A domestication history of dynamic adaptation and genomic deterioration in sorghum.

Oliver Smith ${ }^{1,2}$, William V Nicholson ${ }^{1,3}$, Logan Kistler ${ }^{1,4}$, Emma Mace ${ }^{5}$, Alan Clapham ${ }^{1}$, Pamela Rose ${ }^{6}$, Chris Stevens ${ }^{7}$, Roselyn Ware ${ }^{1}$, Siva Samavedam ${ }^{1}$, Guy Barker ${ }^{1}$, David Jordan ${ }^{8}$, Dorian Q Fuller ${ }^{7}$, Robin G Allaby ${ }^{1 *}$.

1. School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom.
2. Natural History Museum of Denmark, Øster Voldgade 5-7, 1350 København K, Denmark.
3. Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom.
4. Department of Anthropology,4. Smithsonian Institution, National Museum of Natural History, Washington, D.C. 20506, USA.
5. Department of Agriculture, Fisheries and Forestry Queensland (DAFFQ), Warwick, Queensland 4370, Australia.
6. The Austrian Archaeological Institute, Cairo Branch, Zamalek, Cairo, Egypt
7. Institute of Archaeology, UCL, London, United Kingdom
8. Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Warwick, Queensland 4370, Australia.

* Corresponding author

Abstract

The evolution of domesticated cereals was a complex interaction of shifting selection pressures and repeated introgressions. Genomes of archaeological crops have the potential to reveal these dynamics without being obscured by recent breeding or introgression. We report a temporal series of archaeogenomes of the crop sorghum (Sorghum bicolor) from a single locality in Egyptian Nubia. These data indicate no evidence for the effects of a domestication bottleneck but instead suggest a steady decline in genetic diversity over time coupled with an accumulating mutation load. Dynamic selection pressures acted sequentially on architectural and nutritional domestication traits, and adaptation to the local environment. Later introgression between sorghum races allowed exchange of adaptive traits and achieved mutual genomic rescue through an ameliorated mutation load. These results reveal a model of domestication in which genomic adaptation and deterioration was not focused on the initial stages of domestication but occurred throughout the history of cultivation.

Keywords

Ancient DNA, archaeobotany, bottleneck, introgression, genomic rescue

The evolution of domesticated plant forms represents a major transition in human history that facilitated the rise of modern civilization. In recent years our understanding of the domestication process has become revised considerably (1). In the case of cereals it has been recognized that the selective forces that give rise to domestication syndrome traits such as the loss of seed shattering were generally weak and comparable to natural selection $(2,3)$ and that the intensity of selection pressures changed over the course of time as human technology evolved (4). Furthermore, domesticated lineages have often been subjected to repeated introgressions from local wild populations that endowed adaptive traits and obscured historical signals in the genome (5). Such complexity obfuscates attempts to reconstruct the evolutionary history of domesticated species from modern plants. To counter these confounding factors in this study we directly tracked the evolutionary trajectory of a domesticated species, sorghum (Sorghum bicolor ssp. bicolor (L.) Moench.), through the archaeological record. This approach enabled the identification of selection pressures not clear today, and the tracking of the introgression process, revealing a domestication history which runs counter to the expectations of the current conventional model of domestication.

Sorghum is the world's fifth most important cereal crop and the most important crop of arid zones (6) used for food, animal feed, fibre and fuel. The evolution of sorghum has seen its transition from being a wild pluvial plant in north-eastern Africa (S. bicolor ssp. verticilliflorum (Steud.) De Wet ex Wiersema \& Dahlberg, hereafter referred to as S. verticilliflorum for clarity) to the ancestral domesticated
form Sorghum bicolor type bicolor in Central Eastern Sudan by around 5000 years ago, while cultivation is inferred to have begun by 6000 yrs $\mathrm{BP}(7)$., Ultimately, four specialized agroclimatic adapted types evolved after domestication-durra, caudatum, guinea, and kafir (8-10). The derived types were likely founded on introgressions of the wild progenitor complex Sorghum verticilliflorum or closely related species into the ancestral bicolor type, endowing traits such as drought tolerance in the case of type durra $(8,11)$. The evolutionary history of sorghum, replete with introgression, is difficult to reconstruct from modern datasets. However, a temporal series of archaeobotanical domesticated sorghums spanning back to 2100 before present (yrs BP) at the archaeological site of Qasr Ibrim, situated on the Nubian frontier of northern Africa, affords the opportunity to track this complex crop directly through time removing the obscuring effects of introgression (12). Prior to this wild sorghum is present at Qasr Ibrim from at least ca. 2800 yrs BP. Domesticated sorghum (race bicolor) appears at the site ca. 2100 yrs BP. After this time period phenotypically domesticated sorghum of the ancestral type bicolor occurs throughout all cultural periods until the site was abandoned 200 years ago. During the early Christian period at 1470 yrs BP, the oldest known drought-adapted, free-threshing durra type appears at the site and occurs there for the rest of the site's occupancy. The origins of the durra type are unclear. Current distributions in northern and eastern Africa and its dominance in the Near East and South Asia led to the proposal that durra originated on the Indian subcontinent (13) and returned to Africa at some point after 2000 yrs BP (14).

Results

Genetic diversity of sorghum over time

To gain a longitudinal insight into the evolutionary history of sorghum, we sequenced 9 archaeological genomes from different time points at Qasr Ibrim, including a wild phenotype from 1765 yrs BP and 8 domesticated phenotypes between 1805 and 450 yrs BP, a further 2 genomes from herbarium material, and 12 genomes of modern wild and cultivated sorghum types representing the varietal range (Table S1, S2).

We investigated how genetic diversity has changed through time by measuring within genome heterozygosity of 100 kbp genomic blocks that revealed a pattern of broad variation in heterozygosity in the wild progenitor S. verticilliflorum that became progressively narrower over time in the ancestral bicolor type, Figure S1. Interestingly, the wild phenotype of sorghum at Qasr Ibrim (sample A3) has a narrower variation in heterozygosity than the wild progenitor (represented by modern wild diversity), suggesting that it had been already been subject to genetic erosion. Conversely, the durra types all showed similar low levels of genomic variation in heterozygosity suggestive of genetic erosion prior to their appearance at Qasr Ibrim. Total genomic heterozygosity of bicolor over time confirmed that the 'wild' sorghum had already undergone considerable genetic erosion relative to the wild progenitor. To our surprise, the decreasing trend in heterozygosity over time fits a linear model (p values 0.0041 and 9.2×10^{-6} for parameters a and b respectively) better than an exponential model (p values 0.042 and 9.3×10^{-5}) as would be expected from an early initial
loss of diversity through a domestication bottleneck (15), Figure 1, Table S3 suggesting that there was no measurable effect on genetic diversity attributable to a domestication bottleneck.

Mutation load over time in Sorghum

The apparent lack of a domestication bottleneck runs contrary to expectations for a domesticated crop. To investigate the apparent lack of a domestication bottleneck further, we considered the mutation load. An expected consequence of the bottleneck is a rise in mutation load as small populations incorporate deleterious mutations through strong-acting drift. High mutation loads have generally been observed in domesticated crops (16-18), which have been taken as a confirmation of the effects of the domestication bottleneck. We measured the mutation load over time in the archaeological sorghum using a genome evolutionary rate profiling (GERP) analysis considering the total number of potentially deleterious alleles (19) (see methods), Figure 2. As with other domesticated crops, modern sorghum has a higher mutation load than its wild progenitor under both recessive and additive models. In contrast to the expectations of a domestication bottleneck we did not observe an initial large increase in mutation load associated with domestication, but rather an overall increasing trend in mutation load over time to the present day suggesting a process of load accumulation combined with selective purging episodes. In this case the trend line is best described by a positive exponential model rather than a linear model, Table S3, indicating mutation load has become increasingly
problematic in recent times. However, the p-values suggest that the coefficient for the time in each model is only weakly significant, which could be the result of multiple processes on going, such as a strong increase in the rate of mutation load accumulation in recent times. When we considered the number of sites containing deleterious alleles (dominant model) rather than total number of deleterious alleles we observe a decreasing trend over time (Figure S3). This pattern suggests that part of the rising mutation load in the bicolor type was due to the increased homozygosity over time causing fixation of deleterious alleles originating from the wild progenitor pool. There is variation over time in mutation load, most notably in 1805 year-old sorghum (sample A5) that shows a sharp increase due to the incorporation of strongly deleterious alleles, both in the total number of alleles and number of sites. Interestingly, we found that the durra types show a pattern that contrasts to the bicolor type with relatively little change in heterozygosity and a significant fall in mutation load over time, suggesting the purging of deleterious mutations either through selection or genomic rescue through hybridization (Figure S2, S3). The contrasting patterns in mutation load over time are also reflected in methylation state profiles, which can reflect the state of genome-wide stress (20), Figure S4.

Signals of selection in sorghum

We considered that episodes of selection could have contributed in part to the variation in mutation load observed over time, either through reducing population size due to the substitution load or through hitchhiking effects. Three approaches
were used to identify candidate regions under selection. Firstly, we surveyed for wild/domestication heterozygosity to look for significant reduction in heterozygosity in domesticates, which revealed 30 peaks of genome-wide significance (denoted by prefix pk), Figure 3, Table S4, S5. We also specifically surveyed 38 known domestication loci and also found a significant reduction of heterozygosity in 15 of the 38 associated regions, Table S6. Secondly, we used a SweeD analysis to detect selective sweeps (21), which identified 11 peaks (denoted by prefix s), Figure 3, Table S7. In the third approach we utilized the temporal sequence of archaeogenomes to investigate episodes of selection intensification by considering the gradient of heterozygosity change over time (see methods). In this latter approach we tracked the gradient of change in the heterozygosity of regions identified in the first two approaches and assigned significance based on the gradient deviation from the genome average for each type. We considered multiple time sequences representing alternative possible routes through contemporaneous genomes over time within type bicolor and type durra respectively. This revealed a period of selection intensification associated with domestication loci prior to 1805 yrs BP, followed by oscillations in diversity, Table S8, Figures S5-S7.

Together, the selection identification approaches exploit a range of different types of signature left by selection, and reveal a complex and dynamic history of selection over time summarized in Figure 5. We generally found more evidence for selection in the bicolor type sorghum than the durra type. Despite its apparent wild phenotype, the wild sorghum (A3) at Qasr Ibrim from 1765 yrs BP shows
evidence of selection at domestication loci concerned with architecture (int1, tb1), suggesting possible introgression with contemporaneous domesticated forms (represented by sample A5) that could have contributed to reduced heterozygosity. Interestingly, the intensification signals show some overlap between samples A3 and A5 (int1 and ae1), with A5 showing further evidence for selection at shattering, dwarfing and sugar metabolism loci (Sh3/Bt1, dw2 and SPS5) that would contribute to the domesticated phenotype of A5 relative to A3. Subsequent to this a period of intensification in selection is apparent both for dwarfing and sugar metabolism traits (710-715 years BP) in the bicolor type, with ten domestication loci showing significantly low levels of heterozygosity in this lineage by 710 yrs BP in A7. In the bicolor type, two of the sugar metabolism associated gene families show evidence of early selection controlling photosynthetic sucrose production first (SPS) and then an intensification of selection for breakdown (SUS). A third gene family (SUT) associated with sucrose transport appears to come under later selection in bicolor. In contrast, fewer domestication loci were found to show evidence of intensifying selection in the durra type, and none showed evidence of low heterozygosity. In this case we detected signals for an intensification of selection on tillering and maturity associated loci (gt1, ma3, the latter also being detected using SweeD s1 in the bicolor lineage). Significant heterozygosity reduction was identified in windows containing a large number of disease resistance loci (pk4, pk11, pk15, pk20, pk24, pk25) as well as sugar metabolism loci (pk14, pk18, pk19, pk22) in the bicolor type. One of SweeD peak (s2) was closely matched to pk5 on
chromosome 2 in the 54.0-54.2 Mbp interval, possibly indicating signatures for the same selection process. This region shows a consistently low heterozygosity over time in the bicolor type with the notable exception of the 1805 year old sorghum (A5). The region contains the far-red impaired response genes (FAR1), as well as anther indehiscence 1 (Al1). The FAR1 gene is associated with phytochrome A signal transduction (22), so is important in responses to far red light that divert resources away from tall growth to increase root and grain growth. The Al1 gene regulates anther development (23), allowing earlier development. Either of these genes may be locally adapted to the Qasr Ibrim environment since they already appear to be under intense selection in the wild sorghum at this site (sample A3), but not apparently under as much constraint in modern sorghum type bicolor.

The dynamic selection over time detected with most intensification of selection occurring before 1805 years BP, appears to correlate with a sharp increase in mutation load in the bicolor type. In contrast, the durra type shows much less evidence of selection and on arrival at Qasr Ibrim shows initially similar levels of mutation load to the bicolor type that then decreased over time (Figure S3). To investigate whether loci of selection are associated with higher regions of mutation load we measured the maximum deviations between genomes in GERP load scores across the genome and compared those to the locations of selection peak candidates (Figure 3, Table S9). Selection signatures were highly significantly associated with regions of maximum deviation in mutation load with 30% of low heterozygosity peaks ($p 8.04 \times 10^{-9}$), 45% SweeD
peaks ($p 2.55 \times 10^{-7}$) and 26% domestication loci $\left(p 5.03 \times 10^{-5}\right.$) occurring in such regions. The intensification of selection is associated with increased mutation load and could explain the spike in mutation load observed in the 1805 year old sorghum (sample A5).

Genome rescue through hybridization

We considered that the decreasing mutation load observed in the durra type could be due to a genomic rescue caused by hybridization with the local bicolor type. To investigate for evidence of hybridization we first constructed a maximum likelihood phylogenetic tree of wild and cultivated total genomes (Figure S8), and individual trees for 970 sections across the genome (Supplementary data set 1). After accounting for biases introduced by ancient DNA modification, both the durra and bicolor type from Qasr Ibrim form a single clade to the exclusion of modern bicolor and durra types, suggesting they have indeed hybridized over time. D-statistic analysis for introgression (24) shows over time the durra type became increasingly similar to the local bicolor type, suggesting progressive introgression between the two types (Figure S9). We then compared the archaeological genomes against a global sorghum diversity panel $(25,26)$ (Figure 4). The archaeological genomes are distributed along an axis of spread that has Asian durra types at the extremity. The oldest archaeological durra type (A11) sits between East African durra types and Asian durra types, whilst the wild phenotype sorghum, most closely aligned to the subsequent type bicolor, sits close to the center of the PCA, suggesting East African durras may have arisen
from a hybridization between Asian durra and African bicolor. The oldest archaeological durra type in this study (sample A11) may represent one of the earliest of the east African durras. The younger archaeological genomes of the two types become progressively closer on the PCA supporting a process of ongoing hybridization between the two types over time.

Finally, we investigated whether the hybridization between the bicolor and durra types led to adaptive introgression or genomic rescue. Phylogenetic incongruence between the bicolor and durra type clades suggests that hybridization was frequent at loci under selection (Table S10). In agreement with previous studies (10) there is clear evidence for a donation of the dwarfing $d w 1$ allele from durra to bicolor with a single durra type sample sitting within the bicolor type clade in this region, but in most cases although the clades of bicolor and durra have become mixed, it is not sufficiently clear which is the more likely donor. Interestingly, seven of the nine sugar-metabolism associated loci potentially under selection in the bicolor type are also areas of introgression with durra. In all cases where identified was possible ($s u$, SUS1 and SPS3), durra was identified as the donor. However, in the case of SPS5 in which we identified early intensification of selection in the bicolor type, no phylogenetic incongruence occurred. Conversely, at the maturity locus ma3 containing region, the durra type A11 that was identified as potentially under selection sits within the bicolor clade suggesting a donation from bicolor to durra. The FAR1/Al1 loci region, which appears to have been under strong selection in bicolor throughout, appears to have been donated from bicolor to durra.

