans 740	

and D. sechellia. In total we produced 237,500 coalescent simulations from 3 classes: 112,500 741	

without no migration between species (No Introgression), 112,500 with gene flow from D. 742	

simulans into D. sechellia (sim→sech), and 12,500 with gene flow from D. sechellia into D. simulans 743	

(sech→sim). We used fewer sech→sim examples because test runs on smaller training sets suggested 744	

that the network could detect this class fairly accurately, which allowed us to increase the 745	

sampling of the other two more challenging classes by simulating more examples from them. To 746	

our knowledge this approach of intentionally inflating the number and proportion of training 747	

examples from the more challenging classes is unusual, as typically a balanced training set is 748	

preferred. However we found that including additional examples from classes into our data set 749	

substantially improved our ability to correctly them. The simulations were randomly assigned to 750	

training and validation sets so that the training set included 107,500 examples each from the No 751	

Introgression and sim→sech classes, and 7,500 examples from the sech→sim class. Both the 752	

validation set and the test set contained 2,500 of each class (i.e. 7,500 total). Importantly, because 753	

our test and validation sets were evenly balanced, they provided unbiased estimates of our 754	

accuracy. 755	

As in the Drosophila data set to which Schrider et al. applied FILET, each of our 756	

coalescent simulations generated 34 chromosomes (14 D. sechellia and 20 D. simulans). Each 757	

column in the alignment corresponded to a biallelic polymorphism, which was encoded as “0” 758	

(ancestral allele) or “1” (derived allele) for each chromosome. In practice, the ancestral and 759	

derived states may not be known with 100% certainty, and one may instead use major/minor 760	

alleles, or randomly mispolarize a fraction of sites in the training data if one has an estimate of 761	

the fraction of mispolarized sites in the true data. The effects of these design choices on 762	

performance may then be evaluated on test data. Each matrix was organized so that individual 763	

chromosomes were grouped by species. Each coalescent simulation produced a different number 764	

of segregating sites (with the largest containing 1201 polymorphisms). Because the CNN’s input 765	

matrices must all have the same dimensions, we padded the right side of all matrices with fewer 766	

than 1201 polymorphisms with columns containing only “0” until the total number of columns 767	

reached 1201. Finally we transposed this matrix resulting in a 1201×34 matrix for each 768	
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coalescent simulation. In practice, one will have to set the image width to the largest number of 769	

SNPs encountered across all training, test/validation, or real data examples included in the 770	

analysis. Alternatively, one may select a fixed number of segregating sites to include in the 771	

analysis, in which case each example may correspond to a different physical size (creating 772	

additional variance in total recombination rates). Thus, when using this alternative approach, 773	

one should adjust the lengths of simulated examples accordingly. 774	

 We trained a CNN architecture with three 1D-convolutional layers (kernel size = 2), each 775	

followed by average-pooling, and finally two densely connected layers (i.e. the same network 776	

architecture as the main network branch illustrated in Fig. 1C, but with one additional dense 777	

layer). These layers contained 256, 128, 128, 128, and 128 neurons, respectively. To avoid 778	

overfitting during training, each layer used dropout regularization (randomly removing 25% of 779	

neurons between convolutional layers during each training iteration, and 50% between densely 780	

connected layers) and rectified linear unit activation functions (i.e. ReLUs; Hahnloser et al. 2000; 781	

Nair and Hinton 2010). Dropout regularization encourages the CNN to learn redundant 782	

representations of the data, thereby reducing the network’s dependence on individual weights 783	

(Srivastava et al. 2014). The last layer was a sigmoid output layer with 3 neurons, each 784	

corresponding to the 3 classes given above. The CNN was trained using the Adam optimization 785	

procedure (Kingma and Ba 2014), a categorical cross-entropy loss function, and a mini-batch size 786	

of 256. The CNN was run for 19 training iterations through the training data.  787	

