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ABSTRACT 21 

Altitude acclimatization is the physiological process of the human body adjusting to the 22 

decreased availability of oxygen. Since several physiological processes are involved 23 

and the relation among them is complicated, analyses of single-traits is insufficient in 24 

revealing the complex mechanism of high altitude acclimatization. In this study, we 25 

examined whether these physiological responses could be studied as composite 26 

phenotypes which are represented by a linear combination of physiological traits. We 27 

developed a strategy which combines both spectral clustering and Partial Least Squares 28 

Path Modeling (PLSPM) to define composite phenotypes based on a cohort study of 29 

883 Chinese Han males. And we captured 14 composite phenotypes from 28 30 

physiological traits of high altitude acclimatization. Using these composite phenotypes, 31 

we applied k-means clustering to reveal hidden population physiological heterogeneity 32 

in high altitude acclimatization. Furthermore, we employed multivariate linear 33 

regression to systematically model (Model 1 and Model 2) oxygen saturation (SpO2) 34 

changes in high altitude acclimatization and evaluated the model fitness performance. 35 

And composite phenotypes based Model 2 has better fitness than single-traits based 36 

Model 1 in all measurement indices. Therefore, this new strategy of defining and 37 

applying composite phenotypes can be considered as a general strategy of complex 38 

traits research, which may also shed light on genetic loci discovery and phenome 39 

analyses. 40 

 41 

  42 
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INTRODUCTION 43 

Altitude acclimatization is the physiological process of the human body adjusting 44 

to the decreased availability of oxygen1. It comprises of several physiological responses 45 

in the body, including ventilation function, cardiac function, oxygen delivery function, 46 

hematology, muscle structure and metabolism, oxygen consumption and so on2,3. The 47 

most important physiological responses are in the cardiorespiratory and the hematology 48 

system2. Oxygen saturation (SpO2) reflect the most straightforward physiological 49 

changes 2,4-7. The SpO2 quickly decreased in three days in lowlanders ascending directly 50 

to 4,300 m, followed by a rise over weeks at altitude1,2,8,9. Another well-known 51 

physiological change is the hemoglobin concentration in the blood 1,8-10. It is also 52 

known that individuals vary in both the speed and extent to altitude acclimatization1,11,12. 53 

The variations of responses across individuals provide an opportunity to explore the 54 

mechanism of altitude acclimatization1,9,11.  55 

Since several physiological processes are involved and the relation among them is 56 

complicated, analyses of single-traits are insufficient to capture the complex 57 

mechanism of high altitude acclimatization1,4,9. Therefore, analysis of composite 58 

phenotypes, i.e. combinations of physiological phenotypes could become a promising 59 

alternative13-15. There are several methods to extract composite phenotypes from 60 

multiple traits, such as Principal Component Analysis (PCA)-based methods14,16,17 and 61 

Partial Least Squares (PLS)-based methods9,18,19. PLS-based methods have better 62 

performance than PCA-based methods18,19. Partial Least Squares Path Modeling 63 

(PLSPM) is the PLS-based approach to Structural Equation Modeling20-22, which can 64 

also be viewed as a method for analyzing multiple relationships between groups of 65 

variables. In the PLSPM framework, there are generally two ways to define composite 66 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 12, 2018. ; https://doi.org/10.1101/336446doi: bioRxiv preprint 

https://doi.org/10.1101/336446
http://creativecommons.org/licenses/by-nc-nd/4.0/


phenotypes, i.e., latent variables9,19-22: one is using the prior knowledge and the other is 67 

using data-driven methods such as spectral clustering23,24. 68 

Here, we conducted a two-phase longitudinal study of high altitude acclimatization 69 

(baseline and chronic phase) in a large sample of 883 Chinese Han young males. 70 

