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Abstract 20 

The health impacts of endocrine disrupting chemicals (EDCs) remain debated and their tissue and molecular 21 

targets are poorly understood. Here we leveraged systems biology approaches to assess the target tissues, 22 

molecular pathways, and gene regulatory networks associated with prenatal exposure to the model EDC 23 

Bisphenol A (BPA). Prenatal BPA exposure led to scores of transcriptomic and methylomic alterations in the 24 

adipose, hypothalamus, and liver tissues in mouse offspring, with cross-tissue perturbations in lipid metabolism as 25 

well as tissue-specific alterations in histone subunits, glucose metabolism and extracellular matrix. Network 26 

modeling prioritized main molecular targets of BPA, including Pparg, Hnf4a, Esr1, and Fasn. Lastly, integrative 27 

analyses identified the association of BPA molecular signatures with cardiometabolic phenotypes in mouse and 28 

human. Our multi-tissue, multi-omics investigation provides strong evidence that BPA perturbs diverse molecular 29 

networks in central and peripheral tissues, and offers insights into the molecular targets that link BPA to human 30 

cardiometabolic disorders. 31 

 32 

 33 

Author summary 34 

The inability to pinpoint the mechanistic underpinnings of environmentally-induced diseases likely stems from 35 

the pleiotropic effects of chemicals such as BPA on diverse tissues and molecular space (transcriptome, 36 

epigenome, etc.). This makes it challenging to fully dissect their health impact and merits a call for modern big 37 

data approaches to examine environmental factors. Our data-driven study is the first unbiased, multi-tissue multi-38 

omic systems biology investigation of the molecular circuitry and mechanisms underlying offspring response to 39 

prenatal BPA exposure. Importantly, the incorporation of network-based modeling allows us to capture novel 40 

players in the regulation of BPA activities in vivo, and the integration with human disease association datasets 41 
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helps bridge the molecular pathways affected by BPA with diverse human diseases. In doing so, our study 42 

provides compelling molecular evidence that developmental BPA exposure significantly perturbs metabolic and 43 

endocrine systems in the offspring, and supports BPA as one of the environmental factors involved in the 44 

developmental origins of health and disease (DOHaD). 45 
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Introduction 46 

A central concept in the Developmental Origins of Health and Disease (DOHaD) states that adverse 47 

environmental exposure during early developmental stages is an important determinant for later onset adverse 48 

health outcomes, even in the absence of continuous exposure in adulthood [1-3]. BPA is one of the most 49 

influential environmental metabolic disruptors identified to date with widespread exposure in human populations 50 

and likely plays a role in DOHaD. BPA is used in the production of synthetic polymers, including epoxy resins 51 

and polycarbonates [4]. The advantageous mechanical properties of BPA have resulted in its ubiquitous use in 52 

everyday goods such as plastic bottles and inner coating of canned foods [5,6]. BPA exposure has been confirmed 53 

in the majority of human populations [7] and has been linked to body weight, obesity, insulin resistance, diabetes, 54 

metabolic syndrome (MetS), and cardiovascular diseases in both human epidemiologic and animal studies [8-15]. 55 

Importantly, it has been suggested that the developing fetus is particularly vulnerable to BPA exposure [8,16]. 56 

Intrauterine growth retardation (IUGR) has been consistently observed after developmental BPA exposure at 57 

intake doses below the suggested human safety level and has been associated with low birth weight, elevated 58 

adult fat weight and altered glucose homeostasis [8,17-20]. As a result, BPA has been banned from baby products 59 

in Europe, Canada, and the US. However, BPA is still in use in non-baby products, posing continuous exposure to 60 

adults. Additionally, BPA has been associated with a transgenerational influence on obesity and MetS [21-23], 61 

contributing to a lingering effect of BPA exposure on future generations even under usage restriction. Together 62 

these lines of evidence support an intriguing hypothesis that BPA may have been playing an important role in the 63 

rise of MetS and cardiometabolic diseases worldwide in the past decades [24-26]. 64 

Despite numerous findings connecting BPA with adverse health outcomes, there remain ample conflicting data, as 65 

summarized by the European Food Safety Agency [27] and the BPA Joint Emerging Science Working Group of 66 

the US FDA. Although inconsistencies across studies might be attributable to non-monotonic dose response, 67 

exposure window difference, and varying susceptibility between testing models [13,28], there are also several 68 
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additional layers of complexity and challenges hindering the full dissection of the biological effects of BPA. First, 69 

previous studies examining BPA in various cell types and tissues suggest a broad impact on biological systems 70 

[23,29-31]. Second, BPA has been found to modulate multidimensional molecular events, such as gene 71 

expression and epigenetic changes, that are functionally important for processes such as metabolism and immune 72 

response [32-37]. However, due to most studies being designed to focus on one factor at a time as well as non-73 

comparable study designs, it is difficult to directly compare effects across tissues or types of molecular data to 74 

derive the molecular rules of sensitivity to BPA exposures. In a recent National Toxicology Program report, 75 

CLARITY-BPA, where multiple organs were examined, evidence of weight gain and cardiac dysfunctions were 76 

observed, however, the study was designed to be solely descriptive and no mechanism of action was proposed. 77 

These research gaps in our understanding of the pleiotropy of EDCs and toxicant biological actions necessitated 78 

the establishment of the NIEHS TaRGET consortium and a more recent call for the research community to 79 

systemically interrogate multiple omics in multiple tissues to accelerate the discovery of key biological 80 

fingerprints of environmental exposure [38].  81 

Here we present a multi-tissue, multi-omics systems biology study to examine the systems level influence of 82 

prenatal BPA exposure using modern integrative genomics and network modeling approaches in a mouse model. 83 

We first utilized next-generation sequencing technologies to characterize perturbations in both the transcriptome 84 

and the epigenome across three tissues (white adipose tissue, hypothalamus, liver) in mouse offspring who had 85 

experienced in utero exposure to BPA. Based on mounting evidence that genes operate in highly complex tissue-86 

specific regulatory networks, we hypothesized that prenatal BPA exposure induces genomic and epigenomic 87 

reprogramming in the offspring by affecting the organization and function of tissue-specific gene networks [39-88 

42]. Using both transcription factor (TF) networks and Bayesian networks, we modeled the dynamics of 89 

transcriptomic and epigenomic signatures and predicted potential regulators that govern the actions of BPA. 90 

Furthermore, the transcriptome, epigenome, and network information was layered upon metabolic phenotypes 91 

such as body weight, adiposity, circulating lipids, and glucose levels in the mouse offspring to evaluate disease 92 
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association. Lastly, to assess the relevance of the BPA molecular targets identified in our mouse model for human 93 

diseases, we applied integrative genomics to bridge the mouse molecular signatures and genetic disease 94 

association data from human studies. Our study represents a comprehensive data-driven, systems-level 95 

investigation of the molecular and health impact of BPA. 96 

 97 

Methods 98 

Ethics statement 99 

All animal experiments were performed in accordance with the Institutional Animal Care and Use Committee 100 