 788	

Recombination rate: phased haplotype version 789	

For the recombination rate estimator we used ms (Hudson 2002) to simulate 50 phased 790	

chromosomes, each with a target length of 20kb. To do so, we drew a population size (N) from 791	

the following values: 5,000, 10,000, 15,000, 20,000, and 50,000, and set the population-scaled 792	

mutation rate parameter θ = 4NμL (letting μ=1.5x10-8 and L=20kb). We also set a population-793	

scaled recombination rate, ρ = 4NrL, where r is the per bp crossover rate per meiosis, by drawing 794	

r from a bounded exponential distribution raging from10-8 to 10-6. This yields a range of ρ per 795	

base pair of 2×10-4 to 2×10-1. These values roughly encompass the range of recombination rates 796	

experienced in humans and Drosophila. Following this procedure, we generated 156,275 797	

coalescent simulations. ~92% were used to train the CNN, and ~4% each were set aside for 798	

validation and testing. To assess our CNNs ability to interpolate to unseen population sizes, we 799	
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also created 5,000 additional test matrices using the procedures above, but with N drawn 800	

uniformly from the following: 30,000, 35,000, 40,000, and 45,000. 801	

 Each simulation was represented by a matrix of 50 rows, one for each chromosome, and 802	

418 columns (the largest number of segregating sites). As before, we encoded the ancestral allele 803	

with “0” and the derived allele with “1”. Because not all simulations resulted in the same number 804	

of polymorphisms, we padded both the genotype matrix and the position vector in the same 805	

manner as for the introgression CNN, bringing the total size of each matrix to 50×418. Next, we 806	

sorted each matrix by genetic similarity among chromosomes as described above and then 807	

transposed the matrix to 418×50. We also extracted the segregating site positions vector from the 808	

ms output which represents each position as a real number between zero (the leftmost position 809	

on the simulated chromosome) and one (the rightmost position). For simulations with fewer than 810	

418 segregating sites, we padded the positions vector with “-1”s.  811	

 We transformed the ρ values for the training, validation, and test sets by taking the natural 812	

log of each value and centering them on the mean of the training set. By using the mean from the 813	

training set for all transformations, we ensure that there is no leakage of information between 814	

training and validation/testing. 815	

We trained a CNN with two input branches. The first branch took the haplotype 816	

matrices as input and included three 1D-convolutional layers (kernel size = 2), each followed by 817	

average-pooling. These layers contained 1250, 256, and 256 neurons, respectively. Each of these 818	

layers uses dropout normalization (25%), L2-regularization of the weights (λ = 0.0001), and 819	

ReLU activation functions. The second branch took the position vector as input and contains 820	

one densely connected layer with 64 neurons, again using dropout normalization (10%) and a 821	

ReLU activation function. The two branches are then merged into another densely connected 822	

layer of 256 neurons with ReLU activation functions. Finally, the output layer is a single neuron 823	

with a simple linear activation function that predicts the continuous ρ value. The CNN was 824	

trained using the Adam optimization algorithm, using mean-squared error as our loss function, 825	

and a mini-batch size of 32. The CNN was trained for 16 iterations.  826	

We compared our CNN’s results to those of LDhat version 2.2a 827	

(https://github.com/auton1/LDhat). We chose LDhat because it is widely used to estimate 828	

historical recombination rates, and because it can be efficiently run on large data sets. LDhat will 829	

estimate ρ only for a specified population mutation rate (θ = 4Nμ), and we supplied it with the 830	
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exact θ value used for each coalescent simulation. This was done by creating five likelihood 831	

lookup tables using the complete program, all set for 50 haploid chromosomes, for the 832	

following θ values: 6, 12, 18, 24, and 60. Respectively, these correspond to N = 5,000, 10,000, 833	

15,000, 20,000, and 50,000 (the same values we used for training our CNNs). LDhat only 834	

predicts values within the bounds of the lookup table. Therefore, to facilitate a fair comparison to 835	

results from our CNN, which is unbounded, we selected the maximum ρ value in the likelihood 836	

lookup table to be 133.3% of the true maximum for each θ. We then set the grid size of ρ equal 1, 837	

and estimated ρ on the test set using LDhat’s pairwise program. 838	

In contrast, the CNN was not provided information about θ, and instead had to infer ρ 839	

independent of θ. This ability would be a desirable property for an estimator, as θ is likely to vary 840	

considerably across the genome and outside of simulated data sets one may never know θ 841	

precisely. On the other hand, the CNN was provided with the physical distance between 842	

segregating sites, information LDhat does not utilize but which will generally be available when 843	

making inferences on real data. Both of these factors make our direct comparison of the CNN 844	

with LDhat imperfect because each had access to information the other lacked when producing 845	

its estimate. Nonetheless we consider this example a useful illustration of the CNN’s 846	

performance. 847	

 848	

Recombination rate: autotetraploid version  849	

We sought to train a CNN to estimate a locus-wide recombination rate in autotetraploid 850	

genomes. To add a level of methodological realism to this problem, we did so from a matrix 851	

storing a simple summary of read pileup information at each site for each individual.  852	

