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16 Abstract

17 Increased technological methods have enabled the investigation of biology at nanoscale levels. 

18 Nevertheless, such systems necessitate the use of computational methods to comprehend the complex 

19 interactions occurring. Traditionally, dynamics of metabolic systems are described by ordinary differential 

20 equations producing a deterministic result which neglects the intrinsic heterogeneity of biological systems. 

21 More recently, stochastic modeling approaches have gained popularity with the capacity to provide more 

22 realistic outcomes. Yet, solving stochastic algorithms tend to be computationally intensive processes. 

23 Employing the queueing theory, an approach commonly used to evaluate telecommunication networks, 

24 reduces the computational power required to generate simulated results, while simultaneously reducing 

25 expansion of errors inherent to classical deterministic approaches. Herein, we present the application of 

26 queueing theory to efficiently simulate stochastic metabolic networks. For the current model, we utilize 

27 glycolysis to demonstrate the power of the proposed modeling methods, and we describe simulation and 

28 pharmacological inhibition in glycolysis to further exemplify modeling capabilities.

29

30 Author Summary

31 Computational biology is increasingly used to understand biological occurances and complex 

32 dynamics. Biological modeling, in general, aims to represent a biological system with computational 

33 approaches, as realistically and accurate as current methods allow. Metabolomics and metabolic systems 

34 have emerged as an important aspect of cellular biology, allowing a more sentive view for understanding 

35 the complex interactions occurring intracellularly as a result of normal or  perturbed (or diseased) states. To 

36 understand metabolic changes, many researchers have commonly used Ordianary Differential Equations to 

37 produce in silico models of the in vitro system of interest. While these have been beneficial to date, 

38 continuing to advance computational methods of analyzing such systems is of interest. Stochastic models 

39 that include randomness have been known to produce more reaslistic results, yet the difficulty and intesive 

40 time component urges additional methods and techniques to be developed. In the present research, we 
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41 propose using queueing networks as a technique to model complex metabolic systems, doing such with a 

42 model of glycolysis, a core metabolic pathway.   

43

44 Introduction 

45 Cellular metabolism is an extensively complex network of enzymes, metabolites and other 

46 biomolecules required to both maintain homeostasis and appropriately react to stimuli. Biochemists began 

47 examining cell metabolism in the mid-19th century, and with our advancement in both experimental 

48 techniques and computational capacity, increasing comprehension of metabolic intricacies has been 

49 realized. As a relatively new field, metabolomics studies are concerned with the detection and 

50 quantification of metabolites. When considering the complexity of the metabolome, the analytical side of 

51 metabolomics and metabolism can easily become daunting. The KEGG Compound database currently 

52 contains 18,047 metabolites and other small molecules, making the intuitive aspect of understanding 

53 metabolite dynamics nearly inconceivable [1]. Thus, computational modeling reconstruction and simulation 

54 of metabolic systems have become pivotal in the analysis and surveillance of such systems.

55 Within the last decade, it has been a considerable goal to develop mathematical models of 

56 biological systems that accurately predict cellular and ultimately systems level behavior, providing 

57 quantitative details and prediction of phenotypic changes resulting from perturbation. Models as a whole 

58 are a representation of reality, aiming to accurately represent the system of study. Inclusion of all cellular 

59 components indirectly or directly involved are considered far too complex to model. Consequently, 

60 simplifications and assumptions must be made and often the perceived non-pivotal details, such as 

61 stochasticity, omitted. Nevertheless, the accuracy and competence of the model is dependent on these 

62 assumptions and simplifications. 

63 Many approaches may be taken to model the dynamics of metabolic systems; importantly, the 

64 categorization of deterministic and stochastic modeling approaches. Most often, kinetic models of 

65 metabolism have been modeled using ordinary differential equations (ODE) providing a deterministic 
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66 modeling approach that gives quantitative information on the interactions, underlying dynamics, and 

67 regulation of the components of the system [2]. ODE models operate with the assumption that all reactions 

68 occur under evenly mixed, homogenous populations with many molecules in the environment. From early 

69 on, ODEs have been used to simulate biochemical kinetics and biochemical networks. This approach, with 

70 historically “limited” computational power, was sufficient to describe the interactions and dynamics 

71 occurring within biochemical networks. Rapoport et al. describes the ability to determine metabolite 

72 concentrations of glycolytic intermediates in erythrocytes by a desktop calculator [3]. In our current time, 

73 with the aid of increasing computational power, metabolite concentrations within an enzymatic chain of 

74 reactions can be determined almost instantly. There are numerous methods and well defined strategies for 

75 solving ODEs; the prevalence and significance in both biochemical simulations in addition to mathematics 

76 offer a firm grasp on dealing with simple systems of ordinary differential equations. While ODE modeling 

77 reduces computational efforts, the assumptions and simplifications come at the cost of omitting noise and 

78 randomization that is inherent in biological systems. Thus, stochastic modeling approaches may be a more 

79 realistic representation of in vitro and in vivo systems [2]. 