Overall 28 physiological phenotypes were collected from these individuals at each 71 

phase. First, we extracted composite phenotypes from physiological phenotypes in high 72 

altitude acclimatization by introducing a data-driven strategy constituting spectral 73 

clustering23,24 and PLSPM20,21 algorithm. Second, using these composite phenotypes, 74 

we revealed hidden population physiological heterogeneity in high altitude 75 

acclimatization using k-means clustering25. Third, we modeled the changes of SpO2 76 

during high altitude acclimatization using multivariate linear regression26, and further 77 

evaluated the advantages of composite phenotypes over single phenotypes. The 78 

workflow was summarized in Fig. 1, which is also the design of this study. The term 79 

phenotype used in this manuscript are referred to as “The Extended Phenotype27”. 80 

METHOD 81 

Study overview 82 

To explore the physiological changes at two phases (baseline and chronic, Table 1) 83 

of high altitude acclimatization, the longitudinal data were transformed into change 84 

data28. To extract composite phenotypes from the 28 physiological traits, spectral 85 

clustering23,24,29 was applied firstly (Fig. 1). Based on the spectral clustering results 86 

(composite phenotype structure, Fig. 2), PLSPM20 was applied to construct and 87 

estimate the 14 composite phenotypes (Table2, Fig. 3). Using the 14 composite 88 

phenotypes, we applied k-means clustering algorithm23,25 to explore physiological 89 
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heterogeneity in high altitude acclimatization (Fig. 4). To further investigate the 90 

physiological patterns of the two groups, pairwise Pearson correlation heatmap was 91 

shown (Fig. 5). To model how physiological traits systematically relate to SpO2 92 

changes in high altitude acclimatization process, two multivariate linear regression 93 

models 26 were constructed. Finally, to evaluate the fitness of two models, AIC30,31, 94 

BIC31,32, 10-fold CV33 RMSE34 and leave-one-out RMSE were measured (Table 3). In 95 

summary, firstly we have a problem in biology and then we tried to solve it using several 96 

effective statistical methods. 97 

All the computation process of this study were realized in R (v3.3.1)35 and the 98 

related figures were generated by Matlab (R2015b)36, ‘ggplot2’37, ‘igraph’38 R 99 

packages. The computation process of composite phenotype scores was completed by 100 

‘plspm’20 R package. The k-means clustering was completed by ‘factoextra’39 and 101 

‘NbClust’40 R package. The multivariate linear regression models were calculated by 102 

‘stats’ R package. 103 

Exploring relationship of phenotypes by spectral clustering  104 

The longitudinal data of high altitude acclimatization were firstly transformed into 105 

change data28. All the 28 physiological traits have significant (under Bonferroni 106 

correction41) changes from baseline to chronic phase at 4,300m highland. And the p 107 

values were calculated by Wilcoxon Rank-Sum Test42 (Table 1). Based on the change 108 

data of high altitude acclimatization, spectral clustering23,24 was applied. The similarity 109 

matrixs in this study were the absolute values of spearman correlation coefficient 43 110 

matrixs of 28 physiological changes from baseline to chronic phase for high altitude 111 

acclimatization. The affinity matrixs were computed by applying a k-nearest neighbor 112 

filter 44 to build a representation of a graph connecting just the closest dataset points. 113 
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To compute the graph Laplacian matrix, there is also a need to get the degree matrix 114 

where each diagonal value is the degree of the respective vertex and all other positions 115 

are zero24. To choose the best number of spectral clustering, the eigenvalue gap 116 

(difference between consecutive eigenvalues of Laplacian matrix, Supplementary Fig. 117 

1) was maximized29. And the spectral clustering results were the composite phenotype 118 

structure (Fig.1 and Fig. 2). 119 

Defining composite phenotypes by PLSPM 120 

 Based on the composite phenotype structure, PLSPM 20,21 was further applied to 121 

construct composite phenotypes. And the latent variable scores20,22 were calculated to 122 

estimate these composite phenotypes. As the 28 physiological traits were clustered as 123 

