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High-dimensional single cell profiling coupled with computational modeling holds the potential to 
elucidate developmental sequences and define genetic programs directing cell lineages.  
Here we introduce an approach to the discovery and exploration of developmental pathways 
based on the concept of “trajectory space”, in which cells are defined not by their phenotype but 
by their distance along nearest neighbor trajectories to every other cell in a population. We 
implement a tSpace algorithm, and show that multidimensional profiling of cells in trajectory 
space allows unsupervised reconstruction of complex developmental sequences. tSpace is 
robust, scalable, and implements a global approach to trajectory analysis that attempts to 
preserve both local and distant relationships in developmental pathways. Applied to high 
dimensional flow and mass cytometry data, the method faithfully reconstructs known branching 
pathways of thymic T cell development, and reveals patterns of tonsillar B cell development and 
of B cell migration. Applied to single cell transcriptomic data, the method unfolds the complex 
developmental sequences and genetic programs leading from intestinal stem cells to specialized 
epithelial phenotypes. Profiling of complex populations in high-dimensional trajectory space 
should prove useful for hypothesis generation in developing cell systems. 
 
Precursor cells give rise to differentiated progeny through branching developmental pathways. Single cell 
technologies hold the promise of elucidating the developmental progression and defining underlying 
transcriptomic drivers and modulators. Mass cytometry (CyTOF) and single cell RNA-seq (scRNAseq) 
can capture a high-dimensional profile of a “cellular snapshot” within analyzed tissue that contains all 
developing, renewing and differentiated cell populations. High-dimensional profiles of cells can then be 
computationally aligned to reveal developmental relationships. 
 
Here we show that developmental pathways can be reconstructed from single cell profiles by analyzing 
cells in “trajectory space”, in which each cell is represented by a profile or vector of its distances along 
nearest neighbor pathways to every other cell. The concept is illustrated in Fig. 1a, with a schematic 
example of several cells derived from cell A and analyzed with two phenotypic markers. Cells H and E are 
phenotypically similar but arise from different developmental sequences and thus are developmentally 
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distant. A dense matrix of cell-to-cell distances along the developmental pathways is constructed. 
Standard dimensionality reduction tools [e.g. principal component analysis (PCA), UMAP] are used to 
visualize and explore cell relationships in this novel trajectory space. As illustrated, the method 
reconstitutes the correct branching developmental sequences of cells in the simple example.  
 
To implement the concept, we developed a tSpace algorithm. Its application to single cell datasets relies 
on the assumptions that (i) developmental processes are gradual, (ii) all developmental stages are 
represented in the data and (iii) markers used to profile cells are regulated and sufficiently informative to 
distinguish different developmental pathways. Starting with cell profiles (phenotypes), tSpace identifies 
the (K) nearest neighbors of every cell, constructs a nearest neighbor (NN) graph that provides 
connections to all cells in the dataset; calculates distances from each cell to every other cell in the 
population along NN connections; and exports a dense matrix of N x T (number of cells x number of 
calculated “trajectories”, vectors of cell-to-cell distances within the manifold) dimensions. tSpace 
determines the distances within the KNN graph using Wanderlust1, an algorithm that takes advantage of 
subgraphs and waypoints, and which implements a weighting scheme to reduce “short-circuits” in 
selecting optimal paths (Fig. S1). The Wanderlust algorithm has been described in detail1. It significantly 
improves the definition of branching pathways even in simple flow cytometry datasets (Fig. S1). We 
outline the effects of varying user-defined Wanderlust parameters on tSpace in the Supplementary 
Methods (Fig. S2). tSpace detection of developmental branches is robust over a range of input 
parameters, allowing implementation of default settings that work well in different applications. The 
tSpace output also provides principal component and UMAP embedding of cells in trajectory space, 
suitable for visualization and biological exploration of developmental pathways. It also exports the matrix 
of trajectories (cell-to-cell distances) useful for analysis of e.g. gene/protein expression changes along 
isolated linear developmental branches. 
 