Assuming that prior to the introduction of the durra type to Qasr Ibrim the two types, bicolor and durra, had accrued mutation loads independently, then hybridization would have afforded the opportunity for genomic rescue between the two types. We therefore considered all ancestor/descendent pairs of genomes within the bicolor and durra type lineages in the context of a third potential donor genome, and scanned all sites for comparative GERP load scores under the additive model. We calculated firstly the difference in GERP load scores between the ancestor and potential donor to give a 'total rescue value' that reflects a donor's potential to reduce mutation load across the entire genome, Figure 5. We secondly assessed the donor's potential to effect mutation load reduction specifically at only those sites in which there had been a reduction in GERP load score between the ancestor and descendent to give an 'on target rescue value'.

In the case of durra sample A11 (1470 yrs BP) as ancestor and A9 as descendent, bicolor samples A6 (715 yrs BP) and A7 (710 yrs BP) are intermediate in age and therefore potential donor genome types from the bicolor lineage. The analysis predicts that either A6 or A7 would have reduced load in the regions that were observed to be reduced in the descendent A9 (505 yrs BP), but an overall detrimental effect to genome wide load, which is in fact observed (Figure S3). However, had earlier bicolor types been available for introgression, such as A5 (1805 yrs BP), then hybridization would have been more beneficial for the durra types. Generally, there is strong rescue potential of bicolor types by durra on the sites that were observed to improve, however in most cases there is
an expectation that the over all load would be increased from the transfer of durra specific load to bicolor. Notably, durra types in general are predicted to reduce the on target load and genome wide load in A7, which is observed (Figure S3).

Discussion

This study demonstrates that sorghum represents an alternative domestication history narrative in which the effects of a domestication bottleneck are not apparent, mutation load has accrued over time probably as a consequence of dynamic selection pressures rather than a domesticationassociated collapse of diversity, and that genomic rescue from load occurred when two different agroclimatic types met.

The linear nature of the decreasing trend in diversity over time observed in sorghum in this study is surprising. An extreme bottleneck early in the history of would be expected to lead to a negative exponential trend as diversity is rapidly lost in the early stages of domestication. An alternative explanation for the trend could be that diversity has been lost steadily through drift over time. However, a simple drift model shows that such a ten-fold loss in diversity would also be associated with a negative exponential trend, Figure S11. It is possible that diversity loss could have been supplemented by gains through introgression from the wild over time, counteracting the trend made by drift. Sample A3 could be the result of a wild introgression event since there are older domesticate phenotypes in the archaeobotanical record, such as sample A5. Sorghum is known for its
extensive introgression leading to a strong regional structure within cultivars (10), making continuous introgression seem like a plausible scenario for sorghum at Qasr Ibrim. Incorporation of three systems of introgression into the simple drift model in which introgression is either constant, diminishing or increasing over time still results in a non-linear trend, which become parabolic when introgression becomes very high over time (not shown), Figure S11. We therefore think it unlikely that a model of constant drift and introgression is causative of the apparent linear decrease in diversity over time observed in this study.

Such linear decreases in diversity have been observed in human populations with increasing geographic distance from Africa and are most robustly explained by sequential founder models (27). The annual cycle of crop sowing and harvesting also represents a serial founding event scenario. A simple model of founding events in which 25% of the harvest is set aside for sowing based on field experiments (28) demonstrates that loss of genetic diversity approximates a linear process as populations become large, Figure S12A, and that the gradient of diversity loss is highly correlated with the populations size, Figure S12B. On the basis of the gradient of diversity loss observed in sorghum, this model predicts a long-term population size of 289,407 for the sorghum in this study. This estimate is in excess of the effective population size estimated from the heterozygosity of wild sorghum, 135,823 . It therefore seems plausible that in the case of sorghum diversity has likely been lost through a series of sequential founding episodes based on the cropping regime in a process that likely
incorporated all the available wild genetic diversity at the outset rather than a substantial initial domestication bottleneck.

The deleterious effects of mutation load are becoming increasingly apparent and a major problem in modern crops such as the dysregulation of expression in maize (29). The study here demonstrates the potential immediacy of the problem in that mutation load may generally be a consequence of recent selection pressures leading to an exponentially rising trend rather than a legacy of the domestication process. While the general trend of the archaeogenomes is for the increase in the number of sites homozygous for deleterious variants (recessive model), the overall trend for the number of sites holding deleterious variants decreases (dominant model), which suggests a process of general purging of variants from the standing variation of the wild progenitor combined with the rise of homozygosity with decreasing diversity of the variant sites that remain. However, this is sharply contrasted by modern sorghum in which there is a leap in the number of sites holding deleterious mutations (dominant model). This process contributes to the accompanying jump in load under both the recessive and additive models in modern sorghum. This indicates a large influx of new deleterious variants within the last century giving the trend of mutation load accumulation an exponential shape. It is likely that this influx of mutation load is the product of recent breeding programs and the genetic bottlenecks associated with the Green Revolution. The accumulation of load has previously been associated with mutation meltdown and extinction of past populations (30) but it remains unclear whether crops could follow the same fate in the absence of
rescue processes, or whether such episodes could have been involved with previous agricultural collapses when crops experienced extensive adaptive challenges $(31,32)$. In the case of sorghum wild genetic resources may be valuable not only as a source of improved and environmentally adaptive traits, but also as a source for reparation of genome wide mutation load that may affect housekeeping and economic traits alike.

This represents the first plant archaeogenomic study that tracks multiple genomes to gain insight into changes in diversity over time directly. The trends revealed, based on a relatively low number of archaeological genomes, suggest a domestication history contrary to that typically expected for a cereal crop. Further archaeogenomes may establish whether this is a general trend for sorghum and other crops.

Methods

1. Sample Acquisition. Archaeological samples were sourced from A. Clapham from the archaeological site Qasr Ibrim, outlined in Table S1. For details on dating see section 1.3 below. Historical samples from the Snowden collection were sourced from Kew Gardens, Kew1: Tsang Wai Fak, collection no. 16366 Kew2: Tenayac, Mexico, collection assignation 's.n.'. Modern samples of S. bicolor ssp. bicolor type bicolor, durra, kafir, caudatum, drumondii and guinea were supplied through the USDA [accession numbers PI659985, PI562734, Pl655976, PI509071, PI653734 and PI562938 respectively]. Wild sorghum samples S. vertilliciliflorum, S. arundinaeum, and S. aethiopicum were also
obtained from the USDA [accession numbers PI520777, PI532564, PI535995], and wild S. virgatum was donated by D. Fuller. The outgroups S. propinquum and S. halapense were obtained from the USDA [accession numbers PI653737 and Grif 16307] respectively.

The genomes generated in this study were also compared to 1023 resequenced genomes taken from Thurber et al 2013 (26).
1.2 A note on taxonomy. The sorghum genus is complex with numerous taxonomic systems. After Morris et al.'s findings (10), we have elected not to describe the principal cultivar types as subspecies or races but rather simply 'types' to reflect the reality that there is evidence of considerable introgression between each of these forms. The wild progenitor of domesticated sorghum is a complex made up of four 'races' verticilliflorum, arundinaceum, aethiopicum and virgatum. However, the integrity of these races is also questioned, and the currently more accepted designation is one species, verticilliflorum, of which the other races are subtypes. For clarity and simplicity in this study we have used the race type as a variety designation.
1.3 A note on Qasr Ibrim and archaeological context of samples. Qasr Ibrim was a fortified hilltop site in the desert of Lower Nubia on the east bank of the Nile, about 200 km, south of Aswan in modern Egypt. It has been excavated over numerous field seasons, since 1963 by the Egyptian Exploration Society (UK). In recent years with higher Lake Nasser levels only upper parts of the site are
preserved as an island (33,34). The desert conditions provided exceptional organic preservation by desiccation with exceptional preservation of a wide range of biomolecules (e.g. 35-37). Systematic sampling for plant remains was initiated in 1984 (38) and the first studies of these remains were carried out in the 1980s by Rowley-Conwy (39) and had continued by Alan Clapham (40,41). The exceptional plant preservation has previously allowed successful ancient genomic studies of barley (35) and cotton (36).

Qasr Ibrim was founded sometime before 3000 years BP. It had occupations associated the Napatan kings (Egyptian Dynasty 25: 747-656 BC), possible Hellenistic and Roman Egypt ($3^{\text {rd }}$ century BC to $1^{\text {st }}$ c. AD), the Meroitic Kingdom ($1^{\text {st }}$ century to $4^{\text {th }}$ century AD), and local post-Meroitic (AD 350-550) and Nubian Christian Kingdoms (AD 550-1300). Earlier periods are associated temples to Egyptian and Meroitic deities. After Christianity was introduced the site had a Cathedral. Later Islamic occupations finished with use as an Ottoman fortress. The site was abandoned in AD1812. The Sorghum material studied here comes from a range of different contexts from excavation seasons between 1984 and 2000. While the chronology of the site is well established by artefactual material, including texts in various scripts, several sorghum remains or associated crops, were submitted for direct AMS radiocarbon dating, as listed below in Table S2. For directly dated find the median of the 2-sigma calibrated age range has been used. Note that Radiocarbon calibration defines "the present" as AD 1950, and we have recalculated the median as before AD 2000, and assigned Snowden historical collections form the start of the $20^{\text {th }}$ century as ca. 100 BP . For material
not directly dated, sample A12 could be assigned based on associated pottery and finds, which have a well-established chronology through the Christian periods (42), A12 is associated with Islamic/Ottoman material (1500-1800 AD, ca. 400 BP)
2. DNA extraction. DNA was extracted from archaeological and historical samples in a dedicated ancient DNA facility physically isolated from other laboratories. All standard clean-lab procedures for working with ancient DNA were followed. Single seeds from each accession were ground to powder using a pestle \& mortar and incubated in CTAB buffer (2\% CTAB, 1\%PVP, 0.1M Tris-HCI $\mathrm{pH} 8,20 \mathrm{mM}$ EDTA, 1.4 M NaCl) for 5 days at $37^{\circ} \mathrm{C}$. The supernatant was then extracted once with an equal volume of $24: 1$ chloroform:isoamyl alcohol. DNA was then purified using a Qiagen plant Mini Kit with the following modifications: a) $5 x$ binding buffer was used instead of $1.5 x$ and incubated at room temperature for 2 hours before proceeding. b) After washing with AW2, columns were washed once with acetone and air-dried in a fume hood to prevent excessive G-forces associated with centrifugal drying. c) DNA was eluted twice in a total of $100 \mu \mathrm{l}$ elution buffer and quantified using a Qubit high sensitivity assay.

DNA from modern samples was extracted using a CTAB precipitation method due to excessive polysaccharide levels precluding column-based extractions. Briefly, seeds were ground to powder and incubated at $60^{\circ} \mathrm{C}$ for 1 hour in 750 ul CTAB buffer as previously described, with the addition of 1 ul β-mercaptoethanol. Debris was centrifuged down and the supernatant was extracted once with an
equal volume of 24:1 chloroform:isoamyl alcohol. The supernatant was then collected and mixed with $2 x$ volumes precipitation buffer (1\% CTAB, 50mM Tris$\mathrm{HCl}, 20 \mathrm{nM}$ EDTA) and incubated at $4^{\circ} \mathrm{C}$ for 1 hour. DNA was precipitated at $6^{\circ} \mathrm{C}$ by centrifugation at $14,000 \mathrm{~g}$ for 15 minutes. The pellet was washed once with precipitation buffer and incubated at room temperature for 15 minutes before being centrifuged again under the same conditions. The pellet was dried and resuspended in 100μ l high-salt TE buffer (10 mM Tris- $\mathrm{HCl}, 1 \mathrm{M} \mathrm{NaCl}$) and incubated at $60^{\circ} \mathrm{C}$ for 30 minutes with $0.5 \mu \mathrm{l}$ RNase A. The DNA was then purified using Ampure XP SPRI beads.
3. Library construction and genome sequencing. Libraries for all samples were constructed using an Illumina TruSeq Nano kit, according to manufacturers' protocol. A uracil-intolerant polymerase (Phusion) was used to amplify the libraries, in order to eliminate the C to U deamination signal often observed in ancient DNA in favour of the $5^{\prime} 5 \mathrm{mC}$ to T deamination signal. The purpose of this was to obtain epigenomic information after analysis using epiPaleomix (43). Consequently the data set was reduced for non-methylated cytosine deamination signals in the 5' end, but showed expected levels of G to A mismatches for ancient DNA (5-10\%) in the 3' end and high levels of endogenous DNA content typical for samples from this site (Table S1). While this approach is thought to reduce library complexity by reducing the number of successfully amplified molecules, we considered this to be a worthwhile trade-off considering the exceptional preservation and endogenous DNA content of the Qasr Ibrim
samples. We found no evidence to suggest insufficient library complexity after amplification. A minor modification was made to the protocol for ancient and historical samples: a column-based cleanup after end repair was used, in order to retain small fragments that would otherwise be lost under SPRI purifications as per the standard protocol. Genomes were sequenced on the Illumina HiSeq 2500 platform. Ancient and historical samples were sequenced on one lane each using SR100 chemistry and modern samples on 0.5 lanes each using PE100 chemistry.
4. Preliminary Bioinformatics processing. Illumina adapters were trimmed using cutadapt v1.11 using 10\% mismatch parameters. Resulting FastQ files were mapped to the BTX623 genome (44) using bowtie2 v2.2.9 (46) under --sensitive parameters. SAM files containing mapped reads with a minimum mapping score of 20 were then converted to BAM files using samtools v1.14 (47). Variant calls format (VCF) files were then made from pileups constructed using samtools mpileup, and variant calls were made using bcftools v1.4 (47).
5. Methylation analysis. Since a uracil-intolerant polymerase was used for library generation, we analysed BAM files using epipaleomix (43) on the ancient samples. We then collated the number of identifiable 5 mC sites globally for each sample. Epipaleomix is designed to characterise CpG islands typical to animal genomes and, is not suited to gene-specific analysis of plant genomes to due to their wider methylation states (CHH and CHG) (45). However when assessing
relative overall genome methylation between individuals of the same species, CpG islands measured in this way provide a perfectly adequate proxy. We opted for global and windowed-measurements to determine relative methylation states between samples.
6. Evolutionary and population analyses. Two archaeological genomes (A8 and A12) were from phenotypes intermediate between bicolor and durra types. We found that sample A8 was predominantly of bicolor type and A12 predominantly of durra type. Given the uncertainty of these samples and their likely hybrid origins, we elected to leave them out of most analyses.
6.1 Heterozygosity analysis The number of heterozygous sites was measured for each 100 kbp window of genome aligned to the BTX_623 reference sequence (44). The frequency distribution of heterozygosity was then calculated by binning the windows in 1 heterozygous base site intervals. Ratios of wild:cultivated heterozygosity were calculated for each window using S. verticilliflorum as the wild progenitor. Ratios closely approximate a negative exponential distribution. Probabilities of observed heterozygosity ratios for each window were obtained from a negative exponential distribution with λ equal to $1 / \mu$ for all ratios for each chromosome. A Bonferroni correction was applied by multiplying probability values by the number of windows on a chromosome in Figure 4. Locations of 38 known domestication syndrome loci (shown in Tables S5 and S7) were obtained by reference to the BTX_623 genome. Candidate domestication loci were
obtained from the scans of Mace et al (25). In the genome-wide scan peaks were considered significant if $1 / p>100$ after Bonferroni correction.