14 groups, there were also 14 composite phenotypes (LV1, LV2… LV13, LV14) 124 

accordingly. PLSPM is claimed to explain at best the residual variance of the latent 125 

variables and potentially also of the manifest variables in any regression run in the 126 

model without strong assumptions 22. To check the PLSPM blocks’ unidimensionality, 127 

the Cronbach’s alpha, Dillon-Goldstein’s rho and the first eigenvalue of the indicators’ 128 

correlation matrix were calculated 20,22. Each composite phenotype captures a specific 129 

aspect of high altitude acclimatization (Table 2, Fig. 3 and Supplementary Fig. 2).  130 

Revealing physiological heterogeneity by k-means 131 

 Based on the 14 composite phenotypes, k-means clustering was applied to explore 132 

physiological heterogeneity in high altitude acclimatization (Fig. 4). The optimal 133 

number of clusters is 2 (Supplementary Fig. 3) following the majority rule of 26 134 

indices40. The silhouette plot (Supplementary Fig. 4) for k-means clustering also 135 

showed that observations are well clustered 45. Thus the 883 Chinese Han young males 136 

were clustered into two groups (group1 with 508 individuals and group2 with 375 137 
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individuals, Fig. 4) based on the 14 composite phenotypes of high altitude 138 

acclimatization. To further investigate the physiological patterns of the two groups, 139 

pairwise Pearson correlation 46 heatmap was shown (Fig. 5).  140 

Modeling oxygen saturation variation by multivariate linear regression 141 

 To model how physiological traits systematically relate to SpO2 changes in high 142 

altitude acclimatization process, two multivariate linear regression models 26 were 143 

constructed. Model 1 is constructed by original 28 physiological traits changes from 144 

baseline to chronic phase at 4300m highland and SpO2 is the dependent variable (Y). 145 

Model 2 is constructed by 13 composite phenotypes (excluding LV13, i.e., SpO2) of 146 

high altitude acclimatization, and SpO2 is still the dependent variable (Y). To evaluate 147 

the fitness of two models, AIC 30,31, BIC31,32, 10-fold CV33 RMSE34 and leave-one-out 148 

RMSE were measured (Table 3). We also employed Wilcoxon Rank-Sum Test 42 to 149 

compare the 10-fold CV MSE and leave-one-out MSE of two models (Model 1 and 150 

Model 2).  151 

Participants  152 

We conducted a longitudinal cohort measurement design to investigate the 153 

responses of 28 physiological traits during high altitude acclimatization. The studied 154 

subjects were first assembled at a location with an altitude of 50 m (in China) for 10–155 

14 days, and then they arrived at highland of above 4,300 m (in China) by train. The 156 

study is comprised of two phases: baseline phase (before going to highland) and chronic 157 

phase (living at highland for about 1 month). A structured questionnaire and 158 

physiological examination for the subjects were carried out at two phases of high 159 

altitude acclimatization respectively. The subjects with cancer, diabetes and coronary 160 

heart disease were not included in this study. Overall 883 healthy Chinese Han young 161 
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males aged from 17 to 36 years old were recruited. The research was approved by the 162 

Human Ethics Committee of Fudan University and written informed consent was 163 

obtained from each participant and their guardians over 18 years old. 164 

Physiological measurements 165 

All the subjects (883 samples, 28 traits) were measured by physicians in General 166 

Hospital of Jinan Military Region, who were previously trained to administer a 167 

questionnaire and a physical examination. The systolic blood pressures (SBP) and 168 

diastolic blood pressures (DBP) were calculated by mean of twice measurement of a 169 

standardized mercury sphygmomanometer. Maximal vital capacity (FVC) were 170 

measured by SPIDA5. Heart rate (HR) was measured by mean of twice radial pulse, 171 

SPO2 was measured by Nellcor NPB-40. The body temperature (Temperature) was 172 

measured by thermometer. The blood specimens were drawn after overnight fasting for 173 

complete blood count measurement by three classification haemacytometer analyzer 174 