For samples with large number of cells (N), tSpace has the option of calculating fewer trajectories, but it is 
important that these trajectories start from cells well distributed throughout phenotypical space. K-means 
clustering identifies groups of cells that are well distributed within phenotypical space, and we calculate 
trajectories from one cell from each cluster. The clusters are not used for further analysis. As illustration of 
this feature, tSpace recovers thymic T cell maturation branches from as few as 25 – 100 trajectories (Fig. 
S1).  
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Figure 1. tSpace orders thymic T cells in correct developmental trajectories and recovers expression patterns 
of markers of T cell differentiation. a A simple example illustrates the concept of trajectory space. The “cells” are 
marked with the letters (A-I) and their developmental sequences with arrows. A matrix of cell-to-cell distances 
along developmental paths is created. Visualization of cell positions in this ‘trajectory space’ recapitulates branching 
developmental pathways. b An overview of thymic T cell development with immunophenotypic markers, starting 
from T cell progenitors through poised thymic emigrants and specialized T cells (e.g. Treg CD4+, CD25+, Foxp3+). 
Populations labeled in bold were detected in FACS data. c Unsupervised tSpace analysis of T cell development in 
mouse thymus restores developmental relations between conventional T cell populations. d t-SNE of thymic T cells 
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defines clusters but not developmental relationships. It fails to identify a unique DP* transitional population between 
DP and SP CD4 or CD8 T cells, indicating loss of sensitivity to distinguish smaller populations when close to 
abundant ones (for example comparison of the more dominant DP from the DP* populations in C: tSpace and D: t-
SNE). e Isolated trajectory from DN2 precursors to CD4 thymic emigrants. f Smoothed expressions of measured 
markers along isolated trajectory (E) reveals patterns of protein regulation during T cell differentiation. The position 
of manually defined subsets along the isolated trajectory is shown as a reference above the heatmap. The abundance 
of DP cells, seen as a broad peak (tip not shown) of cell density in the trajectory, correlates with increased CCR9. 
DN - double negative T cells; APC - antigen presenting cell; CD4 emig. - CD4+ T cell poised emigrants; CD8 emig. 
- CD8+ T cell poised emigrants. 
 
To test the ability of tSpace to correctly determine developmental relations and reveal branch points, we 
analyzed data generated with commonly used single cell platforms: fluorescence or mass cytometry and 
scRNAseq. 
 
Thymic T cell development in the thymus is well established (Fig. 1b) and allows validation of tSpace in a 
defined system. We generated flow cytometric profiles of mouse thymocytes using a panel of 13 
antibodies (Supplementary Table 1). Our panel detects early T cell populations (so-called ‘double 
negative’ populations DN1-DN4, which lack CD4 and CD8 and are distinguished by CD44 and CD25 
expression), double positive (DP) CD4+CD8+ cells, and CD4 or CD8 single positive (SP) T cells including 
poised thymic emigrant phenotype cells, regulatory T cells (CD4+, CD25+, Foxp3+) and a small fraction of 
SP T cells expressing CD44, an activation and memory marker. We manually gated on these subsets and 
labeled them (Fig. S3)2. Unsupervised tSpace analysis reveals the expected bifurcation of CD4 vs CD8 
lineages from the dominant DP population in thymopoiesis and correctly positions T cells from early 
(DN2) to mature thymic emigrant phenotype T cells in known developmental relationships (Fig. 1c). DN1 
cells were not present in the dataset. In addition to the expected major bifurcation of CD4 vs CD8 cells 
arising from the dominant DP pool, the analysis reveals branching of regulatory T cells (Foxp3+) from the 
SP CD4 stage of CD4 branch. In contrast to methods based on clustering, tSpace highlights a 
developmental continuum of cells allowing exploration of intermediate populations. For example, tSpace 
visualizes DP cells in transition to the more mature SP CD4 and CD8 T cells. The transitional cells co-
express CD4 and CD8 but some have upregulated TCRb and CD3e, a characteristic of positively selected 
cells3. Conventional clustering, based on measured markers, using t-SNE identifies the major subsets, 
but does not clarify developmental relationships (Fig. 1d).  
 