We considered the possibility that the observed heterozygosity levels may be influenced by postmortem DNA damage. To explore this, we characterized the relationships between time, heterozygosity and postmortem deamination. As we previously described, C to U damage signals are eliminated at the 5 ' ends of sequence reads because of our choice of polymerase, so we therefore characterized damage profiles at the 3' ends only, using mapDamage output statistic '3pGtoA_freq' and taking a mean of the 25 reported positions for each ancient or historical sample. Unsurprisingly, we found that the accumulation of damage patterns is a function of time in a logistic growth model, assuming a zero-point intercept for both factors $\left(R^{2}=0.9\right) .80 \%$ of damage capacity under this model is reached reasonable quickly, in 331.0 years. All the Qasr Ibrim samples are at least 400 years old, and so we re-fitted a linear regression model to these samples only so characterize these relationships in a true time-series. We found a negligible correlation between time and damage accumulation after 400 years $\left(R^{2}=0.15, p=0.34\right)$. Next, we characterized the relationship between age and heterozygosity under the same model (although without the assumption of a zero-point intercept, since even modern domesticate lines in this study show non-zero levels) and found a weak fit $\left(R^{2}=0.64, p=0.14\right)$. This relationship is however likely influenced by our central hypothesis, with 'less domesticated' samples being earlier in the archaeological record, and so a counter-argument should not be inferred from this analysis. Finally, we assessed the relationship
between damage and heterozygosity by linear regression, assuming inappropriateness of a logistic model since both damage and heterozygosity factors are functions of time. We found a weak correlation when considering all samples $\left(R^{2}=0.2, p=0.2\right)$, and virtually no correlation when considering the Qasr Ibrim time series only $\left(R^{2}=0.04, p=0.61\right)$. Considering that the two historical Kew samples are ostensibly domesticates, and historical and geographic outliers to the rest of the dataset, we conclude that the observed levels of heterozygosity in the ancient samples are not influenced by postmortem damage patterns.
6.2 Differential Temporal Heterozygosity Gradient Analysis. Our rationale was to utilize the temporal sequence of genomes to identify time intervals associated with intensification of selection. To this end we designed an analysis to identify outliers in changing heterozygosity over time to the general genomic trend. We considered all possible historical paths between genomes given three pairs of samples were almost contemporaneous (A3/A5, A6/A7 and A9/A10), with wild S. verticilliflorum representative of the wild progenitor in the case of the bicolor lineages.

For each 100 kbp window we calculated the gradient of change in heterozygosity between temporally sequential genome pairs by subtracting younger heterozygosity values from older and dividing through by the time interval between samples. Genome-wide gradient values for all 100kbp windows were used to construct a non-parametric distribution to obtain probability values
of change over each time interval for a 100kbp window between a particular pair of samples. Peak regions identified by heterozygosity ratio, SweeD analysis and known domestication syndrome genes were then measured for gradient probability.
6.3 SweeD analysis. VCF files from our 23 ancient, historical and modern samples and also 9 samples from Mace et al (25) were combined using the GATK (52) program CombineVariants. Subsequently, the combined VCF file was filtered - using bcftools v1.4 (47) - to only include sites with 2 or more distinct alleles and at sites where samples have depth less than 5 or a variant calling quality score less than 20 to exclude those samples. Then a further filter was applied - using bcftools v1.4-to exclude variant calls due to C->T and G->A transitions relative to the reference, which potentially represent post-mortem deamination which has a high rate in aDNA samples (48). SweeD (21) was run with options for multi-threading (to run with 64 threads) and to compute the likelihood on a grid with 500 positions for each chromosome.
6.4 Genome Evolutionary Rate Profiling (GERP) analysis. This analysis was carried out broadly following the methodology of Cooper et al. (19). We aligned the repeat-masked genomes of 27 plant taxa to the BTX_623 sorghum reference genome using last, and processed resulting maf files to form netted pairwise alignment fastas using kentUtils modules maf-convert, axtChain, chainPreNet, chainNet, netToAxt, axtToMaf, mafSplit, and maf2fasta. We forced all alignments
into the frame of the sorghum reference using an expedient perl script, and built a 27-way fasta alignment excluding sorghum for GERP estimation. We created a fasta file of fourfold degenerate sites from chromosome 1 (347394 sites; NC_012870) with a perl script, and calculated a neutral rate model using phyloFit, assuming the HKY85 substitution model and the following tree:
((()((((Trifolium_pratense,Medicago_truncatula),Glycine_max),Prunus_persica),(Populus_trichocarpa,Manihot_esculenta)),(((Arabidopsis_thaliana,_Arabidopsis_ly rata),(Brassica_napus,Brassica_rapa)), Theobroma_cacao)), Vitis_vinifera),((Sola num_tuberosum, Solanum_lycopersicum),(Chenopodium_quinoa,Beta_vulgaris))) ,(((Zea_mays,Setaria_italica),(((Oryza_rufipogon,Oryza_longistaminata),_Leersia_ perrieri),,(((Triticum_urartu,Aegilops_tauschii),Hordeum_vulgare),Brachypodium_ distachyon))),Musa_acuminata)),Amborella_trichopoda)

We then calculated GERP rejected subsitutions (RS) scores using gerpcol with the default minimum three taxa represented for estimation. The mutation load for each genome was then assessed by scanning through their VCF files generated by alignment to BTX_623. Maize was used as an outgroup to judge the ancestral state, and only sites at which there was information from maize were incorporated into the analysis. Sites which differed to the ancestral state were scored based on the associated RS score for that site following the scheme of Wang et al. (18): 0, neutral, 0-2 slightly deleterious, 2-4, moderately deleterious, >4 seriously deleterious. We collected scores under three models, recessive,
additive and dominant. Under the dominant model we counted each site once regardless of whether it had one or two alternative bases to the ancestor, so giving the total number of base sites containing at least one potentially deleterious allele. Under the additive model we counted the total number of alleles that were alternative to the ancestor such that each homozygous alternative site scored 2, but heterozygous sites scored 1. Under the recessive model only sites that were homozygous for potentially deleterious variants were counted.

To investigate the significance of overlap between regions significant GERP regions of difference (GROD) between taxa and signatures of selection we used a binomial test in which the null probability of selecting a GROD was equal to the total number of GRODS (193) divided by the total number of 100 kbp regions studied (6598), and N and x were the total number of selection signals and the number of selection signals occurring in a GROD respectively.

We used the GERP profiles to explore potential genomic rescue from mutation load accrued independently in the bicolor and durra lineages prior to hybridization between the two types. For the purposes of this analysis we used the wild sorghum genome A3 as a possible wild ancestor genome to the domesticated bicolor form A5 even though this wild sample is contemporaneous to that domesticated form. All possible ancestor descendent pairs were assembled within bicolor or durra types, and all 100 kbp windows were scanned for the relative additive model GERP load scores for ancestor, descendent and a third potential donor genome. The total potential for the donor genome to rescue
the ancestral genome was scored summing the difference in GERP scores across all windows between the ancestor and donor. To better fit a scenario in which the donor genome was the causative agent of reduction GERP load score we identified windows that satisfied the condition ancestor GERP load score > descendent GERP load score, and summed up the difference in ancestor and potential donor scores to give an 'on target rescue' value.
6.5 Phylogenetics Maximum likelihood tress were constructed using exaML (49) firstly using whole genome sequences (Figure S7), and for 970 consecutive blocks across the genome (supplementary data set). Prior to computing phylogenetic trees, the VCF files were processed as described in section 6.3 (on the SweeD analysis) albeit with our 23 ancient, historical and modern samples only.

The maximum likelihood tree using the whole genome sequences was constructed as follows. Our own script created a multiple sequence alignment file by concatenating the variant calls in the VCF file and outputting the results in PHYLIP (50) format. The program parse-examl from the ExaML package (version 3.0.15) was run in order to convert the PHYLIP format file into ExaML's own binary format. Also, ExaML requires an initial starting tree which was obtained by running (on multiple threads) Parsimonator v1.0.2, a program available as part of the RaxML package (51) - developed by the same research group - for computing maximum parsimony trees. An ExaML executable
(compiled to run using MPI) was run on multiple CPUs in order to compute the maximum likelihood tree.

The trees for 970 consecutive blocks across the genome were computed by essentially the same approach as described above for a single tree, after a script obtained the blocks from the input VCF file (for the combined samples) and output them in PHYLIP format.

To assess potential donation between genomes at candidate loci we examined trees spanning the corresponding100kbp windows. The tree topology was examined for congruence in the maintenance of bicolor and durra type groups within the Qasr Ibrim group of genomes. Instances of phylogenetic incongruence were interpreted as candidate regions of recombination between the two genome types, although identification of the donor and recipient genomes was not always clear. Simple cases in which a single genome from one sorghum type was found within the group of the other type were interpreted as possible genome donations from that group to the single genome. In the case of regions that scored highly in the SweeD analysis no phylogenetic congruence was attempted because the taxon in which selection has operated is not identified.
6.6 Principal Component Analysis of global diversity set. A subset of 1894 SNPs were used to find the principal axes of genetic variation for the 23 samples and an unpublished set of 1046 diverse sorghum lines spanning the racial and geographic diversity of the primary gene pool of cultivated sorghum. 580 of these
diverse lines were described in Thurber et al (26). These lines were produced within the Sorghum Conversion Program which introgressed key height and phenology genes into exotic lines to enable them to be produced in sub-tropical environments. The introgressed regions spanned approximately 10% of the genome which were masked for the purposes of this analysis. Principal component analysis of the centered data matrix was performed in R (R core team, 2017) using the prcomp function in the base "stats" package.
6.7 D statistics. Patterson's D-Statistic and modified F-statistic on Genome wide SNP data was used to infer patterns of introgression (24). D-statistic and fdstatistic for each of the 10 chromosomes was calculated using the R-package PopGenome. Variant Call Format (VCF) file, which is generated after mapping reads of an individual sample to the reference genome, was given as input to the readVCF() function of the package (52).

We used four R-language based S4 class methods from PopGenome package to carry out the introgression tests for every chromosome. First, we used the method set.population by providing 3 populations (2 sister taxa and an archaic group) viz., P1=BTX_623, P2=varying samples, P3=Most ancient S.bicolor A3. Second, using set.outgroup function, we set an outgroup (P4= S.halapense). Third, the method introgression.stats was employed to calculate the introgession tests. Finally, we used jack.knife.transform method (53) which transforms an existing object belonging to GENOME class into another object of the GENOME class with regions that corresponding to a Jackknife window.

Standard error was then calculated by eliminating one such window i.e., a single chromosome under study and calculation was applied to the union of all the other chromosomes.

We tested for admixture from the most ancient S. bicolor type bicolor sample (A3), assuming this represents a genome prior to the appearance of the durra type on the African continent. The BTX_623 sorghum reference genome was taken as P_{1}, sample $A 3$ was taken as P_{3} and S. halapense was taken as the out group P_{4}. S. halapense is native to southern Eurasia to east India and does not readily cross with S. bicolor. Samples were then tested at the P_{2} position across all 100kbp windows, each chromosome tested separately. Negative values (indicating an excess of P_{1} / P_{3} combinations) are expected when the BTX_623 genome is more similar to sample $A 3$ than P_{2}. This is observed as expected for the durra types, although the value of D decreases over time consistent with either an increase in instances of P_{2} / P_{3} or instances of P_{1} / P_{2}, both suggesting progressive introgression between the durra and bicolor types over time. Positive values (indicating an excess of $\mathrm{P}_{2} / \mathrm{P}_{3}$ combinations) suggest a close relationship between sample A3 and P_{2}, which is observed the Qasr Ibrim bicolor types (A5, A6 and A7).
6.8 Linear and exponential line fitting to heterozygosity and GERP score data.

A straight line was fit to the heterozygosity data in Figure 2 using the glm function (for generalized linear models) in R and also an exponential function was fit to the same data using the gnm package (for generalized non-linear models) in R
obtaining the values for the parameters, standard errors, p and AIC shown in Table S3. (It was confirmed similar values were obtained for the parameters, standard errors, p and AIC by fitting the straight line model using the gnm package in R.)
6.9 Basic simulation of diversity loss through drift, introgression and serial founding events

To explore the effect on general trend line shape of introgression over time we used a basic simulation of drift loss using the standard equation:

$$
\frac{H_{t}}{H_{0}}=\left(1-\frac{1}{2 N_{f o}}\right)\left(1-\frac{1}{2 N\left(\frac{N_{e}}{N}\right)}\right)^{t-1}
$$

where $N_{f o}, N$ and N_{e} are the founding population size, census population size and effective population size respectively. For simplicity, we assumed in the case of our crop that all three population sizes were equal. To incorporate introgression we used a simulation to calculate and modify each generation by using the above equation to modify the diversity from the previous generation, and then adding a diversity value representative of gene flow. Gene flow was altered each generation by a power factor f, which was 1 in the case of constant introgression, 1.0001 in the case of diminishing introgression over time and 0.99995 in the case of increasing introgression over time, with an initial value for introgression as 0.000015 , equating to the value of genetic diversity added to the population each generation. We used a founder population of 2000 for 6000 generations to
recapitulate the observed 10 -fold loss of diversity over this time frame in sorghum.

The serial founder event simulation was executed using the following model: To initialize, allele frequencies were randomly assigned for a defined number of alleles using a uniform distribution. We also applied a skewed distribution in which the first allele frequency generated as above was amplified to become a dominating allele frequency by a defined value. We found this made no difference to the simulation outcomes. N individuals were then randomly drawn using the allele frequencies, and the resultant frequency distribution calculated. Homozygosity was calculated as the sum of the squares of allele frequencies and subtracted from 1 for the heterozygosity. To convert these allele values to a per base site heterozygosity comparable to the sorghum data we divided by $1 / \mathrm{He}$ of the wild progenitor. A founder event was then generated by drawing Nb individuals from the allele frequency distribution, the new resultant allele frequency distribution calculated. N individuals were then drawn from this distribution, new frequencies calculated and the resultant heterozygosity calculated as above. The process was repeated for a defined number of cycles. We explored a scenario in which the founder population was based on setting aside 25% of the (seed) population each year, following classic experimental archaeology field trials (28). We explored several orders of magnitude of N (100, 1000, 10000, 100000), and assumed 5 alleles per gene, for 1000 founding events, equating to 1000 years of agriculture. Each trial was repeated 100 times, equating to 100 genes being simulated independently. While the overall
distribution of diversity loss over time is exponential, seen more clearly at smaller population sizes, the trend approximates linear more closely with increasing population size (Figure 12A). We calculated the gradient of descent from the first 60 founding events and found the logs of the gradient and population size to be directly proportional (Figure 12B). We used linear regression of this relationship to predict the log of the population size associated with the log of the observed gradient of descent of diversity in sorghum. We independently calculated the effective population size associated with wild sorghum using the heterozygosity as an estimate of θ (using the relationship $\theta=4 \mathrm{Ne} \mu$), and an estimate of 5×10^{-9} subs/site/year for the neutral mutation rate (54).

Acknowledgements

The authors would like to thank M. Nesbitt for permitting the use of herbaria material from Kew. OS, WN, GB and RGA were supported by the NERC (NE/L006847/1) and LK was supported by NERC (NE/L012030/1). CJS and DQF work with archaeobotanical materials was supported by a European Research Council grant (no. 323842). Sequence data were deposited in the European Molecular Biology Laboratory European Bioinformatics Institute [project code PRJEB24962.].
(1) Larson G, Piperno D, Allaby RG et al. Current perspectives and the future of domestication studies. Proc. Natl. Acad. Sci. U.S.A. 111, 6139-6146 (2014).
(2) Purugganan MD, Fuller DQ. The nature of selection during plant domestication. Nature 457, 843-848 (2009).
(3) Fuller DQ, Denham T, Arroyo-Kalin M, Lucas L, Stephens C, Qin L, Allaby RG, Purugganan MD Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proc. Natl. Acad. Sci. U.S.A. 111, 6147-6152 (2014).
(4) Allaby RG, Stevens S, Lucas L, Maeda O, Fuller DQ. Geographic mosaics and changing rates of cereal domestication. Philosophical Transactions of the Royal Society B. 372, 20160429 (2017).
(5) Poets AM, Fang Z, Clegg MT, Morell PL. Barley landraces are characterized by geographically heterogeneous genomic origins. Genome Biology 16, 173 (2015).
(6) Food and Agriculture Organization of the United Nations. [http://www. fao.org/index_en.htm].
(7) Winchell F, Stevens CJ, Murphy C, Champion L, Fuller DQ. Evidence for Sorghum Domestication in Fourth Millennium BC Eastern Sudan: Spikelet Morphology from Ceramic Impressions of the Butana Group. Current Anthropology 58, 673-683 (2017).
(8) Doggett H Sorghum $2^{\text {nd }}$ Ed, Longman, Harlow (1988).
(9) Brown PJ, Myles S, Kresowich S. Genetic support for a phenotype-based racial classification in sorghum. Crop Sci. 51, 224-230 (2011).
(10) Morris G, et al. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc. Natl. Acad. Sci. U.S.A. 110, 453-458 (2013).
(11) Fuller, Dorian Q and Chris J. Stevens (n.d.) Sorghum Domestication and Diversification: A current archaeobotanical perspective. In: Anna Maria Mercuri, A. Catherine D'Andrea, Rita Fornaciari, Alexa Höhn (eds.) Plants and People in Africa's Past. Progress in African Archaeobotany. Springer (2017).
(12) Clapham AJ, Rowley-Conwy PA In Fields of Change-Progress in African Archaeobotany, Cappers R, ed. Groningen Archaeological Studies.