(Model CA-800; CIS, Japan). The blood routine indices include red blood cell count 175 

(RBC, ×1012/L), hemoglobin (HGB, g/L), hematocrit (HCT, %), mean corpuscular 176 

volume (MCV, fL), mean corpuscular hemoglobin (MCH, pg), mean corpuscular 177 

hemoglobin concentration (MCHC, g/L), white blood cell counts (WBC, ×109/L), 178 

lymphocyte percentage (LYM%), absolute lymphocyte count (LYM#, ×109/L), blood 179 

platelet (PLT, × 109/L), mean platelet volume (MPV, fL), plateletcrit (PCT, fL), platelet 180 

distribution width (PDW, fL). The blood biochemical indices were measured by the 181 

automatic biochemical analyzer (Model 7060; Hitachi Ltd., Japan), including glutamate 182 

pyruvate transaminase (ALT, U/L), glutamic oxalacetic transaminase (AST, U/L), total 183 

bilirubin (TBIL, umol/L), direct bilirubin (DBIL, umol/L), blood urea nitrogen (BUN, 184 

mmol/L) and creatinine (CREA, umol/L). AST/ALT ratio and indirect bilirubin (IBIL, 185 
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umol/L) were calculated indices. The Lake Louise score (LLS) system scores47 were 186 

also collected in two phases. The LLS questionnaire consists of five items: headache, 187 

dizziness, gastrointestinal symptoms, fatigue/weakness and difficulty sleeping. Each 188 

item was rated on a four-point scale (0= not at all, 1=mild, 2=moderate and 3=severe). 189 

Single item scores are added up and the maximal score is 15. 190 

RESULTS 191 

Exploring relationship of phenotypes in high altitude acclimatization 192 

In this study, we collected the 28 physiological traits from 883 Chinese Han young 193 

males at baseline (before going to highland) and chronic (living at highland for about 1 194 

month) phases of high altitude acclimatization (Table 1). The studied subjects were first 195 

assembled at a location with an altitude of 50 m (in China) for 10–14 days, and then 196 

they arrived at highland of above 4,300 m (in China) by train. The subjects with cancer, 197 

diabetes and coronary heart disease were not included in this study. Overall 883 healthy 198 

Chinese Han young males aged from 17 to 36 years old were recruited. All the 28 199 

physiological traits show significant (Bonferroni correction) changes from baseline to 200 

chronic phase at 4,300m highland. These results indicate that a series of physiological 201 

phenotypes are involved in high altitude acclimatization process1,2,9. Since we are 202 

mainly concerned on the changes of these phenotypes, the longitudinal data were 203 

transformed into change data28 using Measure chronic-baseline = Measure chronic - Measure 204 

baseline. These data were used in subsequent analyses. 205 

By analyzing the correlation between pairwise phenotypes, we found the 206 

phenotypes are structured (Fig. 2). For example, RBC, HGB and HCT have strong 207 

correlation with each other; and RBC almost has no correlation with LLS and SPO2. 208 
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To further explore the relationship of phenotypes, spectral clustering algorithm23,24 was 209 

applied to group these 28 physiological phenotypes. To determine the number of 210 

clusters, the one with maximum eigenvalue gap (Supplementary Fig. 1) was chosen29. 211 

The correlation heatmap (Fig. 2) showed the spectral clustering results of 28 212 

physiological phenotypes, and they were clustered into 14 groups (i.e. composite 213 

phenotype structure, Fig. 2). 214 

Defining composite phenotypes of high altitude acclimatization 215 

 Based on the revealed aforementioned structure, PLSPM20-22 was applied to extract 216 

composite phenotypes of high altitude acclimatization. Overall 14 composite 217 

phenotypes were extracted as the latent variables20 (LV1, LV2… LV13, LV14). Each 218 

composite phenotype is a linear combination of their manifest variables 21, and captures 219 

a specific aspect of high altitude acclimatization (Fig. 3, Table 2 and Supplementary 220 