The tSpace output allows evaluation of expression of markers along developmental paths. To illustrate 
this for CD4 cell differentiation, we manually gated on cells along the path from DN2 cell to CD4 thymic 
poised emigrants (inset Fig. 1c), identified and averaged trajectories in the exported tSpace matrix that 
started from early DN2 cells, and displayed marker expression by cells vs their trajectory distance from 
DN2 cells in a heatmap (Methods). The results capture regulation of the markers as cells progress 
towards maturity, recapitulating known phenotypic progression of thymic T cell development and 
highlighting details of transitional states. For example, protein expression trends confirm upregulation of 
CCR9 in DN3 cells but reveal notably stronger expression in DN4-DP transitioning cells. CCR9 
chemokine receptor binds CCL25 and promotes T cell cortical positioning4.  
 
Single cell analyses hold the potential to provide insights into patterns of cell development in settings not 
accessible to experimental manipulation, as in the human. We applied tSpace to the development of B 
cells in human tonsils. Naïve (IgD+) B cell differentiation towards Immunoglobulin A or G (IgA, IgG) class-
switched memory or plasma cells has been investigated. However, the sequence of class switch and fate 
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determining decision points is still not entirely understood5,6. We used a panel of mass labeled antibodies 
that detects ~25 markers of B cell subsets and maturation (Supplementary Table 2) to stain human tonsil 
lymphocytes. We applied tSpace (Fig. 2a) and subsequently gated on B cell subsets for visualization (Fig. 
S4).  
 
tSpace analysis defines developmental sequences leading to the 4 terminal tonsil B cell populations, IgG 
and IgA class switched memory cells and plasmablasts (PB). The first trajectory space principal 
component (tPC1) delineates the transition from naïve to germinal center cells (GCC, Fig. 2b); tPC2 the 
differentiation of memory or plasma cells; tPC3 and tPC4 pathways to IgA vs IgG class switched cells 
(Fig. 2c). Early naïve cells express CXCR5 which mediates lymphoid tissue entry and follicle homing (Fig 
S5). A broad strand of cells connects naïve IgD+ B cells to the cluster of proliferating GC centroblasts and 
centrocytes (Fig. 2a, S5a-c). Along this path from naïve cells, IgD and IgM are downregulated as cells 
transition to CD38+CD77+ centroblasts. There are also clear trajectories from GCC to class switched PB 
and memory cells. CD27 is upregulated in memory B cell branches (Fig. S5d-f), along with trafficking 
receptor CLA (Fig. S5e-h) that is induced in response to immune challenge at squamous epithelial 
surfaces including the oral mucosa. CXCR3, implicated in lymphocyte homing to inflamed tissues7,8 is 
coordinately ‘upregulated’ in the transition to memory cells as well. Appearance of these receptors along 
trajectories from GCC to memory cells suggest that CLA and CXCR3 may be induced in response to 
environmental signals in the GCC in the tonsil. CD38, present on activated B cells and GCC, is further 
induced and CD19 and CD20 are lost in developing plasma cells (Fig. S5i-j).  
 