(IACUC) guidelines. Animal studies and procedures were approved by the Chancellor's Animal Research 101 

Committee of the University of California, Los Angeles (Protocol #2012-059-21). 102 

Overall study design 103 

As shown in Fig 1A, pregnant C57BL/6 mice were exposed to BPA during gestation via oral gavage at the dosage 104 

of 5mg/kg/day, situated below most reported no-observed-adverse-effect-level (NOAEL) according to toxicity 105 

testing (https://comptox.epa.gov/dashboard/dsstoxdb/results?search=Bisphenol+A). This dosage was typically 106 

used in previous studies [23,43-45], and was chosen as a proof-of-concept for our systems biology study design 107 

and to facilitate comparison with previous studies. Male and female offspring (n = 9 for control and n = 11 for 108 

BPA in male; n = 9 for control and n = 13 for BPA in female) of weaning age (3-weeks) were examined for a 109 

spectrum of metabolic phenotypes (detailed below), and euthanized to collect key metabolic tissues including 110 

white adipose tissue, hypothalamus, and liver. We chose the weaning age in order to investigate early molecular 111 

and phenotypic changes in the offspring, which may predispose the offspring to late onset diseases. At the 112 

molecular level, we conducted RNA sequencing (RNA-seq) to evaluate transcriptomic alterations, and 113 

investigated perturbed biological pathways. We also used reduced representation bisulfite sequencing (RRBS) to 114 
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uncover the epigenomic impact of prenatal BPA exposure at millions of methylation sites and analyzed the 115 

connection of the epigenomic alterations to changes in the transcriptome. We then integrated the transcriptomic 116 

and epigenomic signatures with two types of regulatory networks, namely, transcription factor networks to 117 

identify perturbed TF hotspots, and gene regulatory networks to identify non-TF regulatory genes. Finally, we 118 

interrogated the associations of the transcriptomic and epigenomic signatures of BPA obtained from our study 119 

with metabolic phenotypes in our mouse offspring by correlative analysis, and with human diseases by querying 120 

top reported candidate genes as well as full summary statistics from existing publicly available genome-wide 121 

association studies (GWAS). 122 

Mouse model of prenatal BPA exposure  123 

Inbred C57BL/6 mice were maintained on a special diet 5V01 (LabDiet), certified to contain less than 150ppm 124 

estrogenic isoflavones, and housed under standard housing conditions (room temperature 22–24°C) with 12:12 hr 125 

light:dark cycle before mating at 8-10 weeks of age. Upon mating, female mice were randomly assigned to either 126 

the BPA treatment group or the control group. From 1-day post-conception (dpc) to 20 dpc, BPA (Sigma-Aldrich, 127 

St. Louis, MO) dissolved in corn oil was administered to pregnant female mice via oral gavage (mimicking 128 

common exposure route in humans) at 5mg/kg/day on a daily basis. Control mice were fed the same amount of 129 

empty vehicle. BPA exposure was restricted to experimental manipulation through the use of polycarbonate-free 130 

water bottles and cages. Offspring from each treatment were maintained on a standard chow diet (Newco 131 

Distributors Inc, Rancho Cucamonga, CA). Offspring in the vehicle- and BPA-treated groups were derived from 3 132 

and 4 litters by different dams, respectively, to help assess and adjust for litter effects.  133 

Characterization of cardiometabolic phenotypes and tissue collection 134 

Body weight of offspring was measured daily from postnatal day 5 up to the weaning age of 3 weeks. Mice were 135 

fasted overnight before sacrifice, and plasma samples were collected through retro-orbital bleeding. Serum lipid 136 

and glucose traits including total cholesterol, high density lipoprotein cholesterol (HDL), un-esterified cholesterol 137 



 

8 

 

(UC), triglyceride (TG), free fatty acid (FFA), and glucose were measured by enzymatic colorimetric assays at 138 

UCLA GTM Mouse Transfer Core as previously described [40]. Gonadal white adipose tissue, hypothalamus, and 139 

liver tissues were collected from each animal, flash frozen in liquid nitrogen, and stored at –80°C. For white 140 

adipose tissue, we chose the gonadal depot mainly due to its similarity to abdominal fat, established relevance to 141 

cardiometabolic risks, tissue abundance, and the fact that it is the most well-studied adipose tissue in mouse 142 

models. All mouse experiments were conducted in accordance with and approved by the Institutional Animal 143 

Care and Use Committee at University of California, Los Angeles.  144 

RNA sequencing (RNA-seq) and data analysis 145 

A total of 18 RNA samples were isolated from gonadal adipose, hypothalamus and liver tissues (n = 3 per group 146 

per tissue; for each group, mice were randomly selected from litters of different dams in independent cages) from 147 

male offspring using the AllPrep DNA/RNA Mini Kit (QIAGEN GmbH, Hilden, Germany). We focused on 148 

profiling male tissues because of stronger phenotypes observed in males (Fig 1B-E). Samples were processed for 149 

library preparation using TruSeq RNA Library Preparation Kit (Illumina, San Diego, CA) for poly-A selection, 150 

fragmentation, and reverse transcription using random hexamer-primers to generate first-strand cDNA. Second-151 

strand cDNA was generated using RNase H and DNA polymerases, and sequencing adapters were ligated using 152 

the Illumina Paired-End sample prep kit. Library products of 250-400bp fragments were isolated, amplified, and 153 

sequenced with Illumina Hiseq2500 System. After quality control using FastQC [46], the HISAT-StringTie 154 

pipeline [47] was used for sequence alignment and transcript assembly. Identification of differentially expressed 155 

genes (DEGs) were conducted using DEseq2 [48]. To account for multiple testing, we used the q-value method 156 

[49]. After excluding genes with extremely low expression levels (FPKM < 1), only DEGs demonstrating 157 

differential expression comparing the BPA and control groups per tissue at a false discovery rate (FDR) < 5% 158 

were used for biological pathway analysis, network analysis, and phenotypic data integration, as described below. 159 
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Reduced representation bisulfite sequencing (RRBS) and data analysis 160 

We constructed RRBS libraries for 18 DNA samples from adipose, hypothalamus and liver tissues from male 161 

offspring (n = 3 per group per tissue from the same set of tissues chosen for transcriptome analysis described 162 

above). The DNA samples were quantified using the dsDNA BR assay (Qubit, Waltham, MA) and 100ng of DNA 163 

was used for library preparation. After digestion of the DNA with the MspI enzyme, samples underwent an end-164 

repair and adenylation process, followed by adapter ligation using the Truseq barcode adapter (Illumina, San 165 

Diego, CA), size selection using AMPure Beads (Beckman Coulter, Brea, CA), and bisulfite treatment using the 166 

Epitect Kit (Qiagen, Germantown, MD). Bisulfite-treated DNA was then amplified using the Truseq Library Prep 167 

