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Abstract: 
 
Turing-like patterns can potentially occur in non-neural (non-excitable) tissues through strictly 
bioelectric processes, without involving transcriptional (gene) regulation, cell migration, or traditional 
reaction-diffusion mechanisms. Small molecules that gate transmembrane ion channels are often 
charged and capable of passing through intercellular gap junctions, and their transport under the 
influence of trans-junction electric fields furnishes a bioelectric feedback loop. We develop an 
analytically tractable, circuit-based model of this phenomenon and show that it can lead to spontaneous 
formation of spatial patterns in ligand density and membrane voltage under physiologically plausible 
conditions. The process is distinct from Turing’s reaction-diffusion paradigm but closely analogous to the 
spontaneous formation of patterns in colonies of chemotactic bacteria. 
 
 
Introduction: 
 
The divergent mechanisms employed in development to pattern undifferentiated tissues can appear 
bewildering in variety. Two principal classes stand out, however, which might be termed “feed-forward 
patterning” and “feed-back patterning”. Feed-forward processes, as anticipated in Wolpert’s classic 
theory of positional information and exemplified by the drosophila segmentation cascade, employ 
positional information encoded in maternally-provided pre-patterns, boundary conditions, or planar 
polarizations, and compute a cascade of spatial functions based on this input. In the steady state limit, 
none of these functions require any memory, and as there are no cross-stage cycles in the computation, 
their combination can be memoryless as well. Perturbations naturally decay with time, and there is no 
way to generate or reinforce the underlying spatial cues; they must be provided from the outside. Such 
processes are fast, determinate, and often scale-invariant.  
 
Feed-back processes, on the other hand, such as Turing patterns (Watanabe and Kondo 2015, Marcon 
and Sharpe 2012, Turing 1952), are capable of generating their own positional information, either 
through instabilities or by bootstrapping it from weakly asymmetric initial conditions. In their simplest 
form, they employ tight spatial feedbacks, positive at short ranges but negative at longer ranges – the 
famed “local activation, lateral inhibition” criteria – so as to select one or more spectral wavelengths for 
spontaneous amplification (Rabinovich, Ezersky, and Weidman 2000). As a result, they have baked-in 
length scales associated with their instabilities and are often indeterminate, changing behavior on 
differing sizes and shapes of substrate. Owing to their mathematical similarities, widely divergent 
feedback processes can produce remarkably similar-looking results (Hiscock and Megason 2015). 
 
In general, feedback processes are not particularly fast and may fall victim to metastability. They are, 
however, highly capable in self-repair and might serve as a foundation for tissue homeostasis. In earlier 
theoretical work (Brodsky 2016), we argued that the simultaneous combination of feed-forward and 
feed-back patterning has compelling evolutionary advantages, combining the virtues of both, and may 
serve as a useful paradigm for interpreting the apparent redundancies seen in developmental patterning 
programs. 
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Among feed-back processes, the largest share of research attention has gone to the Turing mechanism – 
reaction-diffusion where the reaction’s stability in a well-mixed environment is broken by differing 
diffusion rates of the reagents. In proposed biological realizations, however, these “reagents” are often 
average concentrations of various cell types, and “diffusion” may be the quasi-random motion of cells or 
even more exotic processes for interaction at a distance such as filopodial contacts (Watanabe and 
Kondo 2015). Here, we demonstrate the possibility of a rather different feed-back patterning 
mechanism, a novel bio-electrochemical process based on cell membrane potential and the diffusion of 
small molecules through gap junctions. Mathematically, it is most closely related to the pattern-forming 
processes seen in chemotactic aggregation, as in e.g. bacterial colonies (Hillen and Painter 2008, 
Budrene and Berg 1995). The result can be both electrochemically demarcated “aggregates” as well as 
complex feed-back patterns reminiscent of Turing patterns. 
 