To this end, we generated new coalescent simulations with 48 chromosomes each 853	

following the procedure outlined above for the haploid CNN. This approach is reasonable 854	

because it has been shown that the standard coalescent approximates the appropriate coalescent 855	

for autotetraploids as long as N is larger than a few hundred (Arnold et al. 2012). We generated 856	

217,500 coalescent simulations, and randomly assigned 200,000 to the training set, 10,000 to the 857	

validation set, and 7,500 to the test set. Next, within each coalescent simulation, we randomly 858	

partitioned our 48 chromosomes into twelve sets of four. Each set represents one synthetic 859	

autotetraploid genome and every site has five possible genotypes (AAAA, AAAa, AAaa, Aaaa, and 860	

aaaa). For each autotetraploid genome i and each site j we simulated the number of reads 861	
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covering the site (Cij) by drawing a random sample from a Poisson distribution with λ = 25. Then 862	

we selected the number of reads representing the a allele Rij ~ Binom(n=Cij, p=xij), where xij 863	

represents the frequency of the a allele in the tetraploid genotype (i.e. 0, 0.25, 0.5, 0.75, and 1 for 864	

the five genotypes listed above). For each individual i at site j, the corresponding entry in the 865	

input matrix was the fraction Rij/Cij, i.e. the fraction of reads supporting the derived allele. The 866	

AAAA and aaaa genotypes were always 0 and 1, respectively. For the three heterozygous 867	

genotypes (AAAa, AAaa, and Aaaa), Rij/Cij varied based on sampling error but had expected values 868	

of 0.25, 0.5, and 0.75, respectively. Thus at each site the original 48 chromosomes were reduced 869	

to a set of 12 values corresponding to the fractions of reads supporting the a allele in a pool of 870	

sequence reads from an autotetraploid sequenced at ~25X coverage. Note that this scheme 871	

includes neither sequencing error, nor the site-specific depth which would be necessary to 872	

calculate a likelihood, but is nonetheless adequate for our proof of concept.  873	

As above, we sorted the rows of this matrix by genetic similarity and padded each matrix 874	

with zeros to a length of 460 (the most segregating sites of any of the simulated matrices) before 875	

transposing, yielding a 460×12 matrix. Again, we recorded the padded vector of positions from 876	

the simulation output. Our CNN architecture was identical to the one given above for the phased 877	

haplotype version, except for the dimensionality of the input changed to 460×12, and we 878	

reduced the first convolutional layer from 1250 to 256 because of the smaller second dimension 879	

of the input. The CNN was trained for 9 iterations. 880	

 881	

Detecting selective sweeps and discriminating between modes of selection 882	

For detecting selective sweeps, we used the same coalescent simulations that Schrider and Kern 883	

(2017) used to train a classifier to detect sweeps in the JPT population (Japanese individuals from 884	

Tokyo) from Phase 3 of the 1000 Genomes dataset (Auton et al. 2015). The JPT demographic 885	

scenario is one where detecting selective sweeps is fairly difficult (see Figure S1 from Schrider and 886	

Kern 2017), as expected for bottlenecked populations (Jensen et al. 2005). For this CNN, we 887	

began with a set of 269,000 simulated genomic windows with the 5 following classes: a recent 888	

hard sweep (i.e. fixation of a de novo beneficial mutation), a recent soft sweep (i.e. fixation of a 889	

beneficial but previously neutral segregating polymorphism), a region linked to a nearby hard 890	

sweep, a region linked to a nearby soft sweep, and a neutrally evolving region. Each simulated 891	

alignment contained 208 chromosomes and we kept only coalescent simulations that contained ≤ 892	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/336073doi: bioRxiv preprint 

https://doi.org/10.1101/336073
http://creativecommons.org/licenses/by/4.0/


	 35	

5,000 segregating sites, and again padded with zeros so that all matrices were 208×5000. This 893	

left 238,655 simulations, and from those we constructed a training set of 233,655 simulations. In 894	

trial runs, we found that regions flanking hard and soft sweeps were the most difficult classes to 895	

predict, so we again simulated additional examples from these more challenging classes. This 896	

shifted the balance of our training set so that is was comprised of approximately 13% neutral 897	

regions, 17% each for hard and soft sweeps, and 26.5% each for regions linked to nearby hard 898	

and soft sweeps windows. We then set aside an evenly balanced set of 2,000 simulations for 899	