Groningen, 5, 157-164 (2007).
(13) de Wet JML, Harlan JR, Price EG Variability in Sorghum bicolor. In: Harlan JR, de Wet JMJ, Stemler ABL (eds) Origins of African plant domestication.

Mouton Press, The Hague, p 453-463 (1976).
(14) Harlan JR, Stemler ABL The races of Sorghum in Africa. In: Harlan JR, de Wet J, Stemler ABL (eds) Origins of African plant domestication. Mouton Press, The Hague, p 465-478 (1976).
(15) Meyer R, Purugganan M. Evolution of crop species: genetics of domestication and diversification. Nature Reviews Genetics 14, 840-852 (2013).
(16) Liu Q, Zhou Y, Morrell PL, Gaut BS Deleterious variants in Asian rice and the potential cost of domestication. Mol. Biol. Evol. 34(4), 908-924 (2017).
(17) Renault S, Rieseberg L. The accumulation of deleterious mutations as a consequence of domestication and improvement in sunflower and other Compositae crops. Mol. Biol. Evol. 32(9), 2273-2283 (2015).
(18) Wang L, Beissinger TM, Lorant A, Ross-Ibarra C, Ross-Ibarra J, Hufford MB The interplay of demography and selection during maize domestication and expansion. Genome Biol. 18, 215 (2017).
(19) Cooper GM et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 15, 901-913 (2005).
(20) Smith O, Clapham A, Rose P, Liu Y, Wang J, Allaby RG. Genomic methylation patterns in archaeological barley show de-methylation as a time-dependent diagenetic process. Scientific Reports 4, 5559 (2014).
(21) Pavlidis P, Živkovic D, Stamatakis A, Alachiotis N SweeD: Likelihood-based detection of selective sweeps in thousands of genomes. Mol Biol Evol 30, 2224-2234 (2013).
(22) Hudson M, Ringli C, Boylan MT, Quail PH The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Devel. 13, 2017-2027 (1999).
(23) Zhu QH, Ramm K, Shivakkumar R, Dennis ES, Upadhyahya NM The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol. 135, 1514-1525 (2004).
(24) Martin, S, Davey, J, Jiggins, C. Evaluating the Use of ABBA-BABA Statistics to Locate Introgressed Loci. Mol. Biol. Evol. 32(1), 244-257 (2014).
(25) Mace ES et al. Whole genome sequencing reveals untapped genetic potential in Africa's indigenous cereal crop sorghum. Nature

Communications 4, 2320 (2013).
(26) Thurber CS, Ma JM, Higgins RH, Brown PJ Retrospective genomic analysis of sorghum adaptation to temperate-zone grain production. Genome Biol. 14, R68 (2013).
(27) DeGiorgio M, Jakobsson M, Rosenberg N. Explaining worldwide patterns of human genetic variation using a coalescent-based serial founder model of migration outward from Africa. Proc. Natl. Acad. Sci. U.S.A. 106: 1605716062 (2009).
(28) Hillman GC, Davies MS. Domestication rates in wild type wheats and barley under primitive cultivation. B. J. Linn. Soc. 39:39-78 (1990).
(29) Kremling KA et al. Dysregulation of expression correlates with rare-allele burden and fitness loss in maize. Nature 555:520-523 (2018).
(30) Rogers \& Slatkin Excess defects in a woolly mammoth on Wrangel Island PloS Genetics 13(3): e1006601 (2017).
(31) Shennan S, Downey SS, Timpson A, et al. Regional population collapse followed initial agricultural booms in mid -Holocene Europe. Nat Commun. 4:2486 (2013).
(32) Allaby RG, Kitchen JL, Fuller DQ (2016) Surprisingly low limits of selection in plant domestication. Evolutionary Bioinformatics 11:(S2) 41-51.
(33) Alexander, J The Saharan divide in the Nile Valley: the evidence from Qasr Ibrim. The African Archaeological Review 6, 73-90 (1988).
(34) Rose P (2013) Qasr Ibrim In: Bagnall RS, Brodersen K, Champion CB, Erskine A, Huebner SR (eds.) The Encyclopedia of Ancient History. Oxford: Wiley. Pp. 5695-5697 DOI: 10.1002/9781444338386.wbeah15340.
(35) Palmer SA, Moore JD, Clapham AJ, Rose P, Allaby RG. Archaeogenetic evidence of ancient Nubian barley evolution from six to two-row indicates local adaptation. PLoS One, 4(7), e6301 (2009).
(36) Palmer SA, Clapham AJ, Rose P, Freitas F, Owen BD, Beresford-Jones D, Moore JD, Kitchen JL, Allaby RG. Archaeogenomic evidence of punctuated genome evolution in Gossypium. Molecular biology and evolution, 29(8), 2031-2038 (2012).
(37) O'Donoghue K, Clapham A, Evershed RP, Brown TA. Remarkable preservation of biomolecules in ancient radish seeds. Proc R Soc B Biol Sci. 263, 541-547 1996.
(38) Alexander, J , Driskell B. Qasr Ibrim 1984. Journal of Egyptian Archaeology 71, 12-26 (1985).
(39) Rowley-Conwy P Nubia AD 0-550 and the 'Islamic' agricultural revolution:

Preliminary botanical evidence from Qasr Ibrim, Egyptian Nubia.
Archeologie du Nil Moyen 3, 131-138 (1989).
(40) Clapham AJ, Rowley-Conwy PA (2007). New discoveries at Qasr Ibrim, Lower Nubia. Fields of change: progress in African archaeobotany. Barkhuis \& Groningen University Library, Groningen, The Netherlands, 157-164.
(41) Clapham, A., \& Rowley-Conwy, P. (2009). The archaeobotany of cotton (Gossypium sp. L.) in Egypt and Nubia with special reference to Qasr Ibrim, Egyptian Nubia. From foragers to farmers. Papers in honour of Gordon C. Hillman. Oxbow Books, Oxford, 244-253.
(42) Adams, WY (1986) Ceramic Industries of Medieval Nubia. University of Kentucky Press
(43) Hanghøj K, Seguin-Orlando A, Schubert M, Madsen T, Pedersen JS, Willerslev E, Orlando L. Fast, Accurate and Automatic Ancient Nucleosome and Methylation Maps with epiPALEOMIX. Mol. Biol. Evol. 33, 3248-3298 (2016).
(44) Paterson AH et al. The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551-556 (2009).
(45) Bouyer et al. DNA methylation dynamics during early plant life. Genome Biology 18:179 (2017)
(46) Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature Methods. 9(4), 357-359 (2012).
(47) Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G., Abecasis G., Durbin R. and 1000 Genome Project Data Processing Subgroup The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25, 2078-2079 (2009).
(48) da Fonseca RR, Smith BD, Wales N, Cappellini E, Skoglund P, Fumagalli M, Samaniego JA, Carøe C, Ávila-Arcos MC, Hufnagel DE, Korneliussen TS, Vieira FG, Jakobsson M, Arriaza B, Willerslev E, Nielsen R, Hufford MB, Albrechtsen A, Ross-Ibarra J, Gilbert MT The origin and evolution of maize in the Southwestern United States. Nature Plants 1, 14003 (2015).
(49) Koslov AM, Aberer A, Alexandros S. ExaML version 3: a tool for phylogenomic analysis on supercomputers. Bioinformatics 31, 2577-2579 (2015).
(50) Felsenstein J Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 17(6), 368-376 (1981).
(51) Stamatakis A RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688-2690 (2006).
(52) Van der Auwera GA, Carneiro M, Hartl C, Poplin R, del Angel G, LevyMoonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella K, Altshuler D, Gabriel S, DePristo M. From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Current Protocols In Bioinformatics 43,11.10.1-11.10.33 (2013).
(53) Pfeifer B, Wittelsbürger U, Ramos-Onsins S, Lercher M. PopGenome: An Efficient Swiss Army Knife for Population Genomic Analyses in R. Mol. Biol. Evol. 31(7):1929-1936 (2014).
(54) Wolfe KH, Sharpe PM, Li WH. Rates of synonymous substitution in plant nuclear genes. J. Mol. Evol. 29:208-211 (1989).

Figure 1. Genomic heterozygosity over time in S. bicolor type bicolor.

Figure 2. Total recessive GERP load over time in S. bicolor type bicolor.

Figure 3. Selection signals across S. bicolor chromosomes 1 to 10.
Heterozygosity ratio (wild/cultivated) inverted probabilities (Bonferroni corrected) shown in colours as described in key. Grey dashed line indicates 1\% significance threshold after Bonferroni correction. SweeD values shown in red. Above: Locations of 38 known domestication genes shown in black. Locations of candidate domestication loci identified by Mace et al (24) shown in brown. Locations of GERP score regions of difference (grod) between genomes shown in green.

Figure 4. Principal Coordinate Analysis of 1894 SNPs from 23 genomes in this study and 1046 sorghum lines described in Thurber et al (25). Arrows indicate temporal movement of bicolor and durra type archaeogenomes in PCA.

Figure 5. Summary of selection signals over time in archaeogenomes. Red indicates selection intensification episodes, green indicates selection signals identified by low heterozygosity or SweeD analysis.

Figure 4

Figure 5

Table S1. Sample details of genomes sequenced in this study

Table S2. Radiocarbon dates on sorghum specimens or closely associated plant remains

Table S3 Summary statistics of fit to linear and exponential models of change in heterozygosity and GERP score in S. bicolor bicolor.

Table S4. Peaks of significant heterozygosity ratios (wild/cultivated) and associated annotated gene models. * refers to genes also found in Mace et al (24) candidate domestication loci gene set.

Table S5. P values of heterozygosity ratio peaks.

Table S6 P values of heterozygosity ratio peaks for known domestication loci.

Table S7 Peaks of high signal found with SweeD analysis and associated annotated gene models. * refers to genes also found in Mace et al (24) candidate domestication loci gene set.

Table S8 P values of gradient deviation in heterozygosity over time relative to genomic average.

Table S9 Genomic locations for 100kbp windows that differ in gerp load between genomes by more than two standard deviations.

Table S10 Phylogenetic congruence between type bicolor and type durra clades in selection candidate regions.

Figure S1 Frequency distributions of heterozygosity in genomes for 100 Kbp windows. A. Sorghum verticilliflorum. B. S. bicolor 'wild phenotype' (sample A3) 1765 yrs BP, C. S. bicolor type bicolor (sample A5) 1805 years BP, D. S. bicolor type bicolor (sample A6) 715 years BP, E. S. bicolor type bicolor (sample A7) 710 years BP, F. S. bicolor type bicolor BTX 623, G. S. bicolor type durra (sample A11) 1470 years BP, H S. bicolor type durra (sample A9) 505 years BP, I S. bicolor type durra (sample A10) 450 years BP, J S bicolor type durra modern.

Figure S2 Heterozygosity over time in S bicolor type durra

Figure S3 Additive, dominant and recessive model GERP load scores in S bicolor type bicolor and S bicolor type durra over time. Total GERP load calculated from variant sites with $R S$ scores >0, strongly deleterious GERP load calculated from variant sites with RS scores >4. See methods for details on models.

Figure S4 Methylated site number in S bicolor type bicolor and S bicolor type durra over time.

Figure S5 Heterozygosity over time of regions containing genome-wide significant wild/cultivated ratios. Significant deviations from the genomic gradient of change over time shown only.

Figure S6 Heterozygosity over time of regions containing high SweeD scores. Significant deviations from the genomic gradient of change over time shown only.

Figure S7 Heterozygosity over time of regions containing domestication loci that have significantly reduced in heterogygosity relative to wild. Significant deviations from the genomic gradient of change over time shown only.

Figure S8. Maximum likelihood tree of whole genome sequence built in EXaML

Figure S9. D statistic analysis: $\mathrm{P}_{1}=S$. bicolor type bicolor $\mathrm{BTX} 623, \mathrm{P}_{2}=$ sample displayed on X axis, $P_{3}=$ sample $A 3, P_{4}$ halapense.

Figure S10 Potential genome rescue of descendents from ancestors by donors based on GERP scores. Red indicates the resultant change from combined score of ancestors and donors in regions of observed GERP load reduction in
descendents. Blue indicates the genome wide change in gerp score from combining ancestor and donor scores.

Figure S11. Standard model of loss of genetic diversity through drift combined with introgression over time. Arbitrary founding population of 2000 individuals simulated for 6000 generations to match the over all decrease observed in sorghum. Four models considered, no introgression (drift only), constant introgression (adding 0.000015 to the genetic diversity each generation). Dynamic introgression was defined where the gene flow (gf) contribution each generation is $g f^{f f}$, where t is the generation number and f the modification factor. Diminishing introgression, f is 1.0001 , increasing introgression f is 0.99995 . See methods for details of calculations.

Figure S12. Lost of heterozygosity through founder event model based on crop cycling. A. Sequential founding episodes based on 25% of harvest set aside for sowing (28) for various populations sizes (N). B. Gradients of diversity loss over time in the model and the observed gradient in sorghum with N obtained through linear regression of the model outputs.