Kit (Illumina, San Diego, CA) and sequenced with the Illumina Hiseq2500 System. Bisulfite-converted reads 168 

were processed and aligned to the reference mouse genome (GRCm38/mm10 build) using the bisulfite aligner 169 

BSMAP [50]. We then used MOAB [51] for methylation ratio calling and identification of differentially 170 

methylated CpGs (DMCs). FDR was estimated using the q-value approach. Loci with methylation level changes 171 

of > 5% between BPA and control groups and FDR < 0.05 for each tissue were considered statistically significant 172 

DMCs. To annotate the locations of the identified DMCs in relation to gene regions and repetitive DNA elements 173 

accessed from UCSC genome browser, we used the Bioconductor package “annotatr” [52]. Specifically, gene 174 

regions were categorized into 1) 1-5kb upstream of the transcription start site (TSS), 2) promoter (< 1kb upstream 175 

of the TSS), 3) 5’ untranslated region (UTR), 4) exons, 5) introns, and 6) 3’UTR. The “annotatr” package was 176 

also used to annotate DMCs for known long non-coding RNAs (lncRNAs) based on GENCODE Release M16. 177 

Over-representation of DMCs within each category was calculated using Fisher’s exact test. We further evaluated 178 

the link between DEGs and their local DMCs (DMCs annotated as any of the 6 above mentioned gene regions) by 179 

correlating the methylation ratio of DMCs with the expression level of DEGs. 180 
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Pathway, network, and disease association analyses of DEGs and DMCs using the Mergeomics R 181 

package 182 

To investigate the functional connections among the BPA-associated DEGs or DMCs (collectively referred to as 183 

molecular signatures of BPAs) and to assess the potential association of BPA affected genes with diseases in 184 

human populations, we utilized the Mergeomics package [53], an open-source bioconductor package 185 

(https://bioconductor.org/packages/devel/bioc/html/Mergeomics.html) designed to perform various integrative 186 

analyses in multi-omics studies. Mergeomics consists of two main libraries, Marker Set Enrichment Analysis 187 

(MSEA) and Weighted Key Driver Analysis (wKDA). In the current study, we used MSEA to assess 1) whether 188 

known biological processes, pathways or transcription factor targets were enriched for BPA molecular signatures 189 

as a means to annotate the potential functions or regulators of the molecular signatures, and 2) whether the BPA 190 

signatures demonstrate enrichment for disease associations identified in human genome-wide association studies 191 

(GWAS) of various complex diseases (S1 Fig). wKDA leverages gene network topology (interactions or 192 

regulatory relations among genes) and edge weight (strength or reliability of interactions and regulatory relations) 193 

information of graphical gene networks to predict potential key regulators of a given group of genes, in this case, 194 

the BPA-associated DEGs (S2 Fig). Both MSEA and wKDA were built around a chi-square like statistics (S1 195 

Text) that yields robust findings that have been experimentally validated [41,42,53]. Details of each usage of the 196 

Mergeomics package are discussed below. 197 

Functional annotation of DEGs and DMCs 198 

To infer the functions of the DEGs and DMCs affected by BPA, we used MSEA to annotate the DEGs or local 199 

genes adjacent to the DMCs with known biological pathways curated from the Kyoto Encyclopedia of Genes and 200 

Genomes (KEGG) [54] and Reactome [55]. In brief, we extracted the differential expression p-values of genes in 201 

each pathway from the differential expression or methylation analyses and compared these p-values against the 202 

null distribution of p-values from random gene sets with matching gene numbers. If genes in a given pathway 203 
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collectively show more significant differential expression or differential methylation p-values compared to 204 

random genes based on a chi-square like statistic, we annotate the DEGs or DMCs using that pathway (S1 Text). 205 

DEGs and DMCs can have multiple over-represented pathways. 206 

Identification of transcription factor (TF) hotspots perturbed by BPA 207 

To dissect the regulatory cascades of BPA, we first assessed whether BPA-associated DEGs were downstream 208 

targets of specific transcription factors. The hypothesis behind this analysis is that BPA first affects TFs which in 209 

turn regulate the expression of downstream genes. We used TF regulatory networks for adipose, brain, and liver 210 

tissue retrieved from the FANTOM5 database [56]. Note that only a whole brain (instead of hypothalamus) TF 211 

network was available, which may only partially represent hypothalamic gene regulation. Each TF network was 212 

processed to keep the edges with high confidence (S1 Text). To identify TFs whose targets were perturbed by 213 

BPA, the downstream nodes of each TF in the network were pooled as the target genes for that TF. We then 214 

assessed the enrichment for BPA exposure related DEGs among the target genes of each TF using MSEA. TFs 215 

with FDR < 5% were considered statistically significant. Cytoscape software was used for TF network 216 

visualization [57]. 217 

Bayesian network and Weighted Key Driver Analysis (wKDA) to identify potential non-TF 218 

regulators 219 

To further identify non-TF regulators that sense BPA and then perturb downstream genes, we used Bayesian 220 

networks (BN) of adipose, hypothalamus and liver tissues constructed from genetic and transcriptomic data from 221 

several large-scale mouse and human studies (S1 Text and S1 Table). wKDA was used to identify network key 222 

drivers (KDs), which are defined as network nodes whose neighboring subnetworks are significantly enriched for 223 

BPA-associated DEGs. Briefly, wKDA takes gene set G (i.e. BPA DEGs) and directional gene network N (i.e. 224 

BNs) as inputs. For every gene K in network N, neighboring genes within 1-edge distance were tested for 225 
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enrichment of genes in G using a chi-square like statistics followed by FDR assessment by permutation (S1 Text 226 

and S2 Fig). Network genes that reached FDR < 0.05 were reported as potential KDs.  227 

Association of BPA DEGs and DMCs with mouse phenotypes and human diseases/traits 228 

To assess whether the BPA molecular signatures were related to phenotypes examined in the mouse offspring, we 229 

calculated the Pearson correlation coefficient among expression level of DEGs, methylation ratio of DMCs, and 230 

the measurement of metabolic traits. For human diseases or traits, we accessed the GWAS catalog database [58] 231 

and collected the lists of candidate genes reported to be associated with 161 human traits/diseases (P < 1e-5). 232 

These genes were tested for enrichment of the BPA DEGs and DMCs in our mouse study using MSEA. We 233 

further curated all publicly available full summary statistics for 61 human traits/diseases from various public 234 

repositories (S1 Text and S2 Table). This allowed us to apply MSEA to comprehensively assess the enrichment 235 

for human disease association among BPA transcriptomic signatures using the full-spectrum of large-scale human 236 

GWAS. For each tissue-specific gene signature, we used the SNPs within a 50kb chromosomal distance as the 237 

representing SNPs for that gene. The trait/disease association p-values of the SNPs were then extracted from each 238 

GWAS and compared to the p-values of SNPs of random sets of genes to assess whether the BPA signatures were 239 

more likely to show stronger disease association in human GWAS (S1 Text and S1 Fig). This strategy has been 240 

successfully used in our previous animal model studies to assess the connection of genes affected by 241 

environmental perturbations such as diets and trauma to various human diseases [40,59].   242 