80 Though ODE methods have been well defined in biological community, more recently, systems 

81 biology has begun to extend the limits of what has previously been capable computationally; modeling the 

82 complexities of biological variation - the stochastic effects inherent in biology. Stochastic models are 

83 typically formulated by the chemical master equation (CME), and have the ability to capture the stochastic 

84 occurrences common in biological systems. Yet, the drawback comes with the increased mathematical and 

85 computational complexity, additionally limiting the size of the network. The CME is a continuous Markov 

86 process that has commonly been handled by way of Monte-Carlo simulations, wherein the probability of a 

87 particular reaction occurring is calculated and the probability of the particular reaction occurring in a given 

88 time interval is also calculated and updated given the state of the system [4]. Needless to say, the 

89 complexity of even a small system becomes unmanageable. Not to mention the increase in the number of 

90 parameters required and whether or not the specific parameters are appropriate given the context in which 
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91 they are derived [5]. The Gillespie algorithm, introduced in 1977, provides exact simulation methods and 

92 can be sped up with the implementation of Tau leaps [4,6,7]. Still, attempts are being made to improve 

93 stochastic simulation, and overcome the difficulties involved [2,5,8–13].

94 One relatively new approach to understanding and modeling complex biological networks is the 

95 application of queueing networks. Having some similarities to the Gillespie algorithm, queueing networks 

96 can be represented as a Markov chain, being more convenient to use than directly implementing the 

97 Gillespie algorithm [14]. Queueing networks have previously been used to describe data communication 

98 networks [15], servicing of patients at hospitals [16], the HIV infection process [17], pharmacokinetic 

99 modeling [18], and non-viral gene delivery [19].  Moreover, the implementation as described by Martin et 

100 al. [19], has accounted for other cell processes, like mitosis or cell necrosis, which are not easy to 

101 implement in the ODE approach. Queuing networks have also been used to develop a simple model of 

102 metabolism [20] and enzyme substrate interactions [21]. Briefly, queueing theory is a method of 

103 approaching stochastic simulations, doing so in such a way that computationally, it is less intensive and 

104 accordingly, possesses the ability to potentially describe larger networks - large networks that may not be 

105 able to be simulated in a reasonable amount of time given other stochastic simulation methods.

106 Recently, we have developed a tool to recapitulate observed in vitro insulin responses, plus measure 

107 the effects of Wortmannin-like inhibition on glucose uptake [22].  This has provided insight into transient 

108 changes in molecule concentrations throughout the insulin signaling pathway, and opened the door to 

109 identify critical, drug-targetable components of this pathway, including those associated with insulin 

110 resistance.  Notably, our model was capable of calculating all network components of 100 averaged cells at 

111 near real-time: approximately 12 minutes on a desktop computer to produce 10 minutes of simulated data. 

112 Comparatively, the classical ODE approach of this complex network was calculated to take more than 80 

113 days for completion. More importantly, though, the classical approach fails to take into account random 

114 variation naturally occurring within cells and tissues [23]. Conversely, the application of queueing theory 

115 has recently provided the ability to overcome computational intensity and incorporate a natural variation of 
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116 kinetic constants and initial molecular concentrations. Herein, we present the current model using queueing 

117 theory to simulate the stochastic effects of glucose metabolism as a simplified technique to model 

118 metabolism, specifically glucose metabolism. For model validation, we provide qualitative comparisons of 

119 pharmacological inhibition in both simulated conditions and experimental metabolic data from cancer cells.  

120

121 Methods

122 The model presented uses ODE’s and glucose metabolism as a platform to describe the dynamical 

123 behavior of the pathway. Glucose metabolism has been described with ODEs in many modeling efforts. 

124 Being well defined both computationally and biochemically, researchers often model glycolysis and 

125 glucose metabolism when developing novel simulation methods. With a predetermined notion of the 

126 outcome, one can more easily compare results and begin validating the computational methods being 

127 developed. Consequently, we have used glycolysis to present queueing theory modeling of metabolic 

128 networks. A brief overview of glycolysis and glucose metabolism can be found in [24]. 