Sample	Species	Age (median years cal. BP). $B P=2000$ AD source	Source id	Total reads LINES	Total reads/pairs	Reads mapped	\% endogenous (genome)	Mean coverage at Q20
A3	S. bicolor type bicolor wild phenotype	1765 Qast Ibrim	00/22008	896934328	224233582	200857980	89.57533399	9.56468
A5	S. bicolor type bicolor	1805 Qast Ibrim	96/18082	932645300	233161325	204691251	87.78953842	6.62945
A6	S. bicolor type bicolor	715 Qasr Ibrim	86/128	889698924	222424731	182750309	82.16276498	8.13831
A7	S. bicolor type bicolor	710 Qasr Ibrim	84/155	839807884	209951971	188064725	89.57511763	7.7284
A8	S. bicolor intermediate durra/bicolor	890 Qasr Ibrim	84/142	1074259696	268564924	242003275	90.10978478	14.0648
A9	S. bicolor type durra	505 Qasr Ibrim	84/162	741640764	185410191	160463966	86.54538628	5.522
A10	S. bicolor type durra	450 Qasr Ibrim	84/55	486782488	121695622	108176150	88.89074909	4.02703
A11	S. bicolor type durra	1470 Qasr Ibrim	86/82	720632616	180158154	158338076	87.88837612	5.6919
A12	S. bicolor intermediate durra/bicolor	450 Qasr Ibrim	84/112	986445336	246611334	207934377	84.31663445	8.62576
Kew1	S. bicolor type bicolor	100 Kew Snowden Collection	Tsang Wai Fak 16366	1306192292	326548073	186573150	57.13497198	5.00975
Kew2	S. bicolor type bicolor	100 Kew Snowden Collection	Tenayac	1247071228	311767807	191726861	61.49668333	5.22517
M1	S. bicolor type caudatum	0 USDA	PI509071	492898852	123224713	217257730	88.15509678	18.3405
M2	S. bicolor type durra	0 USDA	P1562734	384496108	96124027	177009252	92.07336476	14.368
M3	S. bicolor type guinea	0 USDA	P1562938	425911276	106477819	196350280	92.20243326	16.0876
M4	S. bicolor type kafir	0 USDA	P1655976	385197696	96299424	177636336	92.23125571	16.0181
M5	S. bicolor type bicolor BTX623	0 USDA	Pl659985	320880996	80220249	152004900	94.74222649	14.9171
M6	S. verticilliflorum var. verticilliflorum	0 USDA	P1520777	433237112	108309278	195610443	90.30179437	13.9573
M7	S. verticilliflorum var. arundinaceum	0 USDA	PI532564	403234860	100808715	167378436	83.01784027	12.0593
M8	S. verticilliflorum var. aethiopicum	0 USDA	P1535995	408447108	102111777	172471549	84.45232963	13.0077
M9	s. propinquum	0 USDA	P1653737	320834680	80208670	147017274	91.64674717	11.2134
M10	S. verticilliflorum var. virgatum	75 Vinall 11.7.1929 (UCL Archaeobotany)	S. virgatum	321596756	80399189	94103477	58.52265313	6.75004
M11	S. bicolor type drummondii	0 USDA	Pl653734	674746364	168686591	293908369	87.1166959	23.2651
M12	S. halapense	0 USDA	Grif 16307	420386852	105096713	193426298	92.02300076	14.2121

Table S1 Sample details

Table S2. Radiocarbon dates on sorghum specimens or closely associated plant remains

Sample	Notes on date	Lab Code	Date BP	error	cal. BP Start*	cal. BP Finish*	Median years before AD 2000	Source id	Context
A3	direct date on sorghum	OxA-14892	1789	27	1780	1620	1765	00/22008	00/22008
A5	direct date on sorghum	OxA-14818	1818	32	1820	1710	1805	96/18082	96/18082
A6	direct date on sorghum	$\begin{aligned} & \text { Beta- } \\ & 491610 \end{aligned}$					715	86/128	86/128
A7	direct date on sorghum	$\begin{aligned} & \hline \text { Beta- } \\ & 491611 \end{aligned}$					710	84/155	84/155
A8	date on Vigna (Room 8 pit 1028)	OxA-14757	906	27	910	780	890	84/142	House 785; Room 4; Level 8; in Floor 7
A9	direct date on sorghum	$\begin{aligned} & \text { Beta- } \\ & 491612 \end{aligned}$					505	84/162	84/162
A10	direct date on sorghum	Wk-21087	349	29	470	320	450	84/55	pit 932
A11	Direct date on sorghum?	OxA-1023	1440	50	1530	1310	1470	86/82	pit associated with X- horizon

*= Before AD 1950

Function fit	Parameter	Heterozygosity			GERP load recessive		
Straight line		value	standard error	p-value	value	standard error	p-value
$y=b x+a$	a	3.05E-04	6.80E-05	0.0041	8.10E-02	1.80E-04	$1.07 \mathrm{E}-12$
	b	4.00E-07	$2.90 \mathrm{E}-08$	$9.20 \mathrm{E}-06$	-1.70E-07	7.30E-08	0.0683
	AIC			-114			-87.039
	MSE			1.76E-08			$9.89 \mathrm{E}-08$
$\begin{aligned} & \text { Exponential } \\ & y=a \cdot \exp (b) \end{aligned}$		value	standard error	p-value	value	standard error	p-value
	a	0.00048	7.90E-05	0.042	8.10E-02	1.80E-04	$1.08 \mathrm{E}-12$
	b	0.00029	3.15E-05	$9.30 \mathrm{E}-05$	-2.10E-06	$9.10 \mathrm{E}-07$	0.0686
	AIC			-108			-87.047
	MSE			$3.77 \mathrm{E}-08$			$9.88 \mathrm{E}-08$

Table S3 - parameter values for curves fit to bicolor heterozygosity and GERP data (versus Years BP)

chromosome	window peak	a3 (bic 1765)	a5 (bic 1805)	a6 (bic 715)	a7 (bic 710)	a11 (du 1470)	a9 (du 505)	a10 (du 450)
1	44900000 pk1	0.102805669	0.361722461	0.037909655	0.672815666	0.488542667	0.131199566	3.07E-06
2	11000000 pk2	0.41358704	8.09E-06	0.572475817	0.441985835	0.154849864	0.234619463	0.344378095
2	43900000 pk3	$4.94 \mathrm{E}-07$	0.068120687	0.113563673	0.312212401	0.323721596	0.140345085	0.127117347
2	53700000 pk4	0.344474996	0.401256338	$1.52 \mathrm{E}-11$	0.019124686	0.03962074	0.3485805	0.158021188
2	54200000 pk5	$2.91 \mathrm{E}-27$	0.420599337	0.000105802	8.86E-06	7.54E-05	0.798886327	0.77234906
3	32700000 pk6	3.58E-06	0.122276411	0.007236644	0.511002154	0.250304643	0.566516074	0.279493597
4	18100000 pk7	0.11396104	$1.58 \mathrm{E}-12$	0.088156494	0.000195191	0.471447038	0.41702393	0.372331665
4	27500000 pk8	0.261286593	0.205473343	0.14112128	0.46524292	0.003680721	$1.14 \mathrm{E}-12$	5.66E-06
4	32800000 pk9	0.24931856	0.362688509	0.058495099	0.299449624	2.21E-06	0.058438023	$1.33 \mathrm{E}-05$
4	37300000 pk10	$2.31 \mathrm{E}-07$	0.019809067	0.533628263	0.157409081	0.594011942	0.714415363	0.722213508
5	14900000 pk11	$1.35 \mathrm{E}-07$	0.25271921	0.337898946	0.350962433	0.503030099	0.353336892	0.538949648
5	27900000 pk12	0.713062847	0.225616734	0.073535584	0.137585802	$9.34 \mathrm{E}-07$	0.034101907	0.082247478
5	43300000 pk13	$7.16 \mathrm{E}-39$	0.227277619	0.353860854	0.42828102	0.5041582	0.495277017	0.482806499
5	59500000 pk14	0.51063073	0.361951397	0.624818174	$1.73 \mathrm{E}-08$	0.35261265	0.310154615	0.191120249
5	61100000 pk15	0.060786667	5.66E-07	$1.74 \mathrm{E}-09$	$1.21 \mathrm{E}-06$	0.106943639	0.083185043	0.216052513
6	22600000 pk16	0.485480771	0.293894564	$1.00 \mathrm{E}-05$	0.366941418	0.218434017	0.107525029	0.02336006
6	28600000 pk17	0.171185183	0.114355189	0.043428406	0.017284366	$2.09 \mathrm{E}-05$	$1.38 \mathrm{E}-07$	0.001290742
7	50700000 pk18	0.551471147	0.665910386	0.254773419	0.724932256	7.57E-06	0.800061835	0.36169038
7	63100000 pk19	0.081917263	0.178246552	0.677009647	$1.68 \mathrm{E}-07$	0.7213842	0.560745808	0.677619632
8	12300000 pk20	0.003378476	0.389234972	$3.59 \mathrm{E}-12$	0.689368891	0.602756238	0.032440655	0.147217192
8	29500000 pk21	0.464342822	0.268334064	0.550375439	7.12E-06	0.107161053	0.352865059	0.22445346
8	31400000 pk22	0.320457043	$2.11 \mathrm{E}-26$	$1.23 \mathrm{E}-05$	0.161024806	0.238387641	0.262500125	0.21551472
8	32900000 pk23	0.452847218	0.422118402	0.360210465	1.18E-06	1.08E-05	5.16E-16	1.05E-06
8	40600000 pk24	0.10546731	$6.14 \mathrm{E}-09$	0.004401777	0.286047016	0.234993339	0.293012606	0.454354348
8	52900000 pk25	1.07E-13	0.522375209	0.308411152	0.15312801	0.372493801	0.382384948	0.480322344
9	42000000 pk26	0.105550876	$1.74 \mathrm{E}-08$	0.206695471	0.206278078	0.497667977	0.00371231	0.006383025
10	17700000 pk27	0.47452556	0.248307926	$1.82 \mathrm{E}-11$	0.028057542	0.356069589	0.372543624	0.381636121
10	21500000 pk28	0.040683815	0.003257893	0.035047978	2.20E-09	0.049966079	0.055062808	0.033568321
10	26500000 pk29	0.340520232	0.109276198	0.501928453	0.028309324	4.03E-05	0.001987998	1.95E-06
10	27000000 pk30	0.459154643	0.23804888	0.069064252	7.95E-06	0.396138422	0.160478352	0.279727425

Table S4 p values for windows containing significant reduction in heterozygosity relative to S . verticilliflorum

chromosome	window peak	start	stop	Uniparc code	Unparc code	Sb code	SORBI code	Gene description
1	44900000 pk1	44830820	44831431	UP10001A82246	UPI0001A82246	Sb01g026525	C5WP69_SORBI	unknown function (DUF1645)
		44860037	44861635	UP10001A82247	UPI0001A82247	Sb01g026530	C5WP70_SORBI	cytochrome p450
	211000000 pk2	10974343	10978599	UP10001A83EC8	UPI0001A83EC8	Sb02g008271	C5x2vo_SORBI	reverse transcriptase
		10981018	10981874	UP10001A83EC9	UPI0001A83EC9	Sb02g008311	C5X2V1_SORBI	transposase
	243900000 pk 3	43786194	43787234	UPI0001A842F4	UPI0001A842F4	Sb02g018043	C5X843_SORBI	chromsome segregation ATPase
		43788873	43789595	UPI0001A842F5	UPI0001A842F5	Sb02g018110	C5X844_SORBI	
	253700000 pk 4	53484601	53494615	*UP10001A83D56	UP10001A83D56	Sb02g021535	C5X9S1_SORBI	RGA3 disease resistance protein (NB-ARC, LRR domain) transposase
		53668339	53669764	UP10001A83D57	UP10001A83D57	Sb02g021540	C5X9S2_SORBI	
		53671197	53673521	UP10001A838F5	UPI0001A838F5	Sb02g021550	C5X953_SORBI	RGA3 disease resistance protein (NB-ARC domain)
		53687315	53688481	UPI0001A838F6	UPI0001A838F6	Sb02g021560	C5X9S4_SORBI	RGA3 disease resistance protein (LRR domain)
		53693445	53694484	UPI0001A838F7	UPI0001A838F7	Sb02g021570	C5X955_SORBI	RGA3 disease resistance protein (PKc domain)
	254200000 pk5	54156595	54156834	UP10001A83D5D	UPI0001A83D5D	Sb02g021853	C5X9t6_SORBI	unknown
		54169579	54170586	UP10001A83D5E	UPI0001A83D5E	Sb02g021856	C5X9t7_SORBI	Polynucleotidyl transferase ribonuclease
		54173272	54173781	UP10001A83D5F	UPI0001A83D5F	Sb02g021860	C5X978_SORBI	unknown
		54179475	54180150	UP10001A83D60	UP10001A83D60	Sb02g021911	C5X9T9_SORBI	Anther Indehiscence 1
	332700000 pk6	32649562..32651401		LOC110433684				trichohyalin-like
4	18100000 pk 7	17966716.17967603		LOC8155713				vegetative cell wall protein gp1
		17982112.17982948		LOC110434760				serine/arginine repetitive matrix protein 1-like unknown function (DUF1668 domain)
		18046591. 180	8047799	LOC110434315				
	427500000 pk8	27402052	27402504	UPI0001A86024	UPI0001A86024	Sb04g014271	C5YON2_SORBI	unknown
	$432800000 \mathrm{pk9}$	32660496	32661207	UPI0001A8598F	UPI0001A8598F	Sb04g014491	C5YON6_SORBI	unknown function
	$4 \quad 37300000$ pk10	37359135	37371246	UP10001C80D84;0	Ontology_term=GO	(Sb04g016070		golgin a5 type protein
	$5 \quad 14900000$ pk11	14885427	14891094	UPI0001A863DE	UPI0001A863DE	Sb05g008160	C5Y116_SORBI	RPP-13 like disease resistance
5	27900000 pk12	27791293	27795021	UP10001A865C1	UPI0001A865C1	Sb05g013400	C5Y282_SORBI	$\begin{array}{ll}\text { GDT1 like protein } & \text { Ca transporter } \\ \text { Rho binding protein } & \text { Regulatory transcription inhibitor }\end{array}$
		27797941	27798643	UP10001A865C2	UP10001A865C2	Sb05g013410	C5Y283_SORBI	
	$5 \quad 43300000 \mathrm{pk} 13$	43,247,187	43,269,799	LOC8075771				O-Fuct like auxin independent growth promoter
	$5 \quad 59500000$ pk14	59411298	59414857	UPI0001A8660D	UPI0001A8660D	Sb05g025890	C5Y7E1_SORBI	lipase
		59416966	59417283	UPI0001A8660E	UPI0001A8660E	Sb05g025900	C5Y7E2_SORBI	glutaredoxin C10
		59437739	59438068	UPI0001A8660F	UPI0001A8660F	Sb05g025910	C5Y7E3_SORBI	glutaredoxin C10 galactose oxidase
		59452563	59457270	UPIOO01A86610	UPI0001A86610	Sb05g025915	C5Y7E4_SORBI	
		59458058	59462321	UP10001A86611	UPIO001A86611	Sb05g025920	C5Y7E5_SORBI	peptide chain release factor APG3
		59463266	59463718	UPI0001A86639	UPI0001A86639	sb05g025930	C5Y7E6_SORBI	RALF like protein arrests root development
		59464960	59466737	UP10001A86C54	UP10001A86C54	Sb05g025940	C5Y7E7_SORBI	
		59474035	59475117	UP10001A86C55	UP10001A86C55	Sb05g025945	C5Y7E8_SORBI	pollen extensin like
		59475347	59477611	UP10001A86C56	UPI0001A86C56	Sb05g025950	C5Y7E9_SORBI	pollen extensin like
	$5 \quad 61100000$ pk15	61009529	61010503	UPI0001A86440	UPIO001A86440	Sb05g026965	C5Y826_SORBI	RPP13 disease resistance protein NBS-LRR
		61015798	61018316	UP10001A86441	UPI0001A86441	Sb05g026970	C5Y827_SORBI	RPP13 disease resistance protein NBS-LRR dirigent protein disease response involvig lignification patatin storage protein and fatty acid metabolism
		61028126	61029756	UPI0001A8643F	UPI0001A8643F	Sb05g026950	C5Y825_SORBI	
		61048282	61050689	UP10001A86A3A	UPI0001A86A3A	Sb05g026990	C5Y829_SORBI	
		61057619	61058128	UP10001A86A3B	UPI0001A86A3B	Sb05g026993	C5Y830_SORBI	isopentenyl transferase
		61061641	61062092	UP10001A86A3C	UPI0001A86A3C	Sb05g026996	C5Y831_SORBI	patatin
		61082967	61094282	UPI0001A86442	UPI0001A86442	Sb05g027000	C5Y832_SORBI	
		61097301	61098179	UP10001A86443	UPI0001A86443	Sb05g027005	C5Y833_SORBI	transposable element
	622600000 pk 16	22725443..22735214		LOC110436433				nucleolin
	628600000 pk17	28027121	28028229	UP10001A8715A	UPI0001A8715A	Sb06g010020	C5YDW7_SORBI	RBR1,"similar to Retinoblastoma related protein RBR1"
7	50700000 pk18	50563493	50568895	UP10001A87F06	UPI0001A87F06	Sb07g019540	C5YKN9_SORBI	ABC transporter
		50772772	50778650	UP10001A87F07	UP10001A87F07	Sb07g019740	C5YKPO_SORBI	$A B C$ transporter
		50794332	50794661	UP10001A87F08	UPI0001A87F08	Sb07g019745	C5YKP1_SORBI	transposable element
		50896473	50902950	*UP10001A87F09	UPI0001A87F09	Sb07g019750	C5YKP2_SORBI	ABC transporter
7	63100000 pk19	63002738	63004800	UPI0001A87EBC	UPI0001A87EbC	Sb07g028040	C5YJ45_SORBI	MFS, putative peptide transporter glycerophosphodiester phosphodiesterase GDPDL4
		63007131	63012078	UP10001A87A47	UP10001A87A47	Sb07g028050	C5YJ46_SORBI	
		63019028	63020726	UP100022071D4;b	UPI0002207104	Sb07g028060		fibrous sheath CABYR-binding protein
		63027930	63028675	UP10001A87EBD	UPI0001A87EBD	Sb07g028065	C5YJ47_SORBI	unknown function
		63029524	63033671	UP10001A87A48	UPI0001A87A48	Sb07g028070	C5YJ48_SORBI	SWIB domain protain (p53 associated)
		63059608	63062274	UPI0001A87EBE	UPIo001A87EbE	Sb07g028080	C5YJ49_SORBI	serine--glyoxylate aminotransferase PEF family (apoptosis associated)
		63062573	63062995	UPI0001A87A49	UPI0001A87A49	Sb07g028090	C5YJ50_SORBI	
		63073408	63073999	UPI0001A87A4A	UPI0001A87A4A	Sb07g028095	C5YJ51_SORBI	Peptidase M14 Succinylglutamate desuccinylase
		63088404	63095390	UPI0001A87A4B	UPI0001A87A4B	Sb07g028100	C5YJ52_SORBI	wall-associated receptor kinase 5
8	12300000 pk20	12228641	12230086	UP10001A881AC	UPI0001A881AC	Sb08g007200	C5YTS4_SORBI	TNP1 like protein
		12259170	12259505	UP10001A881AD	UPI0001A881AD	Sb08g007210	C5YTS5_SORBI	TNP2 like protein la-related 6B protein
		12279014	12286998	UP10001A881AE	UPI0001A881AE	Sb08g007220	C5YTS6_SORBI	
		12293716	12301627	UP10001A880E7	UPIO001A880E7	Sb08g007230	C5YTS7_SORBI	outer envelope pore protein 37 chloroplastic
		12351604	12355600	UP10001A880E8	UPIO001A880E8	Sb08g007240	C5YTS8_SORBI	2 alkenal reductase defense
		12367068	12370954	UP10001A880E9	UPI0001A880E9	Sb08g007243	C5YTS9_SORBI	2 alkenal reductase
		12372086	12372376	UP10001A880EA	UPI0001A880EA	Sb08g007246	C5Ytto_SORBI	unknown
		12385186	12386774	UP10001A881AF	UPI0001A881AF	Sb08g007250	C5YTT1_SORBI	obtusifoliol 14 alpha demethylase
		12388327	12390954	UPI0001A880EB	UPI0001A880EB	Sb08g007260	C5YTT2_SORBI	transposase (transposon)