 243 
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Results 244 

Prenatal BPA exposure induces intrauterine growth retardation (IUGR) and alterations in 245 

cardiometabolic phenotypes 246 

We exposed pregnant C57BL/6 mice to BPA during gestation (day 1 to day 20 post-conception) at the dosage of 247 

5mg/kg/day, and observed alterations in various metabolic phenotypes in the male and female offspring with 248 

prenatal BPA exposure at the weaning age. Compared with the control group, both male and female offspring 249 

from the BPA group showed significantly lower body weight, indicative of IUGR, a trait that is strongly 250 

associated with later life insulin resistance and obesity risk (Fig 1B, D). There were also significant decreases in 251 

serum lipid parameters and an increase in serum glucose level in males (Fig 1C), but not in females (Fig 1E). The 252 

decreases in the lipid parameters at this early developmental stage likely reflect the growth retardation phenotype 253 

observed and may provide feedback signals to predispose the exposed offspring to lipid dysregulation later in life. 254 

The phenotypic differences between BPA and control groups are not the results of litter effect, as offspring from 255 

different dams in each group showed similar patterns (S3 Fig). 256 

 257 

Prenatal BPA exposure induces tissue-specific transcriptomic alterations in male weaning 258 

offspring 259 

To explore the molecular basis underlying the potential health impact of prenatal BPA exposure, we collected 260 

three core tissues important for metabolism from male offspring at 3 weeks. We focus on males due to the 261 

stronger phenotypes observed. Hypothalamus is the central regulator of endocrine and metabolic systems, 262 

whereas liver and white adipose tissues are critical for energy and metabolic homeostasis. We used RNA-seq to 263 

profile the transcriptome, and identified 86, 93, and 855 differentially expressed genes (DEGs) in the adipose 264 

tissue, hypothalamus, and liver tissue respectively, at FDR < 0.05 (Fig 2A, S3 Table). This supports the ability of 265 
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prenatal BPA exposure to induce large-scale transcriptomic disruptions in offspring, with the impact appearing to 266 

be more prominent in liver. The DEGs were highly tissue-specific, with only 12 out of the 86 adipose DEGs and 267 

16 out of the 93 hypothalamus DEGs being found in liver. Interestingly, the hypothalamic DEGs are 268 

predominantly up-regulated in the BPA group whereas the other two tissues did not show such direction bias (S4 269 

Table). Only one gene, Cyp51 (sterol 14-alpha demethylase), was shared across all three tissues but with different 270 

directional changes (upregulated in hypothalamus and liver, downregulated in adipose) (Fig 2B). The Cyp51 271 

protein catalyzes metabolic reactions including cholesterol and steroid biosynthesis and biological oxidation [60]. 272 

Previously, this gene was also found to be critical regulator for testicular spermatogenesis [61]. The consistent 273 

alteration of Cyp51 across tissues suggests that this gene is a general target of BPA, with the potential to alter 274 

functions related to cholesterol, hormone, and energy metabolism.  275 

 276 

Functional annotation of DEGs in adipose, hypothalamus, and liver tissues 277 

To better understand the biological implications of the BPA exposure related DEGs in individual tissues, we 278 

evaluated the enrichment of DEGs for known biological pathways and functional categories (Fig 2C-E, full 279 

results in S5 Table). We observed strong enrichment for pathways related to lipid metabolism (lipid transport, 280 

fatty acid metabolism, cholesterol biosynthesis) and energy metabolism (biological oxidation, TCA cycle) across 281 

all three tissues. Most of these pathways appeared to be upregulated in all three tissues, with the exception of 282 

downregulation of genes involved in biological oxidation in adipose tissue (Fig 2C-E). Individual tissues also 283 

showed perturbations of unique pathways: PPAR signaling and arachidonic acid pathways were altered in liver; 284 

extracellular matrix related processes were enriched among hypothalamic DEGs; core histone genes were 285 

upregulated in adipose DEGs (Fig 2C-E). In addition, triglyceride biosynthesis and glucose metabolism pathways 286 

were also moderately enriched among adipose DEGs, whereas few changes were seen for genes involved in 287 

adipocyte differentiation (S4 Fig). 288 
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 289 

Prenatal BPA exposure induces tissue-specific epigenetic alterations in male weaning offspring 290 

Consistent with the observed gene expression disruptions at the transcriptomic level, we observed numerous 291 

methylomic alterations using RRBS, which characterizes DNA methylation states of millions of potential 292 

epigenetic sites at single base resolution. At FDR < 5%, 5136, 104, and 476 differentially methylated CpGs 293 

(DMCs) were found in adipose, hypothalamus, and liver tissues, respectively (Fig 3A, S6 Table). Interestingly, 294 

BPA induced local methylation changes in Gm26917 and Yam1, two lncRNAs with no previously known link to 295 

BPA, consistently across three tissues (Fig 3B). The majority of the DMCs are located in intergenic regions (32% 296 

- 38%), followed by introns (31% - 37%) and exons (13% - 15%), but there is a paucity of DMCs in the promoter 297 

region (3% - 5%) (S5 Fig). Contrary to predictions that promoter regions may be more prone to epigenetic 298 

changes, we found that within-gene and intergenic methylation alterations in DNA methylation are more 299 

prevalent, a pattern consistently observed in previous epigenomic studies [40,62]. In addition, 5.0%, 8.6%, and 300 

8.1% DMCs overlap with repetitive DNA elements in adipose, hypothalamus, and liver, respectively, 301 

recapitulating previous report of the interaction between BPA and repetitive DNA [63]. 302 

For DMCs that are located within or adjacent to genes, we further tested whether the local genes adjacent to those 303 

DMCs show enrichment for known functional categories. Unlike DEGs, top processes enriched for DMCs 304 

concentrated on intra- and extra-cellular communication and signaling related pathways such as axon guidance, 305 

extracellular matrix organization and NGF signaling (Fig 3C, full results in S7 Table). The affected genes in 306 

these processes are related to cellular structure, cell adhesion, and cell migration, indicating that these functions 307 

may be particularly vulnerable to BPA induced epigenetic modulation. 308 

 309 
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Potential regulatory role of DMCs in transcriptional regulation of BPA induced DEGs 310 

To explore the role of DMCs in regulating DEGs, we evaluated the connection between transcriptome and 311 

methylome by correlating the expression level of DEGs with the methylation ratio of their local DMCs. For the 312 

DEGs in adipose, hypothalamus and liver tissue, we identified 42, 36, and 278 local DMCs whose methylation 313 

ratios were significantly correlated with the gene expression. At a global level, compared to non-DEGs, DEGs are 314 

more likely to contain local correlated DMCs (S6 Fig). A closer look into the expression-methylation correlation 315 

by different chromosomal regions further revealed a context dependent correlation pattern (Fig 3D). In adipose 316 

and liver, the 3-5% of DMCs in promoter regions tend to show significant enrichment for negative correlation 317 

with DEGs, whereas gene body methylations for DEGs are more likely to show significant enrichment for 318 

positive correlation with gene expression. In hypothalamus, however, positive correlations between DEGs and 319 