Gap junctions are pervasive and important in animal development, although their precise roles often 
remain unclear. In addition to electric currents, they can transmit small molecules such as second 
messengers, ATP, Ca++, serotonin – species that are very often charged. Thus, the voltage seen across a 
gap junction – the difference in membrane potential between the apposed cells – can have a major 
impact on transport rates. Such voltage-mediated transport is thought to play an important role in 
processes such as left-right axis patterning (Esser et al. 2006). What if, however, the transported 
chemical species directly regulates membrane voltage, as by gating a ligand-gated ion channel, or 
perhaps by modulating an ion channel’s expression, e.g. siRNA (Valiunas et al. 2005)? This introduces a 
new feedback that has been shown to be capable of causing interesting phenomena such as 
spontaneous polarization (Pietak and Levin 2016). In particular, if the sign of the feedback is positive – a 
positively charged ligand causing hyperpolarization and thereby increased attraction, or similarly a 
negatively charged ligand causing depolarization – then the ligand may be capable of spontaneous 
aggregation, leading to symmetry breaking and pattern formation. The attraction of nearby ligand, and 
its consequent depletion at longer range, constitutes the critical “local activation, lateral inhibition”. We 
refer to this phenomenon here as auto-electrophoresis. 
 
Using the model developed below, we derive the conditions under which auto-electrophoretic pattern 
formation will occur. The phenomenology is somewhat reminiscent of the first order phase transition 
seen when a vapor spontaneously condenses into droplets, including a definite “dew point” threshold 
that must be crossed for spontaneous nucleation, as well as a more lenient “coexistence region” where 
existing aggregates will persist but not nucleate on their own. 
 
Not all channel / ligand pairs will be practically capable of auto-electrophoretic pattern formation. One 
example likely capable of this process are the CNG channels their ligands the cyclic nucleotides cAMP 
and cGMP. cAMP and cGMP are well-known to be gap junction permeable and are negatively charged at 
physiologic pH, and several members of the CNG family are capable of causing depolarization with 
strong, cooperative sensitivity to the ligand (Kaupp and Seifert 2002, Ruiz et al. 1999).  
 
In order to explore these possibilities, one approach would be to conduct exhaustive simulations with a 
detailed simulator such as BETSE (Pietak and Levin 2016). In a companion work, we follow this strategy, 
using a genetic algorithm to direct a search through the parameter space, and indeed we demonstrate 
spot and stripe patterns spontaneously generated using CNG channel models (Brodsky and Levin 2018). 
Here, however, we show that one can also construct a simplified physical model with far fewer 
parameters, from which wide-ranging analytical predictions can be directly derived. This model bears 
strong similarity to the classic Keller-Segel model of bacterial chemotaxis (Hillen and Painter 2008), with 
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membrane voltage taking the role of chemoattractant concentration and intracellular ligand 
concentration taking the role of bacterial population density. The model is distinct from the classic 
Turing reaction-diffusion paradigm, instead being an advection-diffusion system. 
 
We first derive the model and demonstrate its close parallels with chemotaxis. Subsequently, we derive 
several formulae directly from the model that predict the circumstances in which spontaneous pattern 
formation will occur as well as the timescale required and the characteristic size of pattern features, as a 
function of experimentally measurable quantities. These predictions will be valuable in guiding efforts 
toward experimental demonstration as well as for identifying possible natural, in vivo instances. We 
then simulate the model numerically, efficiently computing large simulations that showcase the 
qualitative characteristics of the auto-electrophoretic patterning process.  
 