The pathways from GC to differentiated IgA and IgG PB are well delineated along tight branches. In 
contrast, class switched IgG+ and IgA+ memory B cells are relatively dispersed in trajectory space (Fig. 
2c, Fig. S5e-f): they constitute a “cloud” of cells some of which branch from the GC pool as mentioned, 
while others are closer in trajectory space to the path from naïve to GCs. This shows that tSpace does 
not constrain or “force” cells into specific developmental sequences or paths, but instead positions each 
cell in a likely developmental context with all others even when cell transitions are biologically or 
phenotypically diffuse. Since cell alignment in trajectory space does not intrinsically provide directional 
information, the presence of IgG and IgA expressing B cells “near” the naïve to GC path would be 
consistent either with class switching of B cells during the naïve to GC transition, or with integration of 
previously committed memory cells into the developmental pathway to GC. Low expression of CD27 and 
retention of naïve markers CCR6, CXCR5 and a4b7 on the class switched cells adjacent to the “naïve to 
GC” sequence is most consistent with the former interpretation (Fig. S6). While class switch 
recombination is normally attributed to the GC reaction, in some mouse models class switching can occur 
prior to GC formation, and it is observed in T-independent B cell responses as well9. tSpace analysis 
suggests that, in steady state human tonsil, activated B cells can undergo IgA or IgG class switching and 
conversion to memory cells without transiting through the GC reaction. In contrast to their class-switched 
counterparts, IgM memory cells (CD27+, CD38-) are more closely connected to naïve (IgM+, IgD+, CD27-, 
CD38-) cells in most tPCs, with tPC2 specifically expanding this trajectory (Fig. 2b). Thus, tSpace 
recapitulates known pathways of tonsil B cell development and differentiation, presents evidence that 
human B cells can follow alternative paths that have only been described in animal studies, and reveals 
the developmental stage(s) and transitions at which tissue and inflammation-specific trafficking receptors 
are induced. 
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Figure 2. tSpace analysis of B cell differentiation in tonsils and inter-organ trajectories with blood. a tSpace 
unravels maturation paths of B cells starting from naïve B cells in tonsil throughout GC into memory B cells and 
plasmablasts (PB). Magenta arrows mark suggested directionalities based on known biology. b-c Different principal 
components reveal branches and potential developmental relationships in tonsillar B cell maturation. Ellipses show 
80% confidence intervals for indicated clusters. 
 
Single cell RNAseq is emerging as a powerful tool for the characterization of cell populations and 
provides rich cellular profiles for studying cell relationships. We applied tSpace to published scRNAseq 
data from mouse intestinal epithelial cells10. Intestinal epithelium forms the single-cell layer separating the 
lumen of small intestine from intestinal lamina propria. Almost all cells in the epithelium have a short life-
span of about 4-7 days11 and continuous renewal is driven by division of Lgr5+ crypt base columnar (CBC) 
cells residing in the bottom of the intestinal crypts. The cells further separate in the transit-amplifying (TA) 
zone of the crypt and differentiate into absorptive (enterocyte) or secretory [goblet cell, Paneth cell, 
enteroendocrine (EE) cell] lineages.  
 
We ran tSpace on the set of 3521 cells from Yan, K. S. et al.10 using 2420 variable genes (Methods). 
tSpace clearly delineates absorptive/enterocyte and secretory/EE developmental paths, both arising via 
transit amplifying (TA) cells from Lgr5+ CBC cells (Fig. 3a, Fig. S7c-d). Goblet and Paneth cells define 
short branches from the proliferating TA pool. tSpace positions Dll1-expressing cells in trajectory space 
between CBC cells and mature EE populations (Fig. 3a, shaded grey rectangle). These cells express 
genes that define short-lived secretory progenitors (slEEP)12, which upregulate EE lineage specification 
genes Neurog3, Neurod1 and Neurod2 (Fig. 3d)13,14. Consistent with their location in tSpace projection, 
sIEEP are well-documented precursors of EE cells12–14. The EE branch proceeds through EE3 cells, 
recently identified as EE intermediates, giving rise to specialized mature enteroendocrine subsets10 (for 
cell labels see Methods and Fig. S8). Interestingly, sparse intermediates link a single tuft cell population 
to both CBC/TA and to EE3 cells. While the number of intermediates defining these two pathways to tuft 
cells would suggest caution in interpretation, it is noteworthy that a dual origin of tuft cells (directly from 
Lrg5+ CBC cells but also from EE3 enteroendocrine cells) has been proposed from multiple lines of 
evidence10,15. tSpace performed well in comparison with SPADE16, a minimum spanning tree (MST) 
algorithm applied to visualize trajectory relationships in the original analysis of this scRNAseq dataset. 
SPADE10 and tSpace both delineate the major CBC to enterocyte and EE branches, the relationship of 
goblet and Paneth cells to CBC/TA, and the terminal branching of EE subsets. However, SPADE 
provides a 2D representation of a MST structure, an approach that is inherently challenged by non-tree-
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like developmental paths, such as the paths from EE3 and CBC that converge on tuft cells (Figs. 3a, S7c-
d). While tSpace identifies a single tuft cell pool with dual connections, SPADE analysis forced tufts cells 
into two disconnected populations, one arising from CBC cells and the other from intermediates leading to 
EE3 cells. SPADE also failed to detect or properly position slEEP on the path to EE cells.10 In contrast to 
tSpace which positions each cell in trajectory space, SPADE and related MST algorithms rely on prior 
definition of cell clusters and limited gene sets, features which run the risk of missing or mislabeling 
important cell intermediates10. sIEEP were defined either as cycling CBC or goblet cells in the published 
analysis, and were subsumed in biologically inappropriate clusters (Figs. S8a, S9a). 
 
