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High-dimensional single cell profiling coupled with computational modeling holds the potential to 

elucidate developmental sequences and define genetic programs directing cell lineages.  

However, existing algorithms have limited ability to elucidate branching developmental paths or to 

identify multiple branch points in an unsupervised manner. Here we introduce the concept of 

“trajectory space”, in which cells are defined not by their phenotype but by their distance along 

nearest neighbor trajectories to every other cell in a population. We implement a tSpace 

algorithm, and show that multidimensional profiling of cells in trajectory space allows 

unsupervised reconstruction of developmental pathways, and in combination with existing 

biological knowledge can be used to infer the identity of progenitor populations and of the most 

differentiated subsets within samples. Applied to high dimensional flow and mass cytometry data, 

the method faithfully reconstructs known branching pathways of thymic T cell development, and 

reveals patterns of tonsillar B cell development and of B cell migration. Applied to single cell 

transcriptomic data, the method unfolds the complex developmental sequences and genetic 

programs leading from intestinal stem cells to specialized epithelial phenotypes. Profiling of 
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complex populations in high-dimensional trajectory space should prove useful for hypothesis 

generation in developing cell systems. 

 

Precursor cells give rise to differentiated progeny through branching developmental pathways. Single cell 

technologies hold the promise of elucidating the developmental progression and defining underlying 

transcriptomic drivers and modulators. Mass cytometry (CyTOF) and single cell RNA-seq (scRNAseq) 

can capture a high-dimensional profile of a “cellular snapshot” within analyzed tissue that contains all 

developing, renewing and differentiated cell populations. High-dimensional profiles of cells can then be 

computationally aligned to reveal developmental relationships. Several algorithms have been proposed to 

model developmental trajectories, but most require a priori knowledge (e.g. selection of starting cell(s)), or 

are limited in their capacity to visualize multiple branches or to analyze large datasets1-8.  

 

Here we show that developmental pathways can be reconstructed from single cell profiles by analyzing 

cells in “trajectory space”, in which each cell is represented by a profile or vector of its distance along 

nearest neighbor pathways to every other cell. The concept is illustrated in Fig. 1a, with a schematic 

example of 10 cells derived from cell A and analyzed with two phenotypic markers. Cells H and E are 

phenotypically similar but arise from different developmental sequences and thus are developmentally 

distant. A matrix of directionless cell-to-cell distances along the developmental pathways is constructed. 

Standard dimensionality reduction tools (e.g. principal component analysis (PCA)) are used to visualize 

and explore cell relationships in this novel trajectory space. As illustrated, the method reconstitutes the 

correct branching developmental sequences of cells in the simple example.  

 

To implement the concept, we developed a tSpace algorithm. Its application to single cell datasets relies 

on the assumptions that (i) developmental processes are gradual, (ii) all developmental stages are 

represented in the data and (iii) markers used to profile cells are regulated and sufficiently informative to 

distinguish different developmental pathways. Starting with cell profiles (phenotypes), tSpace identifies 

the (k) nearest neighbors of every cell, constructs a nearest neighbor (NN) graph that provides 

connections to all cells in the dataset, and then calculates distances from each cell to every other cell in 
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the population along NN connections. tSpace determines distances within the graph using Wanderlust1, 

an algorithm that takes advantage of waypoints and implements a weighing scheme to reduce “short-

circuits” in selecting optimal paths (Methods). In experimental datasets, we find that Wanderlust refines 

developmental branches and reduces apparent “noise” in calculated trajectories (Fig. S1).  

 

In analyses of large datasets, calculation of distances from every cell to every other cell can be 

computationally intensive and impractical. In this case, tSpace first defines cell clusters using K means or 

self-organizing map (SOM) algorithms, and then calculates distances along trajectories from one cell from 

each cluster to every other cell within the dataset. We find that in most biological samples evaluated, a 

matrix of trajectory distances from a relatively small number of cells (e.g. 100 – 1000) is sufficient to 

capture developmental pathways, although the required number is expected to depend on the complexity 

of the branching structure of cellular sequences (Fig. S1). 