DMCs are more prevalent across different gene regions. In addition, liver DMCs within lncRNAs were uniquely 320 

enriched for negative correlation with lncRNA expression, although the lack of a reliable mouse lncRNA target 321 

database prevented us from further investigating whether downstream targets of the lncRNAs were enriched in the 322 

DEGs. Specific examples of DEGs showing significant correlation with local DMCs include adipose DEG 323 

Slc25a1 (Solute Carrier Family 25 Member 1, involved in triglyceride biosynthesis), hypothalamic DEG Mvk 324 

(Mevalonate Kinase, involved in cholesterol biosynthesis), and liver DEG Gm20319 (a lncRNA with unknown 325 

function) (S7 Fig and S8 Table). These results support a role of BPA-induced differential methylation in altering 326 

the expression levels of adjacent genes. 327 

 328 

Pervasive influence of prenatal BPA exposure on the liver transcription factor network 329 

BPA is known to bind to diverse types of nuclear receptors such as estrogen receptors and peroxisome 330 

proliferator-activated (PPAR) receptors that function as transcription factors (TFs), thus influencing the action of 331 

downstream genes [64,65]. PPARg in particular has been shown to be a target of BPA in mouse and human and 332 
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mechanistically linking BPA exposure with its associated effect on weight gain and increased adipogenesis [66-333 

68]. To explore the TF regulatory landscape underlying BPA exposure based on our genome-wide data, we 334 

leveraged tissue-specific TF regulatory networks from the FANTOM5 project [56] and integrated it with our BPA 335 

transcriptome profiling data. No TF was found to be differentially expressed in adipose tissue, whereas 1 TF 336 

(Pou3f1) and 14 TFs (such as Esrra, Hnf1a, Pparg, Tcf21, Srebf1) were found to be differentially expressed in 337 

hypothalamus and liver, respectively. Due to the temporal nature of TF action, changes in TF levels may precede 338 

the downstream target genes and not be reflected in the transcriptomic profiles measured at the time of sacrifice. 339 

Therefore, we further curated the target genes of TFs from FANTOM5 networks and tested the enrichment for the 340 

target genes of each TF among our tissue-specific DEGs (S9 Table). This analysis confirmed that BPA perturbs 341 

the activity of the downstream targets for estrogen receptors Esrrg (p = 1.4e-3, FDR = 1.9%) and Esrra (p = 0.03, 342 

FDR = 13%) in liver, as well as Esr1 in both adipose (p = 7.2e-3, FDR = 10.6%) and liver (p = 7.2e-3, FDR = 343 

4.7%). Targets of Pparg were also perturbed in liver (p = 4.1e-3, FDR = 3.8%). Therefore, we demonstrated that 344 

our data-driven network modeling is able to not only recapitulate results from previous in-vitro and in-vivo studies 345 

showing that BPA influences estrogen signaling and PPAR signaling [65], but also uniquely point to the tissue 346 

specificity of these BPA target TFs. 347 

In addition to these expected TFs, we identified 14 adipose TFs and 61 liver TFs whose target genes were 348 

significantly enriched for BPA DEGs at FDR < 5%. Many of these TFs showed much stronger enrichment for 349 

BPA DEGs among their downstream targets than the estrogen receptors (S9 Table). The adipose TFs include 350 

nuclear transcription factor Y subunit alpha (Nfya) and fatty acid synthase (Fasn), both implicated in the 351 

adipocyte energy metabolism [69]. The liver TFs include multiple genes from the hepatocyte nuclear factors 352 

(HNF) family and the CCAAT-enhancer-binding proteins (CEBP) family, which are critical for liver development 353 

and function, suggesting a pervasive influence of BPA on liver TF regulation.  354 

We further extracted the subnetwork containing 89 unique downstream targets of the significant liver TFs that are 355 

also liver DEGs. This subnetwork showed significant enrichment for genes involved in metabolic pathways such 356 
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as steroid hormone biosynthesis and fatty acid metabolism. The regulatory subnetwork for the top liver TFs (FDR 357 

< 5%) revealed a highly interconnected TF subnetwork that potentially senses BPA exposure and in turn governs 358 

the expression levels of their targets (Fig 4A), with Pparg and Hnf4 among the core TFs. Some of the TFs in this 359 

network, including Esr1, Esrrg, Foxp1, and Tcf7l1, also had local DMCs identified in our study, indicating that 360 

BPA may perturb this liver TF subnetwork via local modification of DNA methylation of key TFs.  361 

 362 

Identification of potential non-TF regulators governing BPA induced molecular perturbations 363 

To further identify regulatory genes that mediate the action of BPA on downstream targets through non-TF 364 

mechanisms, we leveraged data-driven tissue-specific Bayesian networks (BNs) generated from multiple 365 

independent human and mouse studies (S1 Table). These data-driven networks are complementary to the TF 366 

networks used above and have proven valuable for accurately predicting gene-gene regulatory relationships and 367 

novel key drivers (KDs) [39-42,70]. KDs were defined as network nodes whose surrounding subnetworks are 368 

significantly enriched for BPA exposure related DEGs. At FDR < 1%, we identified 21, 1, and 100 KDs in 369 

adipose, hypothalamus, and liver, respectively (S10 Table). The top KDs in adipose (top 5 KDs Acss2, Pc, 370 

Agpat2, Slc25a1, Acly), hypothalamus (Fa2h) and liver (top 5 KDs Dhcr7, Aldh3a2, Fdft1, Mtmr11, Hmgcr) were 371 

involved in cholesterol, fatty acid and glucose metabolism processes. In addition, three KDs, Acss2 (Acetyl-372 

Coenzyme A Synthetase 2), Acat2 (Acetyl-CoA Acetyltransferase 2), and Fasn (Fatty Acid Synthase), were 373 

involved in the upregulation of DEGs in both adipose and liver, despite the fact that few DEG signatures overlap 374 

across tissues (Fig 4B). These KDs are consistent with the observed increased expression of several genes 375 

implicated in lipogenesis, including Fasn, and help explain the liver accumulation of triglycerides when mice are 376 

exposed to BPA [71].  Together, these results indicate that BPA may engage certain common regulators which 377 

have tissue-specific targets. The distinct upregulatory pattern within the subnetworks of individual KDs supports 378 

the potential functional importance of KDs in orchestrating the action of downstream genes. These KDs, along 379 
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with the newly identified TFs from the above analysis, may represent novel regulatory targets which transmit the 380 

in vivo biological effects of BPA. 381 

 382 

BPA transcriptomic and methylomic signatures are related to metabolic traits in mice 383 

To assess the relationship between the BPA molecular signatures and metabolic traits in the mouse model, the 384 