8	29500000 pk21	29483080	28483220 none				possible ncRNA
8	31400000 pk22	31451800	31452274 UPI0001A8836E	UPI0001A8836E	Sb08g012126	C5YNI7_SORBI	NBD sugar kinase HSP70
8	32900000 pk23	32307877	32329902 UPI0001A8824A	UPI0001A8824A	Sb08g012360	C5YNJ3_SORBI	zinc finger CCCH domain protein
8	40600000 pk24	40413311	40414000 UPI0001A8845B	UPI0001A8845B	Sb08g015335	C5YNU4_SORBI	RGA2 LRR disease resistance
		40414044	40416104 UPI0001A8845C	UPI0001A8845C	Sb08g015337	C5YNU5_SORBI	RGA2 NB-LRR disease resistance
		40426252	40430241 UPI0001A8845D	UPI0001A8845D	Sb08g015340	C5YNU6_SORBI	RGA2 NB-LRR disease resistance
		40602695	40619018 UPI0001A8845E	UPI0001A8845E	Sb08g015350	C5YNU7_SORBI	RGA2 NB-LRR disease resistance
		40625087	40634676 UPI0001A8845F	UPI0001A8845F	Sb08g015360	C5YNU8_SORBI	RAD-51 DNA repair
		40637341	40638570 UPI0001A882CF	UPI0001A882CF	Sb08g015370	C5YNU9_SORBI	methyl transferase
8	529000000 pk25	52813133	52813255 UPI0001A88235	UPI0001A88235	Sb08g021248	C5YRX2_SORBI	unknown function
		52821960	52823171 UPI0001A88236	UPI0001A88236	Sb08g021250	C5YRX3_SORBI	unknown function
		52832618	52849272 UPI0001A88103	UPI0001A88103	Sb08g021260	C5YRX4_SORBI	achilleol B synthase
		52877001	52880228 UPI0001A88104	UPI0001A88104	Sb08g021270	C5YRX5_SORBI	serine/threonine-protein kinase PBL13
		52886168	52889779 UPI0001A88105	UPI0001A88105	Sb08g021280	C5YRX6_SORBI	RGA2 NB-LRR disease resistance
		52899503	52904524 UPI0001A88106	UPI0001A88106	Sb08g021290	C5YRX7_SORBI	RGA3 disease resistance protein (NB-ARC domain)
9	42000000 pk26	41818067	41821596 UPI0001A88998	UPI0001A88998	Sb09g016555	C5YWB8_SORBI	unknown function
		41837290	41838894 UPI0001A88999	UPI0001A88999	Sb09g016560	C5YWB9_SORBI	transposase
		42022771	42023844 UPI0001A88C3B	UPI0001A88C3B	Sb09g016570	C5YWCO_SORBI	myb-related protein 330
		42026486	42027580 UPI0001A88C3C	UPI0001A88C3C	Sb09g016580	C5YWC1_SORBI	unknown function
		42093322	42093834 UPI0001A88C3D	UPI0001A88C3D	Sb09g016590	C5YWC2_SORBI	GRF zinc finger protein
		42094740	42097538 UPI0001A8899A	UPI0001A8899A	Sb09g016595	C5YWC3_SORBI	MuDR transposase
		42098013	42101984 UPI0001A8899B	UPI0001A8899B	Sb09g016600	C5YWC4_SORBI	RanBP1 (chromosome condensation)
10	17700000 pk27	17513261	17515058 UPI0001A895DC	UPI0001A895DC	Sb10g011850	C5Z1L6_SORBI	anthranilate O-methyltransferase 3
		17580569	17581168 UPI0001A895DD	UPI0001A895DD	Sb10g011916	C5Z1L7_SORBI	transposon protein
		17731600	17734506 UPI0001A88F2F	UPI0001A88F2F	Sb10g012050	C5Z1L9_SORBI	LRR receptor-like serine/threonine-protein kinase GSO2
10	21500000 pk28	21357175	21367692 UPI0001A8963D	UPI0001A8963D	Sb10g013495	C5Z2B4_SORBI	TNP2-like protein
		21385108	21386957 UPI0001A8963E	UPI0001A8963E	Sb10g013500	C5Z2B5_SORBI	putative receptor-like protein kinase
10	26500000 pk29	26207429	26207653 UPI0001A89698	UPI0001A89698	Sb10g015631	C5Z2G3_SORBI	unknown function
10	27000000 pk30	27060330	27070160 UPI0001A8902A		Sb10g015690	C5Z2G5_SORBI	U-box containing protein

chromosome	window gene	a3 (bic 1765)	a5 (bic 1805)	a6 (bic 715)	a7 (bic 710)	a11 (du 1	(du 505)	10 (du 450)
7	59800000 dw3	0.7169588	0.489916345	0.886234736	0.001029348	84	03	16
9	57100000 dw 1	0.430326598	0.305130691	0.00230527	0.368279324	0.180977448	0.341941378	0.395721262
6	39400000 dw 2	0.665201583	0.057426669	0.298814529	0.317679894	0.610788469	0.378785607	0.311719579
1	12100000 Sh1	0.001643632	0.297385872	0.028911337	0.000212513	0.354835471	0.07686203	0.06234129
3	57300000 Sh2	0.513833464	0.503304376	0.475469287	0.719246492	0.207224899	0.217029358	0.161350823
4	6900000 Sh3/Bt1	0.525863822	0.220438392	0.553620438	0.001634715	0.067144308	0.070605796	0.081976552
7	24600000 Bt2	0.582609529	0.501609592	0.412557788	0.801374592	0.321041498	0.356407	0.075252275
1	12000000 SbWRKY	0.361395651	0.427090906	0.603085905	0.203227315	0.486529559	0.302235506	9554752
4	51200000 AE1	0.22551433	0.29453358	0.311256281	0.034073862	0.67705487	0.683438884	0.081427538
3	73000000 cul4	0.701952197	0.604183218	0.578502305	0.926511526	0.672861455	0.403217476	0.440427355
1	$66700000 \mathrm{gt1}$	0.097794597	0.316054932	0.62376622	0.000168411	0.617927673	0.247660715	0.415874132
3	67300000 int1	0.24549123	0.384413387	0.494155025	0.004699184	0.127425119	0.01658232	0.062109557
6	40300000 ma 1	0.617705339	0.532350457	0.590362723	0.593731789	0.571373012	0.553418355	0.594789672
1	68000000 m	0.246531398	0.434353232	0.517946331	0.037973221	0.8	0.489423682	98
6	$6800000 \mathrm{ma6}$	0.15419183	0.357669236	0.101545909	0.555980974	0.807889865	0.583139814	0.679106223
10	52300000 Nud	0.450228785	0.446656636	0.010462224	0.483913261	0.340556622	0.437064507	0.319686294
6	530000002	0.013429001	0.089494808	0.000287218	0.003409689	0.237697548	0.010100032	0.002282872
6	59800000 Pa 1	0.198798653	0.422004202	0.50339961	0.769585741	0.18060730	0.496261	. 482938499
3	69600000 SHP	0.576035163	0.485634537	0.442796826	0.68256145	0.08301834	0.0732	0.094031087
3	71200000 SPS1	0.785464458	0.797677336	0.857555457	0.903142979	0.765446871	0.662016811	0.777044825
4	5700000 SPS2	0.695212274	0.348024273	0.56633189	0.056854355	0.085577796	0.1669642	0.175319527
5	13000000 SPS3	0.611808756	0.569310494	0.870647378	0.756971064	0.741684177	0.77364281	0.841701362
9	57500000 SPS4	0.208514324	0.331713243	0.558643711	0.574416919	0.309467581	0.3428	0.361862021
10	54300000 SPS5	0.63860949	0.21920424	0.000651432	0.34878636	0.179840872	0.081184781	0.058967394
10	3800000 ss	0.375041814	0.55845213	0.684414407	0.597448311	0.473798407	0.525436039	0.587421989
7	63400000 su	0.691383152	0.335374091	0.899667869	0.000604092	0.683502612	0.283731511	0.464984252
10	5800000 suc1	0.589443244	0.637865314	0.62481392	0.406182939	0.732509736	0.608281	0.711589757
1	59600000 SUS1	0.102857534	0.245293066	0.0583269	0.555907938	0.176826781	0.29320728	0.352236403
4	67900000 SUS2	0.458986562	0.576702496	0.163889482	0.417223531	0.34109847	0.40643326	0.369316348
10	68700000 SUS3	0.098485418	0.238211851	0.397000681	0.470113482	0.22376646	0.311699977	0.214376648
1	68900000 SUT1	0.566041623	0.531485138	0.655006916	0.394999175	0.54577088	0.394546242	0.451672203
4	67600000 SUT2	0.567902772	0.53458443	0.474764929	0.063559061	0.28588962	0.292630349	0.45073245
1	28300000 SUT3	0.218145354	0.201505373	0.351179354	0.744264086	0.482446235	0.325694104	0.535576405
8	55400000 SUT4	0.317691189	0.517536698	0.103511984	0.007573251	0.433216268	0.743111943	0.58091866
1	9100000 TB1	0.014057578	0.573426704	0.093823381	0.003083594	0.511843222	0.26089720	0.158842179
7	61800000 TGA1	0.470174403	0.656829436	0.857173271	$2.03 \mathrm{E}-05$	0.399043914	0.321679462	0.582541775
2	71900000 vrs1	0.474901762	0.266734382	0.395277557	0.307403979	0.366941678	0.433615896	0.337698283
10	1900000 Wx	0.676418026	0.587602331	0.747884835	0.725536392	0.468105714	0.459480367	0.564016491
2	14400000 Wx_Chr2	0.73866598	0.67895781	0.66040409	0.570248694	0.348520009	0.502490469	0.536244356

Table S6 p values for reduction in heterozygosity in windows containing domestication loci observed in archaeological accessions relative to S. verticilliflorum.