The ability of tSpace to position all cells (not just clusters or cluster centers) in developmental 
relationships allows additional interesting insights. tSpace trajectories reveal a common ‘trunk’ leading to 
secretory and absorptive branches, but many sc-CBC and c-TA cells (defined Fig. S8) actually segregate 
to the early EE or enterocyte branches, suggesting that they are already developing towards if not 
committed to EE or enterocyte fates. To illustrate the application of tSpace to explore developmental 
progression of gene expression in this context, we isolated trajectories within the tSpace distance matrix 
starting from the Lrg5+ CBC cell population, gated on cells of the enterocyte branch and cells within the 
early segment of the EE branch preceding EE3 (Fig. 3a-c), and plotted gene expression of cells vs their 
distance from CBC cells (Fig. 3d). We focused initially on genes for known hallmarks of intestinal 
differentiation (Fig. 3d, S9a)17. The analysis confirms Ascl218, OlfM419 and Prom120 as robust markers of 
the presumptive crypt populations (CBC to TA cells) and reveals that the expression of Prom1 extends 
into the TA pool, confirming previous findings21 (Fig. 3d, S9a). The Wnt agonist Lgr5 and its homolog Lgr4 
are in resting CBC and dividing slow-cycling CBC (sc-CBC) cells, but the analysis shows that Lgr4 
expression is retained in post-mitotic cells differentiating towards absorptive enterocytes from cycling TA 
(c-TA), suggesting that in addition to its known role in proliferation of TA cells22 it may contribute to 
enterocyte fate or specification. 
 
Patterns of expression of transcription factors (TF) along the trajectories suggest combinations of them 
that might specify fate within these early progenitors, and/or control downstream cell specialization. At 
least 4 distinct TF modules were identified (Methods) based on their patterns of regulation along the EE 
or enterocyte branches (M1-M4, Fig. 3e, S9c). Genes for proliferation and DNA maintenance (M1, e.g. 
Ccna2, Cdk2, Fancd2, Rbl1) are expressed by dividing sc-CBC and TA “early” along the trajectory, as 
expected. A second module of TF genes is also expressed by early cells but is maintained selectively in 
the EE branch: these include TF’s associated with endocrine and pancreatic development (e.g. Foxa2, 
Foxa3, Neurog3, Sox4, Sox9) that may coordinate secretory pathways within intestinal enteroendocrine 
cells23. Interestingly, among these, tSpace reveals an unexpectedly high and selective expression of 
Sox4 in slEEP cells, suggesting it as a novel candidate contributor to EE specification24 (Fig. 3e, S8c, e). 
Modules 3 and 4 TFs are expressed preferentially in the enterocyte branch. They include TF involved in 
lipid and cholesterol metabolism required for mature enterocytes (e.g. Cebpb, Klf5, Nr5a2, Fig. 3e, 
S9c)25,26, but also Nfe2l2 and Maf associated with the activation of Nfe2l2/Nrf2-antioxidant response 
element (ARE) pathway27. Enterocytes utilize short fatty acids as a source of energy, and fatty acid 
metabolism generates reactive oxygen species (ROS), and ROS are also abundant in the intestinal 
lumen28. Upregulation of the Nfe2l2-ARE pathway may help protect differentiating enterocytes from 
oxidative damage28. The analysis also identifies Isx and Ski (both within M3) as putative markers of TA 
cells selectively within the early enterocyte developmental branch.  
 