Fig. 2). The LV5 explained the variance of RBC, HCT and HGB, which mainly reflect 221 

the number of red cells (Dillon-Goldstein's rho = 0.93, Table 2 and Fig. 3). The Dillon-222 

Goldstein's rho focuses on the variance of the sum of variables in the block of latent 223 

variable20,22. The LV6 explained the variance of MCH, MCHC, MPV and MCV, which 224 

reflect the hemoglobin concentration. As the changes of MCH and MCHC were 225 

negatively related to MPV and MCV, we changed both MCH and MCHC signs to keep 226 

loadings positive20. The LV12 is equivalent to single-phenotype LLS and the LV13 227 

represents single-phenotype SPO2. 228 

Revealing physiological heterogeneity in high altitude acclimatization 229 

 To explore physiological heterogeneity in high altitude acclimatization, we applied 230 

k-means clustering algorithm23,25 on individuals using the 14 composite phenotypes. 231 

Thus the 883 individuals could be clustered into two groups (group 1 with 508 232 
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individuals and group 2 with 375 individuals, Fig. 4, Supplementary Fig. 4 and 233 

Supplementary Fig. 5) based on the 14 composite phenotypes of high altitude 234 

acclimatization. The separation of two groups of the individuals are mainly contributed 235 

by hemoglobin concentration (LV6, Wilcox Rank Sum test’s pvalue = 3.36 × 10−90), 236 

number of red cells (LV5) and number of platelets (LV7) (Supplementary Table 1 and 237 

Supplementary Fig. 5). The results demonstrate physiological heterogeneity in high 238 

altitude acclimatization among these sampled individuals, especially in the phenotypes 239 

related with oxygen carrying capacity1,48,49 including hemoglobin concentration, 240 

number of red cells, platelet counts and so on. The increases in red cell number and 241 

hemoglobin concentration improve the oxygen carrying capacity of the blood to 242 

compensate for the reduction in oxygen saturation1,50,51. 243 

 To further characterize the relationship of the 14 composite phenotypes in each 244 

group, we calculated the pairwise Pearson correlation46 (Fig. 5). For instance, there is 245 

significant correlation (Pearson’s r = 0.12, pvalue = 0.006, Supplementary Table 2) 246 

between LV6 and LV13 in group 1, but no correlation between them in group 2 247 

(Pearson’s r = -0.03, pvalue = 0.51, Supplementary Table 3). To compare the 248 

difference of these two Pearson correlation coefficient, fisher’s z transformation52-55 249 

were applied (pvalue=0.02, Supplementary Table 4). There is negative correlation 250 

(Pearson’s r = -0.2) between LV5 and LV7 in group 1, while in contrast, we observed 251 

positive correlation (Pearson’s r = 0.17, fisher’s z transformation pvalue =5.58 × 10−8) 252 

between them in group 2. Thus we can compare the correlation networks of multiple 253 

physiological traits intuitively and focus on composite phenotypes not their manifest 254 

variables.  255 

Modeling oxygen saturation variation of high altitude acclimatization 256 
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 Oxygen saturation (SpO2) reflect the most straightforward physiological change of 257 

high altitude acclimatization2,4,5,7. To model how other physiological traits 258 

systematically relate to SpO2 changes in high altitude acclimatization process, we 259 

constructed two multivariate linear regression models. Model 1 is constructed by 260 

original 28 physiological traits changes from baseline to chronic phase at 4,300m 261 

highland and SpO2 is the dependent variable (Y). To compare with this model, Model 262 

2 is constructed by 13 composite phenotypes (excluding LV13, i.e., SpO2) of high 263 

altitude acclimatization.   264 

 To evaluate the goodness of fit of two models, the Akaike information criterion 265 