 
Mathematical model: 
 
To begin with, we need a simplified model of a cell. Electrically, we can model each cell as a simple 
circuit fragment, along the lines of the classic Hodgkin-Huxley models. We assume approximately fixed 
extracellular and intracellular ion concentrations, represented as constant reversal potentials, and allow 
these to affect Vmem through variable resistances representing channel permeability. Thus, each cell is 
modeled as follows: 
 

 
 
Where cells are arranged one after another in a line representing a one-dimensional tissue. We ignore 
the effects of lateral cell-to-cell capacitance, which should be minimal for slow phenomena like auto-
electrophoresis. One or both of the two transmembrane resistances, RK and RNa, is modeled a function 
of ligand concentration, representing ligand gating. We ignore voltage gating and voltage-dependent 
GHK transport for now, as their effects on the slow, small-amplitude variations present during early 
pattern formation can be approximated through modifications to the ion potentials and transmembrane 
resistances (adjusting them to produce a linearized approximation to the nonlinear channel’s local 
behavior, which is perfectly adequate for the linear stability analysis employed below). This diagram also 
illustrates only Na and K affecting membrane potential, but it can capture other ungated ions equally 
well, lumped together as a Thevenin equivalent resistance. Applied to this system, Kirchoff’s current law 
gives 
 

(VNa - V) · GNa(ρ) + (VK - V) · GK(ρ) - Cmem · dV/dt + (Vn-1 - V)  / Rgj + (Vn+1 - V) / Rgj = 0 
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Where GNa = 1 / RNa is the sodium conductance and GK = 1 / RK is the potassium conductance. Without 
loss of generality we can assume it is GNa that is gated, leaving GK a constant. (The results remain the 
same if reversed, except the sign the voltage is inverted.) If we restrict our attention to patterns larger 
than a single cell, we can simplify things further by taking the continuum limit, yielding a partial 
differential equation: 
 

CmemdV/dt = (VNa - V) · GNa(ρ) + (VK - V) · GK + Δx2∇·(1/Rgj · ∇V) 
 
Where Δx is the cell length. This is a form of the diffusion-decay equation, and it generalizes 
immediately 2d and 3d tissues. 
 
Chemically, the transport of ligand among cells can be modeled by the combination of Fick’s law of 
diffusion and the Einstein relation for drift under an electric field, a combination known as the Nernst-
Planck equation. Discretely, we have 
 

(ρn-1 - ρ) · Dgj + (ρn+1 - ρ) · Dgj - ρ · (Vn-1 - V) · μ - ρ · (Vn+1 - V) · μ = a·dρ/dt - f(ρ) 
 
Where ρ is the ligand concentration, Dgj is the diffusive conductance between neighboring cells, a is the 
cell volume, μ = Dgjq/kT ≈ Dgjz/26mV is the ligand mobility, z the ligand charge, and f(ρ) models any 
intracellular production and decay kinetics for the ligand. To be more accurate, one should treat discrete 
cells as connected via the nonlinear GHK flux equation, which takes into account the effect on the 
electrophoretic flux of sharp variation in ligand concentration between neighboring cells. However, 
sharp variations are absent in the continuum limit, and absent even in the discrete case in the early 
stages of pattern formation as well as for well-developed but long-wavelength patterns, so we can 
reasonably omit this complication. Thus, in the continuum limit, we have 
 
 Δx2∇·(Dgj∇ρ - μρ∇V) = a·dρ/dt - f(ρ) 
 
which is the Nernst-Planck equation. We can then transform our continuum limit system of equations 
into a simpler, non-dimensional form via several substitutions (where italics are used to denote non-
dimensionalized quantities). First, we set 
 

GNa(ρ) = G0Na · (1 + H(ρ)) 
 
Where G0Na represents the baseline, ungated sodium conductance and H(ρ) captures the channel gating 
behavior, e.g. through a Hill function, representing how many fold the depolarizing conductivity 
increases above the baseline leakage. For a simple linear model, H(ρ) = ρ, and ρ is scaled in units of the 
concentration that doubles sodium conductance. For more general models, we may find it convenient to 
scale ρ such that H(ρ0) = ρ0 for some particular steady-state ρ0. 
 