Overall, the patterns of gene expression and cell positioning in trajectory space reflect observations from 
decades of research on intestinal development (Fig. 3d, S9a), but also suggest refinements to current 
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understanding (e.g. many dividing c-TAs in the crypt already express gene programs leading to secretory 
vs. absorptive phenotypes). tSpace analyses also highlight novel pathways and mechanisms of cell 
differentiation, including genes for transcription factors and receptors that may regulate cell fate (Fig. 3f). 

 
Figure 3. tSpace analysis of mouse small intestinal epithelial cells based on scRNAseq data. a tSpace separates 
trajectories to enterocytes, enteroendocrine (EE), Paneth and goblet cells. CBC and TA subsets were defined by our 
analysis, as described in Fig. S8., other subsets are labeled as in Yan et al.10. Shaded rectangle highlights the 
position of short-lived EE progenitors (slEEP) cells. b Isolated enterocyte trajectory. c Isolated EE trajectory. d 
Expression patterns of selected genes17 (known markers or regulators of intestinal crypt development; expanded 
gene list in Fig. S9a) along the isolated trajectories. e Four detected transcription factor modules in early trajectories, 
identified by comparing gene expression between cells at similar stages in the two trajectories (Methods): M1 
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comprises TFs involved in cell cycle and genome integrity expressed in precursor populations (early in the shared 
trajectory). M2 and M3-M4 differentiate the two lineages and comprise TF’s that may determine cell fate or 
specialization (see text). Cell stage (Methods) and cell identities defined here (Cell type) or in Yan et al. (Original 
labels) are indicated above the heatmap. ND –fully differentiated enterocytes, not used in trajectory alignment. f 
Summary of differences between two branches suggested by gene regulation along the trajectories. Different genes 
in the TGF-b and circadian rhythm pathways are expressed in the two lineages (genes in blue above the cartoon). 
TFs enriched in the EE branch are involved in endocrine secretory cell development; while TFs associated with 
enterocyte commitment include regulators of lipid/cholesterol metabolism. Expression of Dll1 and Sox4 in EE 
development and Apli in enterocyte differentiation, mark specific progenitor cells located within the +4/+5 position 
in the intestinal crypt according to the literature12,24,29; clear peaks are seen in their expression along the trajectories 
(Fig. 3d-e) near the TA to differentiated cell transitions, likely representing these specific progenitor populations. 
 