 

To test the ability of tSpace to correctly determine developmental relations and reveal branch points, we 

analyzed data from different species and tissues generated with commonly used single cell platforms: 

fluorescence or mass cytometry and scRNAseq 

 

Thymic T cell development in the thymus is well established (Fig. 1b) and allowed us to validate tSpace 

performance in a defined developmental system. We generated flow cytometric profiles of mouse 

thymocytes using a panel of 13 antibodies (Supplementary Table 1). Our panel detects early T-cell 

populations (so-called “double negative” populations DN1-DN4, which lack CD4 and CD8 and are 

distinguished by CD44 and CD25 expression), double positive (DP) CD4+CD8+ cells, and CD4 or CD8 

single positive (SP) T-cells including poised thymic emigrant phenotype cells, regulatory T cells (CD4+, 

CD25+, Foxp3+) and a small fraction of SP T-cells expressing CD44, an activation and memory marker8,9. 

We manually gated on these subsets (Fig. S2)9. Unsupervised tSpace analysis reveals the expected 

bifurcation of CD4 vs CD8 lineages from the dominant DP population in thymopoiesis and correctly 

positions T-cell populations from early (DN2) to mature thymic emigrant phenotype T cells in known 

developmental relationships (Fig. 1c). DN1 cells were not present in the dataset. In addition to the 
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expected major bifurcation of CD4 vs CD8 cells arising from the dominant DP pool, the analysis reveals 

branching of regulatory T cells (Foxp3+) from the SP CD4 stage of CD4 branch. In contrast to methods 

based on clustering, tSpace highlights a developmental continuum of cells allowing exploration of 

intermediate populations. For example, tSpace visualizes DP cells in transition to the more mature SP 

CD4 and CD8 T cells. The transitional cells co-express CD4 and CD8 but some have upregulated TCR 

and CD3, a characteristic of positively selected cells10. Conventional clustering using t-SNE identifies the 

major subsets, but does not clarify developmental relationships (Fig. 1d). 

 

To evaluate expression of markers during development of CD4 cells, we manually gated on cells along 

the path from DN2 cell to CD4 thymic poised emigrants (inset Fig. 1c), aligned them along a linear 

trajectory (Methods) and evaluated expression in a heatmap. The results capture regulation of the 

markers as cells progress towards maturity, recapitulating studies of the phenotypic stages of thymic T 

cell development. Examined protein expression trends confirm previously reported upregulation of CCR9 

in DN3 cells and reveal notably stronger expression in DN4-DP transitioning cells. CCR9 chemokine 

receptor binds CCL25 and promotes T-cell cortical positioning11.  

 

Single cell analyses hold the potential to provide insights into patterns of cell development in settings not 

accessible to experimental manipulation, as in the human. We applied tSpace to the development of B 

cells in human tonsils. Naïve (IgD+) B cell differentiation towards Immunoglobulin A or G (IgA, IgG) class-

switched memory or plasma cells has been investigated. However, the sequence of class switch and fate 

determining decision points is still not entirely understood12,13. We used a panel of mass labeled 

antibodies that detects ~25 markers of B cell subsets and maturation (Supplementary Table 2) to stain 

human tonsils and blood. We gated on B cells and plasmablasts (Fig. S3) and applied tSpace (Fig. 2a).  

 

tSpace analysis provided trajectories leading to the 4 most prominent terminal tonsil populations, IgG and 

IgA class switched memory cells and plasmablasts (PB). The first principal component in trajectory space 

(tPC1) delineates the transition from naïve to germinal center cells (GCC, Fig. 2b); tPC2 the differentiation 

of memory or plasma cells; tPC4 pathways to IgA vs IgG class switched cells (Fig. 2c). Early naïve cells 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 1, 2018. ; https://doi.org/10.1101/336313doi: bioRxiv preprint 

https://doi.org/10.1101/336313


express CXCR5 and CCR6 which mediates lymphoid tissue entry. A broad strand of cells connects naïve 

IgD+ B cells to the cluster of proliferating GC centroblasts and centrocytes (Fig. 2a, S4a-c). Along this 

path from naïve cells, IgD and IgM are downregulated as cells transition to CD38+CD77+ centroblasts. 

There are clear trajectories from GCC to class switched PB and memory cells. CD27 is upregulated in 

memory B cell branches (Fig. S4d-f). Subsets of tonsil memory cells express CXCR3 and CLA (Fig S4e-

h). CLA is induced during immune responses associated with squamous epithelial surfaces including the 

oral mucosa, and squamous epithelial cells interdigitate into tonsillar lymphoid tissue14-16. Thus, the CLA+ 

memory cells may be generated de novo from GCC in the tonsil. CD38, present on activated B cells and 

GCC, is further induced and CD19 and CD20 are lost in developing plasma cells (Fig. S4i-j).  