We then use the following scaling substitutions: 
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Dimensionless scale substitution Associated scale parameters Parameter formulae 

V = (V - V0) / V* Voltage scale 

Voltage midpoint 

V* = (VNa - VK) / 2 

V0 = (VNa + VK) / 2 

t = t / τE 

 

Electrical timescale 

Diffusive timescale 

τE = Cmem / G0Na 

τD = a / Dgj 

x = x / x0 Length scale x0 = Δx / √(RgjG0Na) 

 

 Dimensionless parameters Parameter formulae 

Leak current ratio g = GK / G0Na 

Diffusion ratio D = τE / τD · (Δx / x0)
4 

    = Rgj
2G0NaCmemDgj / a 

Charge ratio Z =  -zV*/Vth 

(Vth = kT / q ≈ 26mV) 

Kinetics function f =  τE/a · f 

 
The electrical timescale τE represents the characteristic RC relaxation time of the membrane potential 
through (somewhat arbitrarily) the baseline Na conductance. The diffusive timescale τD represents the 
characteristic diffusive relaxation time between neighboring, GJ-connected cells. In typical tissues, the 
electrical timescale τE may be on the order of tens to hundreds of ms, while the diffusive timescale τD 
may be on the order of minutes to hours. Later, we will also define the slower pattern-formation 
timescale, 
 
 τP ≡ τE / kmax

2D = τD · (x0 / Δx)4 / kmax
2

 

 
where kmax is the leading wavenumber of the pattern.  
 
The key dimensionless parameters above are the leak current ratio, g, which determines how much 
influence gated Na conductance can have on membrane potential, and Z, which indicates the strength 
of the ligand electrostatic interaction. These two parameters, along with ligand concentration and the 
sharpness of the gating function H, determine whether the system will be able to experience the auto-
electrophoretic instability. 
 
With these substitutions, the following system of equations results, representing our completed model 
of auto-electrophoresis: 
 

dV/dt = (1 - V)  · (1 + H(ρ)) - (1 + V) · g + ∇2V 

dρ/dt = D · ∇·(∇ρ - Z · ρ∇V) + f(ρ) 
 
These equations are strikingly similar to the Keller-Segel equations used to model chemotaxis, differing 
only in the unusual form of the “chemoattractant” V’s production and decay terms, reflecting the fact 
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that V is bounded between VK and VNa. The other notable difference is that f(ρ) represents chemical 
kinetics rather than population dynamics, and therefore can include a zeroth order production term.  
 
 
A graphical thermodynamic interpretation: 
 
We can gain some basic, physically-motivated insight into phenomenology of auto-electrophoresis with 
a simple graphical analysis of the above equations, demonstrating a close analogy with the 
thermodynamics of the vapor/liquid phase transition. The Nernst-Planck equation can be rewritten as 
the steepest descent of free energy per ligand molecule – i.e., a chemical potential (Zheng and Wei 
2011). If we posit an effective chemical potential of the form 
 

μ = log ρ - ZV 
 
where the first term represents the entropy of dispersal and the second term represents electrostatic 
energy (with the Z parameter relating the two, playing a role much like the reciprocal of temperature), 
then our Nernst-Planck equation above can be written 

 
dρ/dt = ∇·(D·ρ·∇μ) + f(ρ) 

 
The electrostatic energy is, of course, not the fundamental electrostatic interaction between charged 
ligand particles, but rather, an effective, attractive interaction due to their influence on membrane 
potential. From this perspective, ligand auto-electrophoresis is the competition between a short-range 
attractive force and entropic dispersal. When the “temperature” 1/Z is low enough, we may expect to 
see spontaneous condensation. If we omit chemical kinetics f(ρ), the analogy can be illustrated by 
plotting “isotherms” of the chemical potential – curves of μ vs. specific volume (1/ρ) at fixed Z for 
uniform, steady state solutions: 
 