DEGs and DMCs from individual tissues were tested for correlation with the measured metabolic traits: body 385 

weight, free fatty acids, total cholesterol, high density lipoprotein cholesterol, triglycerides and blood glucose. At 386 

p < 0.05, over two thirds of tissue-specific DEGs and over 60% DMCs were identified to be correlated with at 387 

least one metabolic trait (Fig 5A, B). Notably, liver DEGs exhibited stronger correlation with free fatty acid and 388 

triglycerides, whereas adipose DEGs were uniquely associated with glucose level, which is consistent with the 389 

pathway annotation results for these tissues. On the other hand, liver DMCs showed stronger correlations with 390 

metabolic traits than those from adipose and hypothalamus tissues. 391 

Cross-examination of correlation across gene expression, DNA methylation, and metabolic traits revealed 35 392 

consistent DEG-DMC-trait associations (3 in adipose, 4 in hypothalamus, and 28 in liver) (S11 Table). For 393 

example, in adipose tissue, Fasn (also a perturbed TF hotspot in adipose, and a shared KD in adipose and liver) 394 

was correlated with its exonic DMC at chr11:120816457, and both were correlated with triglyceride level; in 395 

hypothalamus, Igf1r (Insulin Like Growth Factor 1 Receptor) was correlated with its intronic DMC at 396 

chr7:68072768, and both were correlated with blood glucose level; in liver, Adh1 (Alcohol Dehydrogenase 1A) 397 

was correlated with its intronic DMC at chr3:138287690, and both were correlated with body weight (Fig 5C). 398 

These results suggest that BPA alters local DMCs of certain genes to regulate gene expression, which may in turn 399 

regulate distinct metabolic traits. 400 

 401 
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Relevance of BPA signature to human complex traits/diseases  402 

Human observational studies have associated developmental BPA exposure with a wide variety of human 403 

diseases ranging from cardiometabolic diseases to neuropsychiatric disorders [14,15,72]. Large-scale human 404 

genome-wide association studies offer an unbiased view of the genetic architecture for various human 405 

traits/diseases, and intersections of the molecular footprints of BPA in our mouse study with human disease risk 406 

genes can help infer the potential disease-causing properties of BPA in humans. From the GWAS Catalog [58], 407 

we collected associated genes for 161 human traits/diseases (traits with fewer than 50 associated genes were 408 

excluded), and evaluated the enrichment for the trait associated genes among DEG and DMC signatures. At FDR 409 

< 5%, no trait was found to be significantly enriched for BPA DEGs. Surprisingly, despite the difference between 410 

tissue-specific DMCs (Fig 3B), 19 out the 161 traits showed consistently strong enrichment for DMCs across all 411 

three tissues at FDR < 1%. The top traits include body mass index (BMI) and type 2 diabetes (Table 1). As DNA 412 

methylation status is known to determine long-term gene expression pattern instead of immediate dynamic gene 413 

regulation, the BMI and diabetes associated genes may be under long-term programming by BPA-induced 414 

differential methylation, thereby affecting later disease risks. 415 

The above analysis involving the GWAS catalog focused only on small sets of the top candidate genes for various 416 

diseases and may have limited statistical power. To improve the statistical power, we curated the full summary 417 

statistics from 61 human GWAS that are publicly available (covering millions of SNP-trait associations in each 418 

GWAS), which enabled us to extend the assessment of disease association by considering additional human 419 

disease genes with moderate to low effect sizes (Methods). This analysis showed that DEGs from all three tissues 420 

exhibited consistent enrichment for genes associated with lipid traits such as triglycerides, LDL, and HDL (Fig 421 

6A-C). Interestingly, enrichment for birth weight and birth length was also observed for hypothalamus and liver 422 

signatures, respectively. Liver DEGs were also significantly associated with coronary artery disease, 423 

inflammatory bowel disease, Alzheimer’s disease, and schizophrenia. Top DEGs driving the inflammatory bowel 424 

disease association involve immune and inflammatory response genes (PSMB9, TAP1, TNF), whereas association 425 



 

21 

 

with Alzheimer’s disease and schizophrenia involve genes related to cholesterol homeostasis (APOA4, ABCG8, 426 

SOAT2) and mitochondrial function (GCDH, PDPR, SHMT2), respectively. These results suggest that tissue-427 

specific targets of BPA are connected to diverse human complex diseases through both the central nervous system 428 

and peripheral tissues. 429 

 430 

Discussion 431 

This multi-tissue, multi-omics integrative study represents one of the first systems biology investigations of 432 

prenatal BPA exposure. By integrating systematic profiling of the transcriptome and methylome of multiple 433 

metabolic tissues with phenotypic trait measurements, large-scale human association datasets, and network 434 

analysis, we uncovered insights into the molecular regulatory mechanisms underlying the health effect of prenatal 435 

BPA exposure. Specifically, we identified tens to hundreds of tissue-specific DEGs and DMCs involved in 436 

diverse biological functions such as metabolic pathways (oxidative phosphorylation/TCA cycle, fatty acid, 437 

cholesterol, glucose metabolism, and PPAR signaling), extracellular matrix, focal adhesion, and inflammation 438 

(arachidonic acid), with DMCs partially explaining the regulation of DEGs. Network analysis helped reveal 439 

potential regulatory circuits post BPA exposure and pinpointed both tissue-specific and cross-tissue regulators of 440 

BPA activities, including TFs such as estrogen receptors, PPARg, and HNF1A, and non-TF key drivers such as 441 

FASN. Furthermore, the BPA gene signatures and the predicted regulators were found to be linked to a wide 442 

spectrum of disease-related traits in both mouse and human. 443 

The large-scale disruption we observed in the transcriptome and methylome in adipose and liver was consistent 444 

with previous reports [32,35,73,74]. For instance, comparison of our liver DEGs with the liver signatures 445 

identified from meta-analysis of available GEO datasets showed significant overlap (P = 8.2e-3 by Fisher’s exact 446 

test, See S1 Text). However, our unique study design of examining multi-omics in multiple tissues in parallel 447 

yields higher comparability when integrating the results between data types and across tissues, as they were from 448 
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the same set of animals and were profiled in the same conditions. Furthermore, our advanced multidimensional 449 

integrative approach provides deeper insights into the regulatory cascades within and across tissues. Across all 450 

three tissues at the transcriptome level, we found that lipid metabolism and energy homeostasis related processes 451 

were consistently perturbed, with the scale of perturbation being strongest in liver. This aligns well with the 452 

significant changes in the plasma lipid profiles we observed in the offspring, the reported perturbation of lipid 453 

metabolism in fetal murine liver [74], and the reported susceptibility for nonalcoholic fatty liver diseases 454 

following BPA exposure [75-77]. The only shared gene across tissues, Cyp51, is involved in cholesterol and sterol 455 

biosynthesis and beta oxidation, again supporting that metabolism is a central target of BPA. At the methylome 456 

level, we are able to replicate 5 out of 7 peak hypomethylated genes, and 6 out of 9 peak hypermethylated genes 457 

from a study focusing on the gonadal adipose tissue [35]. We also revealed an intriguing link between BPA and 458 

lncRNAs across tissues, whose functional importance in developmental processes, disease progression, and 459 

response to BPA exposure was increasingly recognized yet underexplored [78]. Our molecular data provides 460 

intriguing lncRNA candidates such as Gm20319, Gm26917, and Yam1 for future in-depth functional analyses.  461 