 

The pathways from GC to differentiated IgA and IgG PB are well delineated along tight branches. In 

contrast, class switched IgG+ and IgA+ memory B cells are relatively dispersed in trajectory space (Fig. 

2c, Fig. S4e-f): they constitute a “cloud” of cells some of which branch from the GC pool as mentioned, 

while others are closer in trajectory space to the path from naïve to GCs. This shows that tSpace does 

not “force” cells into specific developmental sequences or paths. Since cell alignment in trajectory space 

does not intrinsically provide directional information, the presence of IgG and IgA expressing B cells 

“near” the naïve to GC path would be consistent either with class switching of B cells during the naïve to 

GC transition, or with integration of previously committed memory cells into the developmental pathway to 

GC. Low expression of CD27 and retention of naïve markers CCR6, CXCR5 and 47 on the class 

switched cells adjacent to the “naïve to GC” sequence is most consistent with the former interpretation 

(Fig. S5). While class switch recombination is normally attributed to the GC reaction, in experimental 

settings class switching can occur prior to GC formation, and it is observed in T-independent B cell 

responses as well17. tSpace analysis raises the possibility that, even in steady state human tonsil, some 

activated B cells make the class switch decision prior to becoming GC. This corresponds to reports that 

unswitched memory B cells with high receptor affinity can emerge from naïve B cells 19,20. In contrast to 

their class-switched counterparts, IgM memory cells (CD27+, CD38-) appeared more closely connected to 

naïve (IgM+, IgD+, CD27-, CD38-) cells in most tPCs, with tPC2 specifically expanding this trajectory (Fig. 

2b).  
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Mature effector and memory cells leave their sites of antigen activation and circulate via the blood to 

distant organs and tissues14. We reasoned that trajectories should thus link terminally differentiated cells, 

ready to exit their site of generation, with progeny cells in blood. Indeed, when we applied tSpace to 

combined blood and tonsil B cells datasets, blood PB aligned at the termini of tonsillar IgG and IgA PB 

branches (Fig. 2d). In contrast, blood memory cells and naïve IgD+ cells overlapped extensively with their 

tonsillar counterparts in trajectory space, presumably reflecting their recirculation and interchange 

between lymphoid tissues and blood (Fig. 2d). The results show that the approach can unfold inter-organ 

transitions (i.e. migration patterns) of immune cells in settings where experimental analyses of leukocyte 

trafficking are challenging, as in humans. However, more extensive panels of trafficking associated 

receptors, or single cell gene expression analyses, will be necessary to increase the accuracy of inter-

organ trajectories. 

 

Single cell RNAseq is emerging as a powerful tool for the characterization of cell populations and 

provides rich cellular profiles for studying cell relationships. We applied tSpace to published scRNAseq 

data from mouse intestinal epithelial cells18. Intestinal epithelium forms the single-cell layer separating the 

lumen of small intestine from intestinal lamina propria. Almost all cells in the epithelium have a short life-

span of about 4-7 days19 and continuous renewal is driven by division of Lgr5+ crypt base columnar (CBC) 

cells residing in the bottom of the intestinal crypts. The cells further divide in the transit-amplifying (TA) 

zone of the crypt and differentiate into absorptive (enterocyte) or secretory (Goblet cell, Paneth cell, 

enteroendocrine (EE) cell) lineages.  

 

We ran tSpace on the set of 3521 cells from Yan, K. S. et al.18 using 2420 variable genes (Methods). 

tSpace clearly delineates absorptive/enterocyte and secretory/EE development, both arising from Lgr5+ 

CBC cells, and positions cell types in developmentally meaningful relations (Fig. 3a, S6, for cell labels 

see Methods). To assess the validity of tSpace alignments we isolated the early segment of the EE 

branch, preceding the differentiation of various terminal EE subsets, along with the enterocyte trajectory 

(Fig. 3a-c) and examined gene expression of selected hallmarks of intestinal differentiation20 along these 
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developmental trajectories. The Wnt agonist Lgr5 and its homolog Lgr4 are in resting CBC and dividing 

slow-cycling CBC (sc-CBC) cells, but the analysis shows that Lgr4 expression is retained in post-mitotic 

cells differentiating towards absorptive enterocytes from cycling TA (c-TA), suggesting that in addition to 

its known role in proliferation of TA cells21 it may contribute to enterocyte fate or specification. 