  
Figure 1 – “Isotherms” showing chemical potential (effective free energy per molecule) vs. volume (1 / ρ) at fixed Z values. 
Instability occurs in regions of positive slope (dotted boundary). g = 1, Z = [0, 2, 4, 6, 8, 10] (top to bottom), linear gating. 
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For sufficiently large Z, there appears a region of positive slope (dotted region) – where free energy per 
particle decreases with decreasing volume. Just as in the classical Van der Waals model of the 
vapor/liquid transition, this represents a regime of thermodynamic instability – where the ligand will 
spontaneously collapse and separate into two distinct phases, one of high density, one of low density. 
This region in fact corresponds precisely to the conditions for spontaneous pattern formation derived in 
subsequent sections. In the simplified case here, with linear channel gating and no chemical kinetics, 
one can show that the region of instability is 
 

Z > Zcrit = (1 + g + ρ0)2/2gρ0 
 
which is plotted as the dotted line above. The smallest possible value of Zcrit in this case is 2, approached 
at large g and ρ0. A more general formula is derived in a later section. Immediately surrounding this 
instability region, one can also predict the existence of a “coexistence region” using the Maxwell equal-
area construction, where the two distinct phases will persist if present but will not spontaneously 
nucleate from a homogeneous mixture – i.e. where a long-wavelength pattern will persist or perhaps 
nucleate from a finite-amplitude disturbance but will not spontaneously form.  
 
Within the region of thermodynamic instability, a homogeneous, well-mixed solution as plotted above is 
not actually stable. Instead, we can expect spontaneous condensation of “droplets”, existing in a rough 
chemical equilibrium with the surrounding “vapor”. The overall ligand density, and hence the relative 
proportions of the two phases, determines the character of the resulting pattern. Mostly vapor 
produces a droplet-like spot pattern, while mostly liquid produces a pattern of bubble-like holes, and 
intermediate concentrations can produce stripe-like, labyrinthine configurations. The characteristic size 
of these spontaneously condensing pattern features can be determined from linear stability theory (see 
below).  
 
However, such a pattern of droplets is not necessarily stable either, as the free energy deficit due to the 
droplet boundaries – “surface tension” – means that smaller droplets are less energetically favorable 
than larger droplets. Thus, droplets will contract into round shapes, and large droplets will grow at the 
expense of smaller ones, or droplets may merge together, yielding a coarser and coarser pattern as time 
goes on. This is a known phenomenon not only in vapor/liquid systems but also in chemotaxis models, 
where it can be shown to progress on a slow, logarithmic timescale (Painter and Hillen 2011, Hillen and 
Painter 2008). Such “coarsening” behavior is demonstrated here in the first of the numerical examples 
below. 
 
Thus far we have ignored chemical kinetics – a non-equilibrium contribution, in the thermodynamic 
analogy. If ligand is continually produced and destroyed across space, then it is possible converge to a 
dynamic equilibrium with a stable, fixed-scale pattern. It is also possible to converge to a chaotic 
attractor with ever-changing patterns – seen under some configurations with nonlinear kinetics. In 
either case, the character of the pattern – spot, stripe, or net – is ultimately controlled by the relative 
balance of ligand production and decay, which determines the relative fractions of space occupied by 
liquid and vapor.   
 
Quantitative analysis of the model: 
 
We now more carefully derive a series of quantitative predictions. The model system has the uniform 
steady state solution(s): 
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ρ0 = f-1(0) 
V0 = (1 - g + H(ρ0)) / (1 + g + H(ρ0)) 

 
Using standard techniques of linear stability analysis, as in Turing’s original work, one can derive the 
behavior of small perturbations about the steady state, indicating when then system is capable of 
spontaneous symmetry breaking and pattern formation. For solutions of the form, 
 
 ρ = ρ0 + δρ·eikx + rt 

 V = V0 + δV·eikx + rt 

 
We have 

 
[rδV]  [-k2 - (1 + g + H(ρ0)) , H’(ρ0) · (1 - V0)] [δV] 
[      ] = [  ] [     ] 
[rδρ]  [k2DZρ0 , -k2D + f'(ρ0)] [δρ] 
 