(AIC)30,31, Bayesian information criterion (BIC)31,32, 10-fold cross validation (CV)33 266 

root-mean-square error (RMSE)34 and leave-one-out RMSE were measured (Table 3). 267 

Model 2 has better fitness than Model 1 in all measurement indices (Table 3), 268 

suggesting that the composite phenotypes is better performed in capturing variation of 269 

high altitude acclimation. From the multivariate regression result of Model 2, we also 270 

found that LV12 (LLS) is the most significant ( β = −0.29, pvalue = 0.04, 271 

Supplementary Table 5) trait that influence SpO2. SpO2 has been well studied as 272 

predictors/indicators of AMS or LLS1,2,4,10,56-59. And those individuals who successfully 273 

maintain their oxygen saturation at rest, most likely do not develop AMS2,4,57. 274 

DISCUSSION 275 

 In this study, we developed a data-driven strategy (Fig. 1) to extract composite 276 

phenotypes from multiple physiological phenotypes of high altitude acclimatization in 277 

a large-scale Chinese Han longitudinal cohort. We first explore the relationship of 278 

phenotypes of high-altitude acclimatization. And then we extracted 14 composite 279 

phenotypes from 28 physiological traits changes of high-altitude acclimatization. This 280 
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strategy could be applied to other complex traits, for example, immune diseases, cardio 281 

metabolic traits or other complex diseases.  282 

 Altitude acclimatization comprises a number of physiological responses to mitigate 283 

the effects of hypoxia1,7. There are many methods to analyze longitudinal data, such as 284 

linear mixed models60 and data transformation28. Since we are mainly concerned on the 285 

changes of these phenotypes, transforming the longitudinal data into change data is also 286 

a promising alternative2,9,28,61. Thus the transformed data was used in this study. 287 

 Since individual single-traits are insufficient to reflect the complex mechanism of 288 

high altitude acclimatization1,4,9, analysis of composite phenotypes could become a 289 

promising alternative13-15. Among several methods, PLS-based composite phenotypes 290 

have relatively interpretable biological meanings9. In particular, PLSPM can also be 291 

viewed as a method for analyzing multiple relationships between blocks of variables20. 292 

 Generally, there are two ways to define composite phenotypes in PLSPM 293 

framework9,22: one is using the prior specific domain knowledge and the other is using 294 

some data-driven methods like clustering. In our study, we employed the generalized 295 

standard spectral clustering23,24 to find the composite phenotype structure (Fig. 2) for 296 

high-altitude acclimatization.  297 

 This study included 28 physiological phenotypes which covered respiratory 298 

function, cardiac function, oxygen delivery function, hematology, oxygen saturation, 299 

kidney function, liver function, LLS and so on. However, there are still traits not 300 

involved in this study, such as muscle metabolism, oxygen consumption, 301 

electrocardiogram, electroencephalogram, organism metabolism and so on. And the 302 

data of this study was collected at two time points of high altitude acclimatization, 303 

which may be incomplete. The subjects in this study are all young males, the 304 
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physiological responses of females may be quite different. More importantly, other 305 

factors such as genetic variations, should be studied to further understand potential 306 

physiological mechanism of high altitude acclimatization4,7. 307 

 In summary, we have developed a strategy constituting both spectral clustering and 308 

PLSPM to define composite phenotypes. And we effectively used this strategy to 309 

capture 14 composite phenotypes from 28 physiological phenotypes of high altitude 310 

acclimatization. The 14 composite phenotypes have clear meaning in physiology and 311 

explain most of variance in statistics. Based on these composite phenotypes, we first 312 

observed physiological heterogeneity among individuals in high altitude 313 

acclimatization. In addition, we compared the performance of composite phenotypes 314 

and regular phenotypes in predicting SpO2 changes. Both analyses showed that the 315 

composite phenotypes is better performed in capturing variation of high altitude 316 

acclimation. To conclude, this new strategy of defining and applying composite 317 

phenotypes can be considered as a general strategy of complex traits research62, 318 

especially in phenome analyses63,64. 319 
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FIGURE LEGENDS: 477 