Additionally, we confirm Ascl222, OlfM423 and Prom124 as robust markers of the presumptive crypt 

populations (CBC to TA cells) and show that the expression of Prom1 extends into the TA pool, 

confirming previous findings25 (Fig. 3d, S7a).  

 

tSpace clearly positions Dll1-expressing cells in trajectory space between CBC cells and mature EE 

populations (Fig. 3d). These cells resemble previously described short-lived secretory progenitors 

(slEEP)26, which upregulate EE lineage specification genes Neurog3, Neurod1 and Neurod226,27. In the 

original analysis of this scRNAseq data, these sIEEP were labeled either as cycling stem cells (cSC) or 

Goblet cells (Fig. 3d, S6, S7A), reflecting the fact that the existing analytical tools applied (t-SNE, SPADE) 

failed to define these cells either as a discrete subset or as a precursor population. Their location in 

trajectory space however clearly suggests that slEEPs give rise to all other EE subsets. In this prediction, 

tSpace analysis is consistent with published fate mapping studies26-28. Thus, the patterns of gene 

expression and cell positioning in trajectory space mirror observations from decades of research on 

intestinal development (Fig. 3d, S7a). 

 

tSpace segregates some sc-CBC and c-TA cells to the early EE or enterocyte branches, suggesting that 

they are already developing towards if not committed to EE or enterocyte fates. In order to identify 

transcription factors (TF) that might specify fate within these early progenitors, we initially aligned the EE 

and enterocyte trajectories (Fig. 3b-c) using dynamic time warping29, and compared TFs between aligned 

segments (Fig. S7b). Four TF modules were identified (Fig. S7c, 3e). The first is expressed among early 

dividing cSC and TA, presumably crypt cells, cells that are shared between the stem to EE and stem to 

enterocyte trajectories (M1). TFs in this module are involved in proliferation and DNA maintenance (e.g. 

Ccna2, Cdk2, Fancd2, Rbl1). Three additional modules differentiate the two branches (M2-M4, Fig. S7c, 

3E). The M2 TFs (e.g. Foxa2, Foxa3, Neurog3, Sox4, Sox9) are expressed by early cells but maintained 
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after stages 3-4 (late CBC cells) selectively in the EE branch; these TFs have been associated with 

endocrine and pancreatic development and may coordinate secretory pathways within intestinal 

enteroendocrine cells30. Among M2 TFs, tSpace reveals specific high expression of Sox4 in slEEP cells, 

suggesting a role in EE specification31 (Fig. 3e, S6c,e). 

 

The M3 and M4 TFs are expressed preferentially in the enterocyte branch. The M3 TFs activate lipid and 

cholesterol metabolism (e.g. Cebpb, Klf5, Nr5a2, Fig. S7c, Fig. 3e), known to be important for mature 

enterocytes32,33. Nfe2l2 and Maf, part of the M4 module, suggest associated activation of Nfe2l2/Nrf2-

antioxidant response element (ARE) pathway34. Enterocytes utilize short fatty acids as a source of 

energy, and fatty acid metabolism generates reactive oxygen species (ROS). ROS are also abundant in 

the intestinal lumen35. Upregulation of the Nfe2l2-ARE pathway may help protect differentiating 

enterocytes from oxidative damage35. Taken together (Fig. 3f), the trajectory analysis shows that rapidly 

proliferating sc-CBC and c-TA cells (crypt cells) are already heterogeneous and express gene programs 

leading to secretory vs. absorptive phenotypes.  

 

In conclusion, we have presented the concept of trajectory space and its implementation in the tSpace 

algorithm for elucidation of branching developmental pathways and mechanisms from single cell profiles. 

tSpace performs well across different biological systems and platforms and reveals known and novel 

biology. A number of methods for aligning cells in developmental sequences have been described, and 

recent reviews highlight their unique features and limitations8. tSpace compares favorably to published 

algorithms: It allows non-supervised discovery and exploration of branching developmental sequences. It 

does not require prior knowledge, selection of minimal parameter sets or clustering. It is capable of 

positioning rare cells in proper developmental alignment, and is applicable to large datasets. The output is 

deterministic and intuitive. We believe that tSpace will prove useful to the rapidly growing field of singe 

cell analysis. 
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Figure 1. tSpace orders thymic T-cells in correct developmental trajectories and recovers expression patterns 

of markers of T-cell differentiation. a A simple example illustrates the concept of trajectory space. The “cells” are 

marked with the letters (A-I) and their developmental sequences with arrows. A matrix of cell to cell distances along 

developmental paths is created. Visualization of cell positions in this “trajectory space” cells recapitulates branching 
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developmental pathways. b An overview of thymic T-cell development with immunophenotypic markers, starting 

from T-cell progenitors through poised thymic emigrants and specialized T-cells (e.g. Treg CD4+, CD25+, Foxp3+). 