validation and 3,000 for testing. 900	

As before, we sorted each matrix by genetic similarity among chromosomes and then 901	

transposed the matrix to 5000×208. We also extracted the segregating site positions vector from 902	

these simulations which were generated by discoal (Kern and Schrider 2016), which like ms 903	

represents each position as a real number between zero and one. 904	

As above, we trained a CNN with two input branches. The first branch took the 905	

haplotype matrices as input and included five 1D-convolutional layers (kernel size = 2), each 906	

followed by average-pooling. These layers each contained 256 neurons and used dropout 907	

normalization (20%). The second branch took the position vector as input and contained one 908	

densely connected layer with 64 neurons, again using dropout normalization (10%). The two 909	

branches were then merged into another densely connected layer of 256 neurons with 25% 910	

dropout. Each hidden layer of the network used L2-regularization of the weights (λ = 0.0001) 911	

and ReLU as the activation function. Finally, the output of this layer was fed to a five neuron 912	

layer with softmax activation functions that predicts the five classes given above. The CNN was 913	

trained using the Adam optimization algorithm, the categorical cross-entropy loss function, and a 914	

mini-batch size of 32. The CNN was trained for 3 iterations.  915	

 916	

Inferring population size histories 917	

To show how CNNs can be used to infer species’ demographic histories, and how CNN 918	

architecture can impact this inference, we experimented with a variety of CNN approaches to 919	

infer the 5 parameters of a 3-epoch model of instantaneous population size changes (i.e. 3 920	

population sizes and 2 times of size change). We also use this challenging problem as an 921	

opportunity to evaluate how alternative approaches to building a CNN can influence its 922	

performance. In effect, we conducted a full grid search of the following attributes of both our 923	
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CNN architecture and input/output format: the dimensionality of our convolutions (1D or 2D), 924	

the kernel size (i.e. the width of our 1D convolutional filters and both the height and width of our 925	

square 2D filters; we tried each multiple of 2 raging from 2 to 10), whether to include dropout 926	

(yes or no) following max pooling steps or dense layers, whether to sort our rows based on 927	

similarity (yes or no), whether to log-scale our response variables (yes or no), and whether to 928	

represent ancestral and derived alleles as -1/1 or as 0/255. When included, our dropout layers 929	

immediately followed both max pooling steps, the dense layer following the distance input layer, 930	

and the final dense layer. Each of these dropout steps randomly removed 25% of neurons. Each 931	

response variable was transformed to a Z-score according to the sample mean and variance for 932	

that variable across all simulated examples.  933	

The network we used for this task had two branches: a standard CNN like that depicted 934	

in Fig. 1B–C but with more convolutional layers (four CNN layers each producing 128 filters and 935	

each followed by a max pooling layer with a kernel size of 2), and a dense neural network layer 936	

(consisting of 32 nodes) taking positional information as its input, and concatenating its output 937	

with that of the final max pooling layer of the CNN prior to being fed into the final dense layer 938	

(256 nodes). The positional information was a vector, d, whose length was the maximum of the 939	

number of segregating sites observed across all simulated examples minus one. Each value in the 940	

vector di was simply the distance (scaled between zero and one where one is the total length of the 941	

simulated region) between segregating site i and site i-1.  942	

In total, we simulated 100,000 alignments of phased chromosomes using ms. 10,000 each 943	

were set aside for testing and validation, while the remaining 80,000 were used for training. The 944	

simulated population size histories were generated randomly—each demographic model 945	

parameter was drawn uniformly from a range listed in supplementary table S2. Each simulated 946	

region was roughly equivalent 1.5 Mbp in the human genome, assuming per base pair mutation 947	

and recombination rates of 1.2×10-8 and 1×10-8, respectively. However, in order to make the size 948	

of the simulation output more tractable for processing in a CNN we divided the mutation rate by 949	

10 (equivalent to randomly downsampling the number of polymorphisms included in the input 950	

by a factor of 10). During training we used a batch size of 200, trained our networks for up to 10 951	

iterations, and retained the best performing CNN as assessed on the validation set. Often the best 952	

CNN was obtained prior to completing all 10 training iterations. We then evaluated the 953	

performance of the best CNN for each network architecture and input format on the test set by 954	
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calculating total RMSE (our loss function for this task); we also calculated Spearman correlation 955	

coefficients between the true and predicted values for each of the five demographic model 956	

parameters. 957	
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