For adipose tissue, clusters of genes responsible for core histones were found to be uniquely altered. Along with 462 

the strong adipose-specific differential methylation status, our results revealed gonadal adipose tissues as an 463 

especially vulnerable site for BPA induced epigenetic reprogramming. Besides, developmental BPA exposure has 464 

been previously suggested to influence white adipocyte differentiation [79-81]. However, the adipocyte 465 

differentiation pathway was not significantly enriched in our study. This is consistent with the report by Angel et 466 

al. [81], where increased adipocyte number is only found in mouse offspring with prenatal BPA exposure at 467 

5ug/kg/day and 500ug/kg/day, but not 5mg/kg/day. Additionally, we found significant changes in triglyceride 468 

biosynthesis and glucose metabolism genes, suggesting that prenatal BPA exposure affects fat storage and glucose 469 

homeostasis in the adipose tissue. Although here we mainly investigate gonadal adipose tissue as a surrogate for 470 

abdominal fat in the context of metabolic disorders, the information may be useful for exploring the relationship 471 

between this fat depot and the gonad. 472 
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With regards to the hypothalamus, our study is the first to investigate the effect of BPA on the hypothalamic 473 

transcriptome and DNA methylome. Hypothalamus is an essential brain region that regulates the endocrine 474 

system, peripheral metabolism, and numerous brain functions. We identified BPA-induced DEGs and DMCs that 475 

were enriched for extracellular matrix related processes such as axon guidance, focal adhesion, and various 476 

metabolic processes. These hypothalamic pathways have been previously associated with metabolic [40,41] and 477 

neurodegenerative diseases [40,82], and they could underlie the reported disruption of hypothalamic melanocortin 478 

circuitry after BPA exposure [83]. Our study highlights the hypothalamus as another critical yet under-recognized 479 

target for BPA. 480 

By interrogating both the transcriptome and DNA methylome in matching tissues, we were able to directly assess 481 

both global and specific correlative relationships between DEGs and DMCs (S6 Fig, Fig 3D). Specifically, we 482 

found that DEGs are more likely to have correlated DMCs in the matching tissue, a trend that persists in non-483 

promoter regions. Our results corroborate previous findings regarding the importance of gene body methylation in 484 

disease etiology [84,85]. Given that over 90% of DMCs were found in non-promoter regions, closer investigation 485 

of the regulatory circuits involving these regions may unveil new insights into BPA response [62]. 486 

Known as an endocrine disrupting chemical, BPA has been speculated to exert its primary biological action by 487 

modifying the activity of hormone receptors, including estrogen receptors, PPARg and glucocorticoid receptors 488 

[65]. Indeed, the activity for the downstream targets of Pparg and three estrogen and estrogen-related receptors 489 

were found to be disrupted in liver by prenatal BPA exposure. More importantly, our unbiased data-driven 490 

analysis revealed many novel transcription factors and non-TF regulatory genes that also likely mediate BPA 491 

effects. In fact, many of the newly identified TF targets of BPA, such as Fasn and several hepatic nuclear factors, 492 

showed much higher ranking in our regulator prediction analyses. In liver, a tightly inter-connected TF 493 

subnetwork was highly concentrated with BPA affected genes involved in metabolic processes such as 494 

cytochrome P450 system (Cyp3a25, Cyp2a12, Cyp1a2), lipid (Apoa4, Abcg5, Soat2) and glucose (Hnf1a, 495 

Adra1b, Gck) regulation, with extensive footprints of altered methylation status in the TFs and other subnetwork 496 



 

24 

 

genes (Fig 4A). Therefore, our results support a widespread impact of BPA on liver transcriptional regulation, and 497 

the convergence of differential methylation and gene expression in this TF subnetwork implies that BPA perturbs 498 

this subnetwork via epigenetic regulation of the TFs, which in turn trigger transcriptomic alterations in 499 

downstream genes. In adipose, we discovered a regulatory axis governed by Nfya and Fasn that are known 500 

regulators of fatty acid metabolism and adipogenesis. NF-YA is a histone-fold domain protein that binds to the 501 

inverted CCAAT element in the Fasn promoter [69,86], and both Nfya and Fasn were found to significantly 502 

perturbed by BPA in our study. Moreover, Fasn also serves as a cross-tissue KD, governing distinct groups of up-503 

regulated lipid metabolism genes in adipose and liver post-BPA exposure (Fig 4B), supporting its role in 504 

mediating the BPA-induced lipid dysregulation at the systemic level. The significant correlation of gene 505 

expression and methylation for Fasn with triglyceride level furthers implicates its role as a network-level 506 

regulator and biomarker for BPA induced lipid dysregulation. Our observation of Fasn is consistent with 507 

evidences suggesting its susceptibility to methylation perturbation under obesogenic feeding [87] and its causal 508 

functional importance for fatty liver diseases [42,88]. These novel regulators warrant future experimental testing 509 

of their causal regulatory role in BPA activities via genetic manipulation studies, such as knocking down or 510 

overexpressing Fasn to examine the modulation of BPA activities. 511 

One unique aspect of this study is the linking of the molecular landscape of prenatal BPA exposure to 512 

traits/diseases in both mouse and human. In our mouse study, the observed changes in body weight, lipid profiles, 513 

and glucose level are highly concordant with the functions of the molecular targets. For instance, prenatal BPA 514 

exposure perturbs both the expression levels and the local DNA methylation status of Fasn, Igf1r, and Adh1. 515 

These DEGs and their local DMCs also significantly correlate with phenotypic outcomes, thus serving as 516 

examples of how DNA methylation and gene regulation bridge the gap between BPA exposure and phenotypic 517 

manifestation.  To further enhance the translatability of our findings from mouse to human, we searched for 518 

human diseases linked to the BPA-affected genes. An intriguing discovery is the prominent overrepresentation of 519 

differential methylation signals in adipose, hypothalamus, and liver within known genes related to obesity and 520 
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type 2 diabetes, supporting that BPA may impact obesity and diabetes risk through systemic reprogramming of 521 