 
Since H(ρ) ≥ 0, and for stable chemical steady states, f'(ρ0) ≤ 0, the trace of the matrix is negative, i.e. 
one or both r eigenvalues are negative. Thus, det < 0 indicates pattern-forming instability at 
wavenumber k. I.e., 
 

(k2 + (1 + g + H(ρ0)))·(1 - f'(ρ0)/k2D) - H'(ρ0)·(1 - V0)·Zρ0 < 0 
 
In the absence of chemical kinetics, i.e. f'(ρ0) = 0, this simplifies to 
 

k2 < 2gH'(ρ0)Zρ0 / (1 + g + H(ρ0)) - (1 + g + H(ρ0)) 
 
This leads to a simple test for pattern-forming instability: 
 
 Z > Zcrit = (1 + g + H(ρ0))2/2gH'(ρ0)ρ0 
 
For Z values above the critical value, there exists at least one wavelength that is unstable. For a singly 
charged ligand, typical Z values will be in the range of 1.5 to 3 (at the lower end for a nonselective gated 
channel), and for a doubly charged ligand, 3 to 6. Interestingly, Zcrit depends only on g, ρ0, and H; the 
particulars of diffusion, capacitance, and gap junction interconnectivity are irrelevant. They affect the 
time and length scales of the pattern, but not its presence or absence. For a simple linear gating model 
(H(ρ) = ρ), the smallest possible value of Zcrit is 2, achieved at large g and ρ0 – i.e. when ungated 
conductance of the gated ion (sodium, we’ve assumed) is comparatively small. The plot below illustrates 
Zcrit as a function of g and ρ0. For channels with cooperative binding, large Hill exponents n can drive Zcrit 
even smaller, by a factor approaching n when far from saturation. (This can be shown by scaling ρ such 
that H(ρ0) = ρ0

, in which case 0 < H'(ρ0) < n.) Nonzero chemical kinetics inevitably weakens the instability, 
although it can foster interesting long-term patterning behavior when moderate enough so as not to 
destroy the instability entirely. 
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Figure 2 – Zcrit as a function of g and ρ0 for linear channel gating. 

 
Noting that the length and time scales have no impact whatsoever on the presence of spontaneous 
patterning (aside from setting the relevant scale for the effect of chemical kinetics via the D parameter), 
we can make a further approximation. In typical tissues, the electrical timescale τE is many orders of 
magnitude faster than the diffusive timescale τD. This large timescale separation means we can 
approximate the electrical phenomena as instantaneously reaching steady state. The system equations 
then read, 
 

0 = (1 - V) · (1 + H(ρ)) - (1 + V) · g + ∇2V 

dρ/dt = D · ∇·(∇ρ - Z · ρ∇V) + f(ρ) 
 
and the linearized equations for small perturbations, 
 

0 = -k2δV - (1 + g + H(ρ0)) · δV + δρ · H'(ρ0) · (1 - V0) 
rδρ = -k2D · δρ + k2DZρ0

 · δV + f'(ρ0) · δρ 
 
These can be solved to give an expression for the rate of exponential growth as a function of wavelength 
2π/k: 
 

r = -k2D + k2DZρ0
 · H'(ρ0) · (1 - V0) / (k2 + 1 + g + H(ρ0)) + f'(ρ0) 

 
We can use this to derive for any given set of parameters the most unstable wavelength, which will tend 
to dominate the pattern (assuming it is not already smaller than the physical size of a cell): 
 
 kmax = √(-(1 + g + H(ρ0)) + √(2Zρ0H'(ρ0)g)) 
  
The example of a simple linear gating model with Z = 4 is plotted below: 
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Figure 3 – Most rapidly growing wavenumber (kmax) and associated exponential growth rate rmax (normalized by D) as a 
function of g and ρ0 for linear channel gating. 

 
We can see that the dominant feature size of the spontaneously generated pattern should be 
comparable to the length scale x0, although it becomes shorter with stronger instability and stretches 
out longer at the very margin of instability, before the pattern disappears entirely. In the important limit 
of small leakage conductance G0Na (i.e. the simultaneous limit of large g and ρ0), kmax grows with (ρ0g)1/4 
– which will eventually shrink to the size of a single cell regardless of x0.  
 