The tSpace approach is conceptually similar to that of isomap30. Both methods provide a global approach 
to dimensionality reduction, designed to preserve manifold geometry at all scales. Both algorithms 
determine geodesic distances along a KNN graph. Isomap embeds the resulting distance matrix in low 
dimensions using multidimensional scaling (MDS). It has been successfully applied to diverse high 
dimensional datasets31–34, but it has not been adopted for high dimensional single cell analyses, perhaps 
because of well-described limitations. The algorithm is computationally expensive. This has been 
addressed in part by ‘landmark isomap’, which approximates the large global computation in isomap by 
calculating distances from a set of randomly selected ‘landmark’ cells. To ensure uniform sampling of the 
manifold, we modify this approach in tSpace by selecting individual cells from each of T K-means 
clusters, where T is the number of trajectories to be calculated. We show that linear trajectories (distance 
vectors) calculated from 100 – 250 well-distributed starting cells are sufficient to recapitulate cellular 
relationships in each of the datasets here. Isomap suffers also from sensitivity to “short circuit” errors if K 
is too large or if noise in the data positions cells aberrantly between valid branches or populations in the 
manifold. Short circuits pose a problem with the Dijkstra algorithm, used in isomap to calculate shortest 
paths between cells. We take advantage of the Wanderlust, which refines distances and avoids “short 
circuits” by using subgraph averaging and weighting in shortest path calculations based on waypoints1. 
We show that tSpace with Wanderlust improves the definition of developmental paths (Fig. S1). Finally, 
isomap uses MDS, a memory intensive algorithm, for dimensionality reduction and visualization of 
manifold relationships. Based on our desire as biologists for display modalities that allow robust 
exploration of the manifold from different perspectives, we prefer principal component projections of the 
tSpace matrix. PCA is computationally inexpensive. The first 3 tPCs often embody the most important 
developmental branches, but higher tPCs can also reveal critical biological processes. We illustrate for 
example the parallel pathways of IgA vs IgG memory and plasma cell development in tonsil B cells, which 
dominate the 4th tPC. The R version of tSpace also implements dimensionality reduction with UMAP, and 
we show for our scRNAseq example that UMAP embedding of trajectory space reveals developmental 
branches better than UMAP embedding of the original gene expression matrix. 
 
A number of other methods for trajectory inference have been described and compared35,36. We highlight 
some of the practical features and limitations of tSpace and of published methods in Supplementary 
Table 3. tSpace has advantages over algorithms that use memory intensive MST methods to define 
branch points, as for large datasets these depend on downsampling of cells or calculation of relationships 
between clusters (rather than individual cells) to reduce computational complexity. Examples include 
slingshot37, p-Creode38 and SPADE39. As highlighted above in discussion of published analysis of 
intestinal epithelial cells, downsampling in MST-based methods holds inherent risks of obscuring 
important cell subsets, and in most algorithms fails to position each cell in developmental relationships. 
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tSpace avoids the loss of individual cell resolution associated with cell downsampling, while retaining the 
ability to reveal the developmental relationships of all cells to each other. Algorithms that focus on 
computationally defining branchpoints and tree structures can also limit appreciation of alternative 
pathways of differentiation represented by cells that bridge between dominant pathways. Moreover, in 
contrast to algorithms that rely only on local cell relationships, the global approach of tSpace estimates 
distant as well as nearby cell relationships. Indeed, the algorithm exports a dense matrix of meaningful 
cell-to-cell distances that represent measures of the extent of phenotypic change along developmental 
pathways. As illustrated in our examples, cells along specific developmental pathways and branches can 
be easily gated (isolated) in plots of tPCs using commonly available software such as Flowjo, JMP or in R 
(Methods). Trajectories starting from branch termini or other desired points within pathways are readily 
identified within the tSpace matrix, and plotted vs gene/protein expression to characterize changes in cell 
phenotypes along isolated developmental sequences (as in Figs. 1-3). 
 
In conclusion, we have presented the concept of trajectory space and its implementation in the tSpace 
algorithm for elucidation of branching or convergent developmental pathways and mechanisms from 
single cell profiles. tSpace performs well across different biological systems and platforms and reveals 
known and novel biology. tSpace embodies a combination of useful features including 1) applicability to 
any type of data (proteomic, transcriptomic, etc.); 2) simplicity of use; 3) scalability and independence 
from the need for downsampling; 4) robustness to input parameters; 5) positioning of each individual cell 
in developmental relationships (allowing visualization of alternative or minor pathways of differentiation); 
6) retention of distant as well as local cell relationships; and 7) independence from requirements of 
clustering or prior information. The tSpace outputs are reproducible, intuitive and amenable to exploration 
of biology (gene or protein expression, trajectory isolation, etc.). We believe that tSpace will prove useful 
to the rapidly growing field of singe cell analysis. 
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