DNA methylation. More sophisticated analysis incorporating the BPA differential gene expression and the full 522 

statistics of human genome-wide association studies corroborated the observed connection between prenatal BPA 523 

exposure and lipid homeostasis [89], birth weight [90], and coronary artery disease [14] reported in observational 524 

studies. Moreover, our findings suggest the involvement of prenatal BPA exposure in the development of 525 

inflammatory bowel syndrome, schizophrenia, and Alzheimer’s disease. These associations warrant future 526 

investigations.  527 

One limitation of our work is the restriction of study scope to weaning age male mice with in utero BPA exposure 528 

below the NOAEL (5mg/kg/d) as a proof-of-concept for our systems biology framework. Considering that the 529 

effects of early-life exposure to BPA is highly variable and dependent on factors such as the dose, window, route, 530 

and frequency of exposure as well as genetic background, age, and sex [13], future studies testing these additional 531 

variables are necessary to generate a comprehensive understandings of BPA risks under various exposure 532 

conditions. 533 

Conclusions 534 

Our study represents the first multi-tissue, multi-omics integrative investigation of prenatal BPA exposure. The 535 

systems biology framework we applied revealed how BPA triggers cascades of regulatory circuits involving 536 

numerous transcription factors and non-TF regulators that coordinate diverse molecular processes within and 537 

across core metabolic tissues, thereby highlighting that BPA exerts its biological functions via much more diverse 538 

targets than previously thought. As such, our findings offer a comprehensive systems-level understanding of 539 

tissue sensitivity and molecular perturbations elicited by prenatal BPA exposure, and offer promising novel 540 

candidates for targeted mechanistic investigation as well as much-needed network-level biomarkers of prior BPA 541 

exposure. The strong influence of BPA on metabolic pathways and cardiometabolic phenotypes merits it 542 

characterization as a general metabolic disruptor posing systemic health risks. 543 
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MSEA. *p < 0.05 in differential expression tests for individual genes by DEseq2; **FDR < 5% in differential 762 

expression tests for individual genes by DEseq2. 763 
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liver. 765 
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adipose, hypothalamus, and liver tissue. Statistical difference of the distribution of correlation value between 767 

DEGs (FDR < 5%) and non DEGs is determined by the Kolmogorov–Smirnov test. 768 

S7 Fig. Scatter plots of correlations between DEG expression levels and DMC methylation ratios for Slc25a1 in 769 
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Tables 788 

Table 1. Top 5 human traits whose associated genes in genome-wide association studies are enriched for 789 

differentially methylated CpGs (DMCs) across adipose, hypothalamus and liver at FDR < 1% in MSEA. 790 

Human trait 
Adipose Hypothalamus Liver 

P FDR P FDR P FDR 

Obesity-related traits 1.28E-16 0.00% 3.03E-15 0.00% 2.71E-19 0.00% 

Body mass index 1.30E-13 0.00% 3.74E-07 0.00% 9.66E-12 0.00% 
Post bronchodilator FEV1/FVC 

ratio 
8.17E-09 0.00% 1.45E-08 0.00% 3.67E-07 0.00% 

Type 2 diabetes 1.21E-05 0.03% 8.97E-09 0.00% 0.001243 0.92% 

Platelet distribution width 8.16E-08 0.00% 7.62E-05 0.16% 5.20E-05 0.12% 
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Figures 791 

 792 

Fig 1. Overall study design and the measurements of metabolic traits in male and female offspring. (A) Framework of multi-omics 793 

approaches to investigate the impact of prenatal BPA exposure. B-C) Comparison of body weight, serum lipids and glucose level in male mice at 794 

weaning age. D-E) Comparison of body weight, serum lipids and glucose level in female mice at weaning age. FFA: free fatty acid; HDL: high-795 

density lipoprotein cholesterol; TC: total cholesterol; TG: triglyceride; UC: unesterified cholesterol. * p < 0.05, ** p < 0.01, *** p < 0.001 by two-796 

sided Student’s T-test. N=9-13 mice/group.797 
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Fig 2. Prenatal BPA exposure induced transcriptomic alterations in adipose, hypothalamus and liver. (A) 799 

Heatmap of expression changes in adipose, hypothalamus and liver for the top 100 differentially expressed genes 800 

(DEGs) affected by BPA. Color indicates fold change of expression, with red and blue indicating upregulation 801 

and downregulation by BPA. (B) Venn Diagram demonstrating tissue-specific and shared DEGs between tissues. 802 

(C-E) Significantly enriched pathways (FDR < 5%) among DEGs from each tissue. Enrichment p-value (shown in 803 

parenthesis following the name of functional annotation) is determined by MSEA. The fold change and statistical 804 

significance for the top 5 differentially expressed genes in each pathway are shown. *, p < 0.05; **, FDR < 5% in 805 

differential expression analysis using DEseq2.806 
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Fig 3. Prenatal BPA exposure induced methylomic level alteration in adipose, hypothalamus and liver. (A) 808 

Heatmap of methylation level changes for the top 100 differentially methylated CpGs (DMCs). Color indicates 809 

change in methylation ratio, with red and blue indicating upregulation and downregulation by BPA. (B) Venn 810 

Diagram of genes with local DMCs between tissues shows tissue-specific and shared genes mapped to DMCs. (C) 811 

Significantly enriched pathways that satisfied FDR < 1% across DMCs from adipose, hypothalamus, and liver 812 

tissues. Enrichment p-value is determined by MSEA. (D) Fold enrichment for positive correlations (red bars) or 813 

negatively correlations (blue bars) between DMCs and local DEGs, assessed by different gene regions. *, p < 814 

0.05; **, p < 0.01; ***, p < 0.0001; enrichment p-values were determined using Fisher’s exact test.815 



 

44 

 

Fig 4. Transcription factors and key drivers orchestrate BPA induced gene expression level changes. (A) Liver transcription factor 816 

regulatory networks for the top ranked transcription factors (FDR < 5%) based on enrichment of liver DEGs among TF downstream targets. 817 

Network topology was based on FANTOM5. For TFs with > 20% overlapping downstream targets, only the TF with the lowest FDR is shown. (B) 818 

Gene-gene regulatory subnetworks (Bayesian networks) for cross-tissue key drivers. Network topology was based on Bayesian network modeling 819 
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of each tissue using genetic and transcriptome datasets from mouse and human populations. For each tissue, if >= 2 datasets were available for a 820 

given tissue, a network for each dataset was constructed and a consensus network was derived by keeping only the high confidence network edges 821 

between genes (edges appearing in >= 2 studies).822 
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Fig 5. Correlation between gene expression, methylation and metabolic traits. (A) Percentage of tissue-824 

specific DEGs that are correlated with metabolic traits (p < 0.05). (B) Percentage of tissue-specific DMCs that are 825 

correlated with metabolic traits (p < 0.05). (A-B) p-values were determined using Pearson correlation test. (C) 826 

Pair-wise correlation between expression level, methylation ratio and metabolic profiles (triglyceride, glucose 827 

level, body weight) for Fasn, Igf1r and Adh1. P_cor, p-value was determined using Pearson correction test; 828 

P_DEG was determined using differential expression test; P_DMC was determined using differential methylation 829 

test. 830 
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 831 

Fig 6. Association of differential expression signatures from adipose (A), hypothalamus (B) and liver (C) 832 

with 61 human traits/diseases, color coded into nine primary categories. P-values are determined using 833 

MSEA. Red dashed line indicates the cutoff for Bonferroni-corrected p = 0.05. Names of traits/diseases whose p-834 

values didn’t pass Bonferroni-corrected cutoff were not shown. 835 