Similarly, the timescale of growth can be shown to be comparable to τP ≡ τE / kmax

2D = τD · (x0 / Δx)4 / 
kmax

2, the diffusive timescale τD scaled by a factor relating the different length scales. Pattern amplitude 
builds up exponentially on this timescale until it reaches a magnitude comparable to V*, at which point it 
saturates and begins nonlinear evolution. (It is worth noting that the resulting nonlinear evolution and 
maturation may continue on far longer timescale.) In the limit of small G0Na, kmax

2 grows with √(ρ0g), 
partly offsetting the growth in the (x0 / Δx)4 factor.  
 
As noted before, chemical kinetics dampen the pattern even as they change its character in interesting 
ways. τK

-1 ≡ -f'(ρ0) / τE  represents the marginal decay rate of ligand concentration due to chemical 
kinetics, and this is directly subtracted from what would otherwise be the kinetics-free pattern growth 
rate, as seen above in the equation for r. Thus, as a general matter, the ligand decay timescale must be 
slower than the pattern growth timescale in order for a pattern to form. 
 
 
Key criteria for experimental detection: 
 
In order for auto-electrophoretic patterning to be detected in a synthetic system or to be offered as an 
explanation for an existing patterning process, several criteria based on the above analysis must be 
satisfied: 
 

1. Z > Zcrit 
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For a pattern to form at all, the combination of ligand and channel must be capable of forming patterns, 
and the cell must be electrically configured in a favorable manner. Favorable contributing factors include 
highly charged ligands, cooperative binding, low leakage (ungated) current, large reversal potentials, 
and ion-selective channels. Background concentration of ligand must be sufficient to have a significant 
impact on channel current, though not so high as to produce saturation.  
 

2. τK ≳ τD 
 
For a pattern to form in the presence of intracellular production and decay of the ligand, the 
characteristic timescale of the chemical kinetics must be slower than the timescale of pattern formation. 
This rules out any potential ligands that are well buffered and tightly regulated. If the timescale of 
pattern formation is hours or days, so must the timescale be for production / decay.  
 

3. x0 ≳ Δx or τK >> τD 
 
Given the finite size of cells and the high intracellular conductivity compared to gap junction 
conductivity, the characteristic length scale of pattern formation should be larger than a cell. If it is not, 
any predicted pattern may be blurred away. In the absence of significant chemical kinetics, numerical 
experiments show that pattern formation typically still occurs, but on a larger scale. 
 

4. τP (i.e. τD · (x0 / Δx)4 / kmax
2) is “reasonable” 

 
The overall timescale of pattern formation must fit within a reasonable window for experimental 
observation and must be faster than any un-modeled effects that might disrupt it, such as cell migration. 
It is easy to pose hypothetical configurations that exhibit interesting pattern dynamics but only on a 
timescale of days, weeks, or longer.  
 
Pattern amplitude is not likely to pose challenges for experimental detection, as the voltage amplitude 
can be expected to stabilize at a substantial fraction of V*, the overall voltage scale of the cell.  
 
 
Numerical examples: 
 
We now explore some numerical demonstrations of the auto-electrophoresis model, solved using a 
simple custom code on a hexagonal lattice. Voltage and diffusion are solved implicitly via backward 
Euler, while advection and chemical kinetics are solved with forward Euler, with ligand conservation 
enforced via a finite volume style formulation and upwind differencing for advection. Results are not 
strongly sensitive to time step size, and large time steps are feasible with this scheme, here set to be 
0.05τP in each case. 
 