Figure 1. The workflow and design of this study. 478 

Figure 2. The absolute value of spearman correlation heatmap of 28 physiological 479 

phenotypes. The spearman correlation coefficient ranges from 0 (dark blue) to 1 (dark 480 

red). The spectral clustering results are marked by white boxes. For example, SBP and 481 

DBP are grouped together, and their absolute spearman correlation coefficient is about 482 

0.6 (yellow-green color).  483 

Figure 3. The PLSPM loadings of 14 composite phenotypes of high altitude 484 

acclimatization. The 14 composite phenotypes (LV1, …, LV14) are represented by 14 485 

different colors, and the height of each colorful bar is the loading (correlation) of each 486 

composite phenotype. Acceptable values for the loadings are values greater than 0.7 487 

(threshold line), indicating that more than 49% (0.7ⅹ0.7) of the variability in a single 488 

phenotype (like SBP or DBP) is captured by its composite phenotype (like LV3). 489 

Figure 4. K-means clustering results on individuals using the 14 composite phenotypes 490 

(LVs). The 883 individuals are clustered as two groups (group 1 with 508 individuals 491 

and group 2 with 375 individuals) based on their composite phenotype scores. The PCA 492 

plot is just visualization of the k-means clustering results (group 1 with red color and 493 

group 2 with blue color accordingly). 494 

Figure 5. The pairwise Pearson correlation heatmap of 14 composite phenotypes 495 

(LV1,…, LV14) of two groups. The Pearson correlation coefficient ranges from -1 (blue) 496 

to 1(red). The left figure represents the Pearson correlation heatmap of 14 LVs of group 497 

1 and the right figure represents the Pearson correlation heatmap of 14 LVs of group 2. 498 
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Supplementary Figure 1. The eigenvalue gap of spectral clustering. The eigenvalue 499 

gap was maximized to choose the best number of spectral clustering (red line). And the 500 

best clustering number is 14. 501 

Supplementary Figure 2. The 14 composite phenotypes of high altitude 502 

acclimatization. The numbers on the arrows are the PLSPM loadings of 14 composite 503 

phenotypes, which is the same as Figure 3. 504 

Supplementary Figure 3. The optimal number of k-means clustering on individuals. 505 

The optimal number of clusters is 2 following the majority rule of total 26 clustering 506 

indices. 507 

Supplementary Figure 4. The silhouette plot of k-means clustering on individuals. 508 

Silhouette values range from 1 to -1, when silhouette value is close to 1 indicating that 509 

the individuals are well clustered. The silhouette plot for k-means clustering showed 510 

that observations are well clustered. 511 

Supplementary Figure 5. The histogram plot and density plot of each LV (14 LVs) 512 

between 2 groups (group 1 with red color and group 2 with blue color). And we further 513 

calculated the Wilcoxon Rank Sum test pvalue (the title of histogram plot) of each LV 514 

between 2 groups. 515 
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Table 1. The 28 physiological traits from 883 Chinese Han young males at baseline and chronic 
phases of high altitude acclimatization. 

Variables 
Baseline 

 
Chronic 

 
Pvalue* 

Mean Sd Mean Sd 

ALT 19.11 8.14  15.02 9.08  6.28E-45 
AST 15.64 5.83  46.05 15.24  2.33E-139 

AST.ALT 0.85 0.18  3.91 2.54  2.14E-139 
TBIL 11.94 1.77  14.51 24.90  1.41E-10 
DBIL 2.69 0.61  5.70 1.70  3.72E-136 
IBIL 9.25 1.24  8.81 24.95  1.96E-39 
BUN 5.08 1.12  6.21 1.17  3.20E-87 