chromosome	position lit	likelihood name	start en	end	Uniparc id	Uniparc id	Sb code	SORBI code	gene description
	67625596	186.9738 s1	67527437	67528255	UPI0001A82E0A	UPI0001A82E0A	Sb01g044420	C5WUS5_SORBI	unknown function
			67532193	67537252	UPI0001A8295D	UPI0001A8295D	Sb01g044430	C5WUS6_SORBI	Pumilio RNA binding protein ras-related protein RABH1b-like golgi trafficking
			67538460	67540436	UPI0001C80BA9;OI	UPI0001C80BA9	Sb01g044440		
			67555746	67557224	UPI0001A8295E	UP10001A8295E	Sb01g044450	C5WUS7_SORBI	WW domain protein conserved oligomeric Golgi complex subunit 8 mitochondrial adenine nucleotide transporter BTL3
			67560187	67564611	UPI0001A8295F	UP10001A8295F	Sb01g044460	C5WUS8_SORBI	
			67568809	67573214	UPI0001C80BAA;OI	UP10001C80BAA	Sb01g044470		
			67576601	67583786	UPI0001A82960	UP10001A82960	Sb01g044480	C5WUS9_SORBI	calmodulin-binding transcription activator 1 isoform X2
			67585849	67586537	UPIOOO1A82EOB	UPI0001A82EOB	Sb01g044485	C5WUTO_SORBI	reverse transcriptase unknown function
			67590805	67594920	UPIO001A82961	UP10001A82961	Sb01g044490	C5WUT1_SORBI	
			67606065	67606893	UPI0001A82962	UP10001A82962	Sb01g044500	C5WUT2_SORBI	trypsin like peptidase
			67612260	67612981	UPI0001A82EOC	UP10001A82EOC	Sb01g044505	C5WUT3_SORBI	unknown function
			67623006	67629132	UPI0001A82963	UP10001A82963	Sb01g044510	C5WUT4_SORBI	unknown function
			67631156	67632142	UPI0001A82964	UP10001A82964	Sb01g044515	C5WUT5_SORBI	CCCH domain zinc finger proetin
			67653779	67664222	UPIO001A82965	UP10001A82965	Sb01g044520	C5WUT6_SORBI	trypsin like peptidase
			67666492	67670699	UPI0001A829C6	UP10001A829C6	Sb01g044530	C5WUT7_SORBI	ubiquitin carboxyl-terminal hydrolase 3
			67681955	67685954	UPI0001A829C7	UP10001A829C7	Sb01g044540	C5WUT8_SORBI	LRR domain protein
			67687809	67690043	UPI0001A829C8	UP10001A829C8	Sb01g044550	C5WUT9_SORBI	ras-related protein Rab11D
			67693174	67695434	UPI0001A829C9	UP10001A829C9	Sb01g044560	C5WUUO_SORBI	2-carboxy-1,4-naphthoquinone phytyltransferase, chloroplastic
	254037240	284.8075 s2	53900589	53917120	UPI0001A83D58	UP10001A83D58	Sb02g021770	C5X956_SORBI	nudix hydrolase 20, chloroplastic
			53917736	53923682	UPI0001A83D59	UP10001A83D59	Sb02g021780	C5X957_SORBI	UDP-glucose 4-epimerase
			53927463	53932982	UPI0001A83D5A	UPI0001A83D5A	Sb02g021790	C5X958_SORBI	E3 ubiquitin-protein ligase
			53972111	53976091	UPI0001C80E15;Or	r UPI0001C80E15	Sb02g021800		receptor-like serine/threonine-protein kinase SD1-8
			53991898	53993342	UPI0001A838F8	UPI0001A838F8	Sb02g021810	C5X959_SORBI	protein FAR-RED IMPAIRED RESPONSE 1-like
			53994545	54014672	UPIO001A838F9	UP10001A838F9	Sb02g021820	C5X9T0_SORBI	protein FAR1-RELATED SEQUENCE 5-like
			54016136	54017327	UP10001A83D5B	UPI0001A83D5B	Sb02g021830	C5X9T1_SORBI	unknown function
			54020593	54022973	UP10001A83D5C	UP10001A83D5C	Sb02g021835	C5X9T2_SORBI	unknown function
			54032811	54033740	UPI0001A838FA	UPI0001A838FA	Sb02g021840	C5X9T3_SORBI	Polynucleotidyl transferase ribonuclease H -like superfamily protein
			54090301	54090747	UPI0001A838FC	UP10001A838FC	Sb02g021850	C5X9T5_SORBI	NBD sugar kinase HSP70
			54156595	54156834	UPI0001A83D5D	UPI0001A83D5D	Sb02g021853	C5X9T6_SORBI	unknown Polynucleotidyl transferase ribonuclease
			54169579	54170586	UP10001A83D5E	UPI0001A83D5E	Sb02g021856	C5X9T7_SORBI	
			54173272	54173781	UPI0001A83D5F	UP10001A83D5F	Sb02g021860	C5X978_SORBI	Polynucleotidyl transferase ribonuclease unknown
			54179475	54180150	UPI0001A83D60	UPI0001A83D60	Sb02g021911	C5X9T9_SORBI	Anther Indehiscence 1
	319095154	154.0901 s 3	19004452	19005520	UPI0001A845AF	UP10001A845AF	Sb03g014221	C5XJY4_SORBI	transposase
			19147217	19147932	UPI0001A851BF	UP10001A851BF	Sb03g014261	C5XJY5_SORBI	
			19148124	19148417	UPIO001A851C0	UP10001A851C0	Sb03g014301	C5XJY6_SORBI	transposase
			19151124	19159094	UPI0001A851C1	UP10001A851C1	Sb03g014340	C5XJY7_SORBI	thiamine pyrophosphokinase 2
			19161565	19162878	UPI0001A851C2	UP10001A851C2	Sb03g014350	C5XJY8_SORBI	pollen-specific leucine-rich repeat extensin-like protein 1
			19166935	19167843	UPIO001A851C3	UPI0001A851C3	Sb03g014360	C5XJY9_SORBI	rapid alkalinization factor
			19173459	19178759	UPI0001C808B1;Or	UP10001C808B1	Sb03g01437		protein LOW PSII ACCUMULATION 1
			19180099	19183534	UPIO001A845B0	UPI0001A845B0	Sb03g014380	C5XJZO_SORBI	40 S ribosomal protein S4
			19185886	19193629	UPI0001A851C4	UPI0001A851C4	Sb03g014390	C5XJZ1_SORBI	NB-LRR disease resistance protein
	36549186	197.3805 s 4							ncRNA
			$36469694 . .36470469$		LOC110433369				ncRNA
	50606510	428 s5	50633842	50666619	UPI0001A864C6	UP10001A864C6	Sb05g020710	C5Y3T7_SORBI	reverse transcriptase reverse transcriptase unknown function - similar to cadmium induced protein
			50748352	50748630	UPI0001A8452A	UP10001A8452A	Sb05g020712	C5XMSO_SORBI	
			50773752	50773961	UPI0001A864C7	UPI0001A864C7	Sb05g020715	C5Y3T9_SORBI	
	25143622.2	$6.96 \mathrm{E}+02 \mathrm{~s} 6$	24438987	24439399	UP10001A878AD	UP10001A878AD	Sb07g012310	C5YK24_SORBI	GDSL esterase/lipase mucin-7-like
			24541299	24544032	UPI0001A87D1D	UP10001A87D1D	Sb07g012315	C5YK25_SORBI	
			24560864	24565790	*UPI000156629A	UPI000156629A	Sb07g012320	A5Y409_SORBI	Bt2 unknown function
			25215441	25216665	UP10001A87D1E	UP10001A87D1E	Sb07g012421	C5YK26_SORBI	
			25266157	25267821	UP10001A87D1F	UP10001A87D1F	Sb07g012520	C5YK27_SORBI	transposase pyrophosphate--fructose 6-phosphate 1-phosphotransferase subunit alpha-like
			25696240	25700246	UP10001A87D20	UP10001A87D20	Sb07g012720	C5YK28_SORBI	
	728238132.2	5.77E+02 s7	28360196. 28363415		LOC8069849				ncRNA
	741905551.1	$3.44 \mathrm{E}+02 \mathrm{~s} 8$	42079162	42081307	UPIOOO1A87E0C	UPI0001A87EOC	Sb07g016970	C5YKE7_SORBI	exopolygalacturonase
	745386874.8	$8.52 \mathrm{E}+02 \mathrm{~s} 9$	44889340..44919902		LOC110436757				probable adenylate kinase 5, chloroplastic
	746934129.7	$5.98 \mathrm{E}+02 \mathrm{~s} 10$	47495562	47507543	UPI0001A87E83	UP10001A87E83	Sb07g018430	C5YKG9_SORBI	alpha-soluble NSF attachment protein
	747836695.1	$3.47 \mathrm{E}+02 \mathrm{~s} 11$	47799636	47799914	UPI0001A879a6	UPI0001A879a6	Sb07g018531	C5Yкно_SORBI	TNP2-like unknown function TNP1-like
			47800384	47800926	UP10001A879A7	UPI0001A879A7	Sb07g018630	C5YKH1_SORBI	
			47945333	47949221	UPI0001A879A8	UPI0001A879A8	Sb07g018640	C5YKH2_SORBI	

w->A3 w->A5 A5->A6 A5->A7 A3->A6 A3->A7 A6->bicolor A7->bicolor A11->A9 A11->A10 A9->dur A10->dur $\begin{array}{lllllllllllll}0.35258451 & 0.48370471 & 0.15597999 & 0.44308019 & 0.46475671 & 0.16280127 & 0.1435501 & 0.31802334 & 0.09701379 & 0.31453691 & 0.44232227 & 0.31453691\end{array}$

 \begin{tabular}{lllllllllllll}
0.23283311 \& 0.3289374 \& 0.4780961 \& 0.47279066 \& 0.28770653 \& 0.20221313 \& 0.23829013 \& 0.21585569 \& 0.20645748 \& 0.41458239 \& 0.36455965 \& 0.41458239

\hline

 $\begin{array}{lllllllllllll}0.47172957 & 0.30741246 & 0.1159618 & 0.25238745 & 0.35485827 & 0.49886312 & 0.0322874 & 0.03926027 & 0.15355465 & 0.19751402 & 0.23465211 & 0.19751402\end{array}$ $\begin{array}{lllllllllllll}0.19812036 & 0.49355768 & 0.06093679 & 0.11687131 & 0.36637866 & 0.25147794 & 0.00394119 & 0.00363802 & 0.0209186 & 0.00257693 & 0.03744126 & 0.00257693\end{array}$

0.08473549 \& 0.11914507 \& 0.29953009 \& 0.22313173 \& 0.37653479 \& 0.1159618 \& 0.16659087 \& 0.29013188 \& 0.06017887 \& 0.47536759 \& 0.07003183 \& 0.47536759

\hline
\end{tabular}

 | 0.42185842 | 0.43610732 | 0.48491739 | 0.31484008 | 0.4990147 | 0.34894649 | 0.32423829 | 0.41230863 | 0.30817038 | 0.23434895 | 0.19417917 | 0.23434895 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllllllllll}0.45778384 & 0.44444444 & 0.28740337 & 0.43353039 & 0.45005305 & 0.41761407 & 0.05638927 & 0.05926936 & 0.27724723 & 0.0883735 & 0.09989389 & 0.0883735\end{array}$

 $\begin{array}{llllllllllllll}0.12657268 & 0.20645748 & 0.44217068 & 0.49446718 & 0.19114749 & 0.15810217 & 0.35622253 & 0.37683796 & 0.3659239 & 0.45990602 & 0.45793543 & 0.45990602\end{array}$ $\begin{array}{llllllllllllll}0.23283311 & 0.16552979 & 0.21903896 & 0.17811126 & 0.45929968 & 0.10413824 & 0.22131272 & 0.07230559 & 0.30817038 & 0.39972715 & 0.32408671 & 0.39972715\end{array}$

 \begin{tabular}{lllllllllllll}
0.29816583 \& 0.48370471 \& 0.31969077 \& 0.44474761 \& 0.26421101 \& 0.17401849 \& 0.42337426 \& 0.06336213 \& 0.17750493 \& 0.25162953 \& 0.31711384 \& 0.25162953

\hline

0.45778384 \& 0.2557223 \& 0.42140367 \& 0.23222677 \& 0.1444596 \& 0.28816129 \& 0.03698651 \& 0.23434895 \& 0.44308019 \& 0.17265424 \& 0.20190996 \& 0.17265424

\hline
\end{tabular} $\begin{array}{llllllllllll}0.49310293 & 0.28952554 & 0.31332424 & 0.24511141 & 0.09519479 & 0.0779142 & 0.3745642 & 0.0551766 & 0.3659239 & 0.11005002 & 0.09110202 & 0.11005002\end{array}$

 $\begin{array}{llllllllllll}0.12323784 & 0.31772018 & 0.1435501 & 0.21934213 & 0.23162043 & 0.17614067 & 0.38153706 & 0.49840837 & 0.44308019 & 0.17598909 & 0.23601637 & 0.17598909\end{array}$

 $\begin{array}{lllllllllllll}0.00045475 & 0.00045475 & 0.2946794 & 0.42079733 & 0.40427467 & 0.23722904 & 0.47748977 & 0.18826739 & 0.44308019 & 0.31453691 & 0.39502804 & 0.31453691\end{array}$ $\begin{array}{lllllllllllll}0.34227679 & 0.2557223 & 0.15597999 & 0.46127027 & 0.31484008 & 0.31362741 & 0.36198272 & 0.20221313 & 0.44308019 & 0.22343489 & 0.2176747 & 0.22343489\end{array}$

0.04365621	0.01864484	0.47157799	0.4144308	0.1444596	0.1444596	0.4344399	0.473397	0.12141883	0.1502198	0.09004093	0.06533273

 $\begin{array}{llllllllllllll}0.16189177 & 0.14658178 & 0.48719115 & 0.24344399 & 0.45293315 & 0.18447779 & 0.05381234 & 0.41382447 & 0.04683947 & 0.00879188 & 0.0807943 & 0.11899348\end{array}$

 $\begin{array}{llllllllllllll}0.10125815 & 0.08033955 & 0.39533121 & 0.29134455 & 0.35273609 & 0.22586024 & 0.11565863 & 0.12763377 & 0.192057 & 0.19781719 & 0.32954373 & 0.3260573\end{array}$ $\begin{array}{llllllllllllllll}0.10792785 & 0.08594816 & 0.42837653 & 0.29877217 & 0.36107322 & 0.21812945 & 0.13854782 & 0.21585569 & 0.33348492 & 0.34439897 & 0.35061392 & 0.34940124\end{array}$ $\begin{array}{lllllllllllll}0.19887828 & 0.21327876 & 0.39154161 & 0.24602092 & 0.35485827 & 0.2955889 & 0.104593 & 0.39760497 & 0.40427467 & 0.47263908 & 0.03152948 & 0.03061998\end{array}$

 $\begin{array}{llllllllllllll}0.30847355 & 0.31772018 & 0.03547067 & 0.15340306 & 0.33227224 & 0.02561771 & 0.03865393 & 0.25132636 & 0.40427467 & 0.06684857 & 0.18008186 & 0.04577838\end{array}$ $\begin{array}{llllllllllllll}0.17280582 & 0.1226315 & 0.07260876 & 0.21312718 & 0.05775352 & 0.12445051 & 0.21464302 & 0.40381992 & 0.16416553 & 0.11095953 & 0.1891769 & 0.13339397\end{array}$ | 0.43686524 | 0.01394573 | 0.1255116 | 0.3089283 | 0.00257693 | 0.00106109 | 0.24359557 | 0.33894194 | 0.05214491 | 0.0389571 | 0.08215856 | 0.09261786 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllllllll}0.06230105 & 0.13490981 & 0.09519479 & 0.15340306 & 0.38790359 & 0.36774291 & 0.22298014 & 0.15294831 & 0.08958618 & 0.09246627 & 0.40093982 & 0.36728816\end{array}$ $\begin{array}{lllllllllllll}0.24768834 & 0.17462483 & 0.21464302 & 0.2737608 & 0.13930575 & 0.44156435 & 0.32620888 & 0.12217675 & 0.16416553 & 0.45308474 & 0.18008186 & 0.30786721\end{array}$ $\begin{array}{llllllllllllll}0.05487343 & 0.01167197 & 0.01106564 & 0.15340306 & 0.14491436 & 0.0209186 & 0.01212672 & 0.23434895 & 0.47991511 & 0.49113233 & 0.29361831 & 0.26178566\end{array}$

 $\begin{array}{lllllllllllll}0.02395028 & 0.03031681 & 0.28179476 & 0.14688495 & 0.20554798 & 0.25375171 & 0.20024253 & 0.32272245 & 0.48324996 & 0.01303623 & 0.01909959 & 0.47536759\end{array}$ $\begin{array}{llllllllllllll}0.15507049 & 0.27269971 & 0.31332424 & 0.01182356 & 0.11656814 & 0.03835077 & 0.49082916 & 0.01682583 & 0.1302107 & 0.12884645 & 0.16037593 & 0.15673791\end{array}$ $\begin{array}{llllllllllllll}0.07215401 & 0.13172654 & 0.24829468 & 0.13248446 & 0.08625133 & 0.43747158 & 0.18796423 & 0.15294831 & 0.0447173 & 0.0569956 & 0.1891769 & 0.05396392\end{array}$ $\begin{array}{lllllllllllll}0.01015613 & 0.01167197 & 0.39533121 & 0.06639382 & 0.28361376 & 0.10944369 & 0.14067 & 0.18826739 & 0.1929665 & 0.37107776 & 0.32954373 & 0.42837653\end{array}$ $\begin{array}{lllllllllllll}0.26557526 & 0.47203274 & 0.25435804 & 0.34940124 & 0.28846445 & 0.11444596 & 0.39275428 & 0.12763377 & 0.30817038 & 0.37107776 & 0.34106412 & 0.36228589\end{array}$
 $\begin{array}{llllllllllllll}0.44656662 & 0.48370471 & 0.34091254 & 0.44777929 & 0.47006215 & 0.31726542 & 0.21464302 & 0.46703047 & 0.04911323 & 0.05426709 & 0.22661816 & 0.34940124\end{array}$ $\begin{array}{lllllllllllll}0.33181749 & 0.30013643 & 0.07867212 & 0.3783538 & 0.09231469 & 0.48446263 & 0.20691223 & 0.20903441 & 0.192057 & 0.37107776 & 0.14188267 & 0.27679248\end{array}$

 \begin{tabular}{lllllllllllll}
0.08473549 \& 0.11156586 \& 0.18508413 \& 0.18038502 \& 0.11535546 \& 0.10050023 \& 0.12990753 \& 0.11232378 \& 0.08276489 \& 0.04517205 \& 0.0807943 \& 0.06139154

\hline

0.36243747 \& 0.1862968 \& 0.21464302 \& 0.39396695 \& 0.06593906 \& 0.19433076 \& 0.39987873 \& 0.17341216 \& 0.30347127 \& 0.28058208 \& 0.47112324 \& 0.45990602