Above the critical threshold for instability, uniformly distributed ligand will spontaneously form a rippled 
pattern at the characteristic wavelength. In the absence of chemical kinetics, this will condense into 
droplet-like aggregates. These aggregates will “coarsen” over long periods of time, smaller aggregates 
disappearing or merging into larger ones. This is illustrated below for a 100x100 hexagonal mesh: 
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Figure 4 

Time points 10τP, 50τP, 250τP, 1250τP. Top frame shows V, bottom frame shows ρ. D = 10-4, Δx / x0 = 0.25, 
g = 10, ρ0 = 10, Z = 4. τP ≈ 25τD = 103τE. Initial conditions are V = 0, ρ = 10 with uniformly distributed noise 
at 10% of total amplitude. As anticipated, the pattern amplitude grows rapidly for the first several dozen 
τP, after which it saturates at a substantial fraction of full scale V (-1 to 1) and begins to coarsen on a 
longer, exponential timescale. This is similar to observations of blowup-free Keller-Segel systems. The 
particular choice of D (and hence the ratio of electric to diffusive timescales) has little impact on the 
behavior.  
 
In development, these sort of aggregation dynamics could be especially useful for spontaneous 
polarization. In a small, elongated domain, there will be only two stable steady states: an aggregate 
adhering to the left wall and an aggregate adhering to the right wall. Multiple aggregates will not be 
stable, because the larger will eventually subsume the smaller. An aggregate in the middle will also not 
be stable, because closed boundaries act mathematically like a mirror: the “largest” possible clump is 
actually a half clump up against the wall, which then appears twice as big. Progressive coarsening thus 
provides a robust failsafe for spontaneous polarization, able to resolve twinned and malformed states 
even if the natural wavelength of the initial instability isn’t perfectly matched to the system size.  
 
In the presence of chemical kinetics, one typically finds stable patterns emerging with a definite scale. A 
wide spectrum of patterns form even with simple linear kinetics – zeroth order production, first order 
decay. Below shows the formation of a striped pattern (also using a longer length scale): 
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Figure 5 

Time points 10τP, 50τP, 250τP, 1250τP. D = 10-5, Δx / x0 = 0.1, g = 10, Z=4. τP ≈ 1000τD = 104τE. kP = 9·10-5 ≈ 
0.9 / τP, kD = 4·10-6 ≈ 0.04 / τP. Initial conditions are V = 0, ρ = 10 with uniformly distributed noise at 10% 
of total amplitude. 
 

The variety of patterns appears somewhat richer with longer length scales relative to cell size (x0 / Δx), 
although the time required grows dramatically. With more complex chemical kinetics, patterns of similar 
characters are seen, but sometimes with nontrivial temporal dynamics, including chaos. D again has 
little impact on the spatial character of the patterns, although larger D may sometimes be necessary for 
complex temporal dynamics. 
 
By varying the parameters of the chemical kinetics across space, one can produce a qualitative map of 
the differing steady-state pattern characteristics available at different parameters. The variety of 
patterns nearby the above example are illustrated in the map below. 
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D = 10-5, Δx / x0 = 0.1, g = 10, Z = 4. 0 ≤ kP ≤ 1.5·10-4 on the vertical axis, 0 ≤ kD ≤ 8·10-6 on the horizontal 
axis. 
 
A similar map for the coarser but faster length scale in first example is shown below: 

 
D = 10-4, Δx / x0 = 0.25, g = 10, Z = 4. 0 ≤ kP ≤ 7.5·10-4 on the vertical axis, 0 ≤ kD ≤ 4·10-5 on the horizontal 
axis. 
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Similar patterns are seen farther to the upper left, gradually weakening in intensity as the chemical 
kinetics overwhelm the auto-electrophoretic instability.  
 
While these pattern-forming dynamics can potentially be slow, they represent a stable attractor of the 
system, and thus can be used to refine imperfect hints from prior steps such maternal-effect pre-
patterns or patterns generated by high-speed, feed-forward patterning mechanisms. Such a refinement 
process is dramatically faster than spontaneous generation and can allow the construction of robust, 
self-healing patterns in a short timeframe.  
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