Populations labeled in bold were detected in FACS data. c Unsupervised tSpace analysis of T-cell development in 

mouse thymus restores developmental relations between conventional T-cell populations. d t-SNE of thymic T-cells 

defines clusters but not developmental relationships. It fails to identify a unique DP* transitional population between 

DP and SP CD4 or CD8 T-cells, indicating loss of sensitivity to distinguish smaller populations when close to 

abundant ones (for example comparison of the more dominant DP from the DP* populations in C: tSpace and D: t-

SNE). e Isolated trajectory from DN2 precursors to CD4 thymic emigrants. f Smoothed expressions of measured 

markers along isolated trajectory (E) reveals patterns of protein regulation during T-cell differentiation. The position 

of manually defined subsets along the isolated trajectory is shown as a reference above the heatmap. The abundance 

of DP cells, seen as a broad peak (tip not shown) of cell density in the trajectory, correlates with increased CCR9. 

DN - double negative T-cells; APC - antigen presenting cell; CD4 emig. - CD4+ T-cell poised emigrants; CD8 emig. 

- CD8+ T-cell poised emigrants. 
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Figure 2. tSpace analysis of B cell differentiation in tonsils and inter-organ trajectories with blood. a tSpace 

unravels maturation paths of B cells starting from naïve B cells in tonsil throughout GC into memory B cells and 

plasmablasts (PB). Blue arrows mark suggested directionalities based on known biology. b-c Different principal 

components reveal branches and potential developmental relationships in tonsillar B cell maturation. Ellipses show 

80% confidence intervals for indicated clusters. d Blood PB align as an extension of tonsillar PB trajectories, while 

recirculating blood memory B cells overlap with the major tonsil memory cell clouds. In D, tonsil B cells are in light 

gray. 
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Figure 3. tSpace analysis of mouse small intestinal epithelial cells based on scRNAseq data. a tSpace separates 

trajectories to enterocytes, enteroendocrine (EE), Paneth and Goblet cells. For cell population labels see Methods 

and Fig. S6. Shaded area indicates short lived EE progenitors (slEEP) cells. b Isolated enterocyte trajectory. c 

Isolated EE trajectory. d Expression patterns of selected genes20 (known markers or regulators of intestinal crypt 

development; expanded gene list in Fig. S7a) along the isolated trajectories confirm known biology. e Four detected 

transcription factor modules in early trajectories: M1 comprises of TFs involved in cell cycle and genome integrity, 
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while M2 and M3-M4 differentiate the two lineages. M2 characterizes the EE branch and consists of TFs involved 

in secretory (e.g. endocrine pancreas) development, while TFs in M3-M4 are modulated by fatty acids (FA), retinoic 

acid (RA), bile acids (BA), amino acids (AA) and upregulate lipid/cholesterol metabolism together with 

Nrf2/antioxidant response element (ARE) pathways. M3-M4 likely drive changes in TA cells that lead to enterocyte 

lineage commitment. f Summary of the detected changes between two lineages. Different genes in the TGF- and 

circadian rhythm pathways are expressed in the two lineages (genes in blue above the cartoon). TFs enriched in the 

EE branch are involved in endocrine secretory cell development; while TFs associated with enterocyte commitment 

include regulators of lipid/cholesterol metabolism. Consistent with the literature, peak expressions of Dll1 and Sox4 

in EE branch (Fig. 3d-e), and Apli in enterocyte branch (Fig. S6c) mark specific progenitor cells: these may correlate 

to the +4/+5 position in the intestinal crypt26,31,36: We propose that lineage programs start to drive differentiation at 

this stage. The EE module M2 and enterocyte module M4 have TF’s associated with myeloid vs lymphoid 

commitment in hematopoiesis, respectively. 
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