\hline
\end{tabular} $\begin{array}{lllllllllllll}0.04107928 & 0.08594816 & 0.36046688 & 0.25678339 & 0.4990147 & 0.34894649 & 0.29998484 & 0.19539184 & 0.33469759 & 0.19781719 & 0.25162953 & 0.11141428\end{array}$ $\begin{array}{lllllllllllll}0.49310293 & 0.09170835 & 0.04714264 & 0.1653782 & 0.15522207 & 0.0075792 & 0.05093224 & 0.28634228 & 0.25117478 & 0.23419736 & 0.1891769 & 0.17598909\end{array}$

 $\begin{array}{lllllllllllll}0.27239654 & 0.01000455 & 0.08018796 & 0.2147946 & 0.0009095 & 0.00697287 & 0.23025618 & 0.1482492 & 0.1691678 & 0.15006821 & 0.41503714 & 0.45990602\end{array}$ $\begin{array}{llllllllllllll}0.42185842 & 0.43383356 & 0.19417917 & 0.36304381 & 0.10959527 & 0.16113385 & 0.14430802 & 0.1891769 & 0.27724723 & 0.18462938 & 0.46869789 & 0.45990602\end{array}$

 | 0.21555252 | 0.19796877 | 0.45672275 | 0.32954373 | 0.48173412 | 0.3650144 | 0.41094437 | 0.37608004 | 0.1302107 | 0.24556617 | 0.1891769 | 0.09261786 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 $\begin{array}{llllllllllllll}0.45778384 & 0.40215249 & 0.10959527 & 0.2034258 & 0.3118084 & 0.38290132 & 0.35622253 & 0.44368652 & 0.33348492 & 0.49113233 & 0.42943762 & 0.47536759\end{array}$ $\begin{array}{llllllllllllll}0.45778384 & 0.44444444 & 0.1435501 & 0.27785357 & 0.28846445 & 0.38896468 & 0.35015916 & 0.39760497 & 0.05729877 & 0.15855692 & 0.05366075 & 0.17598909\end{array}$ | 0.34212521 | 0.29195089 | 0.39745339 | 0.23707746 | 0.48173412 | 0.29695316 | 0.47248749 | 0.25132636 | 0.1302107 | 0.17356374 | 0.16264969 | 0.21631044 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.42185842 | 0.40912536 | 0.42837653 | 0.11141428 | 0.4505305 | 0.1130817 | 0.2391964 | 0.2676744 | 0.47991511 | 0.1502108 | 0.49658936 | 0.27679248 |

 $\begin{array}{llllllllllllll}0.18523571 & 0.17053206 & 0.06427164 & 0.10807943 & 0.08503865 & 0.10944369 & 0.28027891 & 0.25132636 & 0.03592542 & 0.12748219 & 0.03077156 & 0.08321965\end{array}$ $\begin{array}{lllllllllllll}0.01455207 & 0.17462483 & 0.00424435 & 0.00939821 & 0.37153251 & 0.45596483 & 0.36228589 & 0.20221313 & 0.0560861 & 0.04532363 & 0.11444596 & 0.16674246\end{array}$

 $\begin{array}{llllllllllllll}0.17356374 & 0.27269971 & 0.15446415 & 0.18038502 & 0.36107322 & 0.43140822 & 0.15507049 & 0.15385781 & 0.47991511 & 0.25420646 & 0.42943762 & 0.30786721\end{array}$ $\begin{array}{llllllllllllllllllll}0.19251175 & 0.12157041 & 0.17841443 & 0.104593 & 0.47521601 & 0.2499621 & 0.38896468 & 0.39624072 & 0.20782174 & 0.12005457 & 0.32408671 & 0.20888283\end{array}$
chromosome position GERP score range highest lowest associated selection signal peaks
$\begin{array}{lll}1 & 10600000 & 0.18401937 \text { M5 M2 }\end{array}$
$12100000 \quad 0.818181818$ A11 M

Sh1 13000000

13200000 18800000
19000000 19500000

19900000 20400000 22700000 23900000 26000000 27300000 29000000 31200000
31400000
31500000
39600000
43600000
43900000 45000000 46600000
2700000 10400000
10500000
12800000
15800000
18500000
22000000
22900000
26300000
26300000
30300000
30400000
30800000
31000000
31100000
37500000
39200000
39900000
52000000
52700000
53800000
54300000
66900000
67800000
76700000
38100000 19500000
20500000
23200000
33400000

36300000
42000000
42500000
54900000 0.641025641 A7 M2
$62100000 \quad 0.717948718$ A11 A5

	62200000	0.877005348 A3	A7
	13400000	$0.666666667 \mathrm{A10}$	A3

13900000 0.333333333 A3 A10
$19000000 \quad 0.75$ A10 A5

23900000	0.471177945 Kew1	M2
24000000	0.214477212 A3	M2

$27500000 \quad 0.244897959$ Kew1 M2
pk4
pk5, s2

0.418316832 M6	M2
0.153846154 M5	A9

0.153310105 A10 M2
0.466666667 A10 A7
1.2 A3 A10
0.5 A11 A10
0.25 A11 A10
0.208566108 M 2 A5
0.331818182 A3 A10
0.308539945 A6 M2
0.666666667 A10 M6
0.285714286 A10

a

	27600000	0.210023866 M6	M2	
	32300000	0.296296296 A10	M6	
	32700000	0.506849315 A3	M2	pk9
	34200000	0.210663199 A10	A7	
	36100000	0.196721311 A3	Kew1	
	36900000	0.425396825 A11	M2	
	44100000	0.354330709 M6	A9	
	47600000	0.189542484 A10	A6	
	57400000	1.125 A10	Kew1	
	58200000	0.376068376 A10	A3	
5	6000000	0.977777778 A5	M2	
	6100000	0.406015038 A10	M2	
	9100000	0.728323699 A6	A11	
	11900000	0.412280702 M6	A10	
	12000000	0.438202247 A6	A11	
	14100000	0.308300395 A10	M6	
	17900000	0.37254902 A10	M6	
	22700000	0.277777778 M6	M2	
	23800000	0.3 A10	A7	
	24900000	0.287356322 A10	M2	
	42000000	0.240469208 A3	A10	
	44800000	0.541176471 A3	M2	
	48500000	0.350553506 M6	A10	
	49400000	0.737777778 Kew1	M2	
	50000000	0.448717949 A10	M2	
	50600000	0.350515464 A5	M2	s5
	50700000	0.321782178 M6	M2	
	51000000	0.234332425 M6	M2	
	54000000	0.484018265 M 5	A3	
	55100000	1.155555556 A9	A10	
	57200000	0.453333333 M 5	Kew1	
6	6700000	0.23015873 M2	A10	
	6800000	1.04 A11	A7	
	7500000	0.168316832 Kew1	A7	
	9900000	0.213675214 A5	A9	
	10400000	0.157303371 A7	M2	
	14500000	0.171945701 A5	M2	
	15900000	0.289398281 M5	A10	
	16000000	0.584269663 A3	M2	
	24000000	0.174863388 A3	M2	
	24300000	0.339047619 M5	M2	
	26600000	0.152671756 A3	A10	
	28600000	0.298181818 M5	M2	pk17
	32000000	0.2 A9	M2	
	33500000	0.319767442 A3	M2	
	34200000	0.239043825 M5	M2	
	38300000	0.178571429 A10	A5	
7	600000	0.384937238 A5	A10	
	7000000	0.8 A10	Kew1	
	9100000	0.20441989 Kew1	A5	
	10000000	0.377135348 A5	M2	
	15300000	0.18344519 M5	A11	
	15500000	0.261538462 M5	A6	
	17600000	0.224137931 A10	M6	
	17800000	0.5 A3	M2	
	24700000	0.215246637 A10	A5	Bt2
	25100000	0.339285714 A10	M6	s6
	25200000	0.231974922 Kew1	M6	
	25300000	0.5 A10	M6	
	26000000	0.198300283 A10	M6	
	28200000	0.189189189 A10	A5	s7
	28700000	0.4375 A10	A3	
	38700000	0.256157635 Kew1	A3	
	39900000	0.208144796 A10	Kew1	
	47100000	0.38 A10	A3	
	47800000	0.295964126 A10	A5	s11
	48000000	0.217741935 A10	A3	

	48600000	0.302197802 A10	A3	
	51200000	0.2 A10	M2	
	53100000	0.202941176 A10	M2	
	57600000	0.260869565 A10	M2	
	58100000	0.649425287 A7	Kew1	
	59800000	0.227272727 A10	M6	dw3
	61900000	0.239669421 A10	A9	TGA1
	63200000	0.237541528 M6	A3	pk20
	64300000	0.404255319 A3	Kew1	
8	5500000	0.301754386 A5	M2	
	6600000	0.625 A10	A3	
	8500000	0.34893617 M5	Kew1	
	39000000	0.595555556 M5	M2	
	40600000	1.157894737 A10	M2	pk24
	40800000	0.27076412 A10	M2	
	45500000	0.5 A5	A10	
	51800000	0.753623188 A11	A5	
	54000000	0.575342466 A10	Kew1	
	54500000	0.865384615 A10	M2	
	54800000	1.368421053 A10	A3	
	55100000	0.29787234 A3	A10	
9	900000	0.145762712 M5	M2	
	4800000	0.181818182 A3	A10	
	5100000	0.195744681 M2	A7	
	5200000	0.212598425 A11	M2	
	7700000	0.117647059 A3	A10	
	9800000	0.146443515 A7	Kew1	
	10600000	0.375 A10	M6	
	11800000	0.123966942 A10	A3	
	12400000	0.202531646 M5	A10	
	12500000	0.1625 M5	A7	
	12700000	0.44015444 M5	M2	
	14200000	0.159509202 M 6	A10	
	23800000	0.214511041 A3	A7	
	24900000	0.396694215 A3	M2	
	26700000	0.247619048 A10	M6	
	34300000	0.117647059 A5	A3	
	36900000	0.222222222 A3	M2	
	37900000	0.185661765 A5	A11	
	38100000	0.18522602 A11	A7	
	41300000	0.158878505 A10	A5	
	42000000	0.270967742 A10	A5	pk26
	42900000	0.17989418 A3	Kew1	
	44300000	0.191616766 A10	M2	
	45900000	0.140540541 M5	M2	
	47100000	0.236686391 A10	M2	
10	6100000	0.888888889 A3	A10	
	6200000	0.363636364 A10	A5	
	11600000	0.621848739 A3	M6	
	12900000	0.232142857 A9	M6	
	14100000	0.502617801 A11	M2	
	15000000	1.333333333 A10	A3	
	16700000	0.213675214 A6	A10	
	20400000	0.456410256 A3	A11	
	21500000	0.21978022 A5	A7	pk28
	24600000	0.259136213 A11	M6	
	26700000	0.238636364 A3	A5	
	36700000	0.583892617 A10	A5	
	39100000	0.264285714 A10	A5	
	49100000	0.410958904 M5	M2	
	49500000	0.242105263 A6	A3	

Table S9 Regions of GERP score deviation between genomes > 2 standard deviations

gene	window	tree number selection	phylogenetic incongruence	potential donor identified
dw3	479000000	704 bicolor A3-A5, A7, durra A10	no	no
dw1	596200000	876 bicolor A6	yes	durra A11
dw2	396300000	582 bicolor A3-A5	no	no
su	482600000	709 bicolor A3-A5,A7	yes	durra A11
SPS2	232100000	341 bicolor A3-A5,A6-A7	no	no
SUS1	59600000	87 bicolor A3-A5, A5-A6	yes	durra A11,A9
SPS5	653100000	960 bicolor A3-A5	no	no
Sh3/Bt1	233300000	342 bicolor A7	yes	no
TB1	9100000	13 bicolor A5-A6,A7	no	no
02	362200000	532 bicolor A6,A7	yes	durra A11, A10
SPS3	307500000	452 bicolor A6-A7	yes	durra A10
Sh1	12100000	17 bicolor A3	no	no
Ae1	277600000	408 bicolor wild-A3, A9-A10	no	no
int1	219200000	322 bicolor wild-A3,A7	yes	no
gt1	66700000	98 durra A11-A9, bicolor A7	yes	durra A11
SUT4	539000000	792 durra A9-A10, A7	yes	no
TGA1	481000000	707 bicolor A7	yes	durra A9, A10
ma3	68000000	99 durra A11-A9	yes	bicolor A3,A5
ma6	363700000	534 durra A11-A9	yes	bicolor A5
pk1	44900000	66 durra A10	no	no
pk2	84900000	124 bicolor A5	no	no
pk3	117800000	173 bicolor A3	no	no
pk4	127600000	187 bicolor A6	yes	no
pk5	128100000	188 bicolor A3,A5-A6,A7 durra A11	yes	bicolor A3
pk6	184600000	271 bicolor A3	no	no
pk7	244500000	359 bicolor A5	yes	durra A9
pk8	253900000	373 durra A9, A10	yes	bicolor A6
pk9	259200000	381 durra A11	no	no
pk10	263700000	387 bicolor A3	no	no
pk11	309400000	454 bicolor A3	yes	no
pk12	322400000	473 durra A11	no	no
pk13	337800000	496 bicolor A3	no	no
pk14	354000000	520 bicolor A7	yes	no
pk15	355600000	522 bicolor wild-A3,A5,A6,A7	yes	no
pk16	379500000	557 bicolor A6	no	no
pk17	385500000	566 durra A11	yes	no
pk18	469900000	690 durra A11	no	no
pk19	482300000	709 bicolor wild-A3, A7	yes	no
pk20	495900000	729 bicolor A6	yes	no
pk21	513100000	754 bicolor A7	no	no
pk22	515000000	757 bicolor A5,A6	yes	no
pk23	516500000	759 durra A11, A9, A10 bicolor A7	no	no
pk24	524200000	770 bicolor A5	no	no
pk25	536500000	788 bicolor A3	no	no
pk26	581100000	854 bicolor A5, durra A11-A9	yes	bicolor A5
pk27	616500000	906 bicolor A6	no	no
pk28	620300000	911 bicolor A7	no	no
pk29	635300000	933 durra A11, A10	yes	bicolor A6
pk30	625800000	920 bicolor A7	yes	no

Table S10 Phylogenetic congruence of regions containing significant reductions in heterozygosity

Figure S1

- S. bicolor type durra

Figure S2

-	Genome		SPS2
\cdots	dw3	\cdots	SPS3
\cdots	dw2	--	SPS5
\cdots	Sh3/Bt1	-	su

Bt2 -- SUS1
-- AE1 SUT3

- cul4 .-. TB1
\cdots int1 - TGA1

	Genome	\cdots	ma6
\cdots	dw3	\cdots	Pa1
\cdots	dw2	-	SPS3
	AE1	-	SUS1
-	gt1	\cdots	SUT4
\cdots	ma3	-	TB1

Figure S5

Figure S6

Halapense (M12)
Figure S8

Introgression study - D(BTX_623, Diff.Varieties, A3, S.halapense)

Figure S9

Figure S 10
ıоиор/łиәриəэsəр/ءоłsəэuе

-15	-10	-5	0	5	10
	GERP score reduction through rescue	10	20		

A9/A10/A7
A9/A10/A6
A9/A10/A5
A9/A10/A3
A11/A10/A7
A11/A10/A6
A11/A10/A5
A11/A10/A3
A11/A9/A7
A11/A9/A6
A11/A9/A5
A11/A9/A3
A6/A7/A10
A6/A7/A9
A6/A7/A11 ■ on target rescue A5/A7/A10

A5/A7/A9
A5/A7/A11
A5/A6/A10
A5/A6/A9
A5/A6/A11
A3/A7/A10
A3/A7/A9
A3/A7/A11
A3/A6/A10
A3/A6/A9
A3/A6/A11
A3/A5/A10
A3/A5/A9
A3/A5/A11

Population size N
Figure S12 • Model Gradient • Sorghum Gradient