CREA 58.32 10.38  113.02 12.20  2.85E-139 
WBC 6.21 1.34  8.21 1.70  1.55E-125 

LYM% 36.16 7.48  40.61 10.71  7.71E-42 
LYM# 2.21 0.52  3.31 0.99  1.78E-106 
RBC 4.88 0.39  5.73 0.48  5.25E-144 
HGB 150.15 10.05  179.59 13.46  2.07E-144 
HCT 0.44 0.03  0.50 0.04  1.35E-136 
MCV 90.60 5.14  87.39 4.89  6.49E-126 
MCH 30.91 2.34  31.39 2.18  1.16E-21 

MCHC 341.07 17.94  359.14 16.24  3.97E-85 
PLT 206.88 42.79  258.94 51.49  2.18E-124 
PCT 2.01 0.42  2.72 0.51  9.95E-139 
MPV 9.78 1.26  10.54 0.62  9.59E-68 
PDW 13.79 2.25  18.03 2.53  9.71E-142 
FVC 444.45 38.26  412.31 59.16  2.03E-51 
SBP 110.88 10.45  124.34 12.94  2.51E-87 
DBP 73.21 8.65  75.98 9.61  7.46E-13 
HR 66.49 9.57  87.16 10.99  3.24E-123 

Temperature 36.22 0.12  36.38 0.29  1.75E-39 
SPO2 97.76 2.08  85.82 3.80  6.64E-132 
LLS 0.88 1.59 

 
1.40 1.73 

 
1.14E-10 

* Pvalues were calculated by Wilcoxon Rank-Sum Test (paired= true). 
The significant (under Bonferroni correction) pvalues were shown in bold. 
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Table 2. PLSPM composite phenotypes unidimensionality evaluation. 

 Biological Meanings     Manifest variables Mode MVs C.alpha DG.rho eig.1st eig.2nd 

LV1 forced vital capacity FVC A 1 1.00 1.00 1.00 0.00 

LV2 heart rate HR A 1 1.00 1.00 1.00 0.00 

LV3 blood pressure SBP, DBP A 2 0.70 0.87 1.54 0.46 

LV4 immune system LYM#, LYM%, WBC A 3 0.55 0.77 1.76 1.21 

LV5 number of red cells RBC, HCT, HGB A 3 0.89 0.93 2.45 0.48 

LV6 hemoglobin concentration MCH, MCHC, MPV, MCV A 4 0.79 0.87 2.52 1.01 

LV7 number of platelets PLT, PCT A 2 0.94 0.97 1.88 0.12 

LV8 platelet distribution width PDW A 1 1.00 1.00 1.00 0.00 

LV9 liver function ALT, AST, AST/ALT A 3 0.25 0.04 1.35 1.31 

LV10 bilirubin TBIL, DBIL, IBIL A 3 0.59 0.79 2.00 1.00 

LV11 renal function BUN, CREA A 2 0.61 0.84 1.44 0.56 

LV12 Lake Louise score LLS A 1 1.00 1.00 1.00 0.00 

LV13 oxygen saturation SPO2 A 1 1.00 1.00 1.00 0.00 

LV14 body temperature body temperature A 1 1.00 1.00 1.00 0.00 

Note: Overall 14 composite phenotypes are shown as the latent variables (LV1, LV2…LV13, LV14). 
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Table 3. Evaluation the goodness of fit of two multivariate linear regression models.  
Model1 (original variables) Model2 (LV) Pvalue* 

AIC 5089 5069 _ 
BIC 5227 5141 _ 
10 fold CV RMSE 4.32 4.26 _ 
10 fold CV MSE (SD) 18.64 (5.60) 18.12 (5.71) 0.00488 
Leave one out CV RMSE 4.32 4.265 _ 
Leave one out CV MSE (SD) 18.66 (53.42) 18.19 (53.32) 0.00294 

*The Pvalues were calculated by Wilcoxon Rank-Sum Test.  
The measurement indices with better fitness were shown in bold. 
The significant pvalues (pvalue<0.05) were marked as bold and red color. 
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