129 For the initial development of the model, we made use of previously derived mechanistic equations 

130 employing Michaelis-Menten kinetics. The mathematical analysis of the rate equations and parameters used 

131 are described in Mulukutla et al [25]. The derivation of the rate equations can be found in Mulquiney et al. . 

132 Our aim was to use a previously defined model to implement our proposed queueing theory approach, thus 

133 the parameters and kinetic constants for the current model were chosen to reflect the model investigated in 

134 Mulukutla et al. Notably, Mulquiney et al.  report experimental and observed initial metabolite 

135 concentrations which were used for the current model. Concentration and parameter values that were either 

136 absent or substantially different between sources were obtained through additional literature searches . 

137 Furthermore, energy nucleotides and metal ions were fixed in our model for simplification and to centralize 

138 the model around the intermediate metabolites of glycolysis. Table 1 lists the initial concentrations of the 

139 metabolites measured in the simulation output, while Table 2 provides concentrations of additional 

140 substrates that were required for calculations, but not directly measured throughout the simulation. 
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141 To demonstrate the mechanics of how queueing networks are applied to modeling metabolic 

142 pathways, one can consider a pathway of N interacting metabolites M1, …, MN having initial concentrations 

143 at time instant t0 of C1(t0), …, CN(t0). Within the considered metabolic pathway, each of the metabolites M1, 

144 …, MN is involved in Ki reactions, i = 1, …, N. The corresponding reaction rates vi,j(C1(t), …, CN(t), t); i = 

145 1, …, N; j = 1, …, Ki, usually depend on the instantaneous concentrations of the interacting metabolites at 

146 time t, as well as other metabolites/enzymes, which given the time variability of those, is denoted as 

147 additional time dependability of t. The reaction rates can be positive or negative, with metabolites being 

148 produced for the positive sign and absorbed if the sign is negative. To find the concentration of the 

149 particular metabolite, Cl(t) at given time instant t, one normally needs to solve a set of ODEs of the form:

150

151 (1)

152
𝑑
𝑑𝑡𝐶1(𝑡) = ∑𝐾1

𝑗 = 1𝑣1,𝑗(𝐶1(𝑡), …, 𝐶𝑁(𝑡), 𝑡)

153

154
𝑑
𝑑𝑡𝐶2(𝑡) = ∑𝐾2

𝑗 = 1𝑣2,𝑗(𝐶1(𝑡), …, 𝐶𝑁(𝑡), 𝑡)

155 ….     

156
𝑑
𝑑𝑡𝐶𝑁(𝑡) = ∑𝐾𝑁

𝑗 = 1𝑣𝑁,𝑗(𝐶1(𝑡), …, 𝐶𝑁(𝑡), 𝑡)

157

158 with the initial condition C1(t0), …, CN(t0). 

159 Given the interdependency of the concentrations C1(t0), …, CN(t0), which is usually highly non-

160 linear, and further dependency of other time varying and/or random factors, achieving the solution of such 

161 sets of equations is not only extremely computationally intensive, but also not guaranteed to produce a 

162 numerically stable result. The problem is further complicated by the fact that the concentrations C1(t), …, 

163 CN(t) are always non-negative, and as reported by Infante et al [30], and Erbe et al.[31], this is a non-trivial 

164 task or such a solution may not even exist. One can force the numerical solver to produce the non-negative 
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165 solution, for example by using MATLAB’s 'NonNegative' option is in the ‘odeset’ solver [32]. However, 

166 this significantly increases the computation time, and the solution may not be accurate or numerically 

167 stable. This might be especially problematic for those metabolites that are not expressed in high 

168 concentrations and/or are very rapidly used in other reactions, for example, the metabolite glucose-6-

169 phosphate (G6P) is also an intermediate in the Pentose Phosphate Pathway (PPP) and glycogen metabolism 

170 [33].

171 To find a method to simulate processes described by the set of ODEs (1), one can notice that each 

172 of the ODEs in (1) is of the form describing an average behavior of an M(t)/M(t)/c non-depleting queue 

173 [14]. In general, the M(t)/M(t)/c queue is such a system where arrivals form a single queue and are 

174 governed by a time varying Poisson process, there are c servers and job service times are exponentially 

175 distributed with time varying rates. The M(t)/M(t)/c non-depleting queues are special cases of queues [16] 

176 where for each time interval, the difference between corresponding arrival rate and service rate is non-

177 negative. Massey et al [14] also analyzed a general case of M(t)/M(t)/c queues, for which there is no simple 

178 method to describe them by means of ODEs, but which can be depleted to zero elements in the queue or in 

179 other words for queues that can be completely emptied. 

180 Hence, the M(t)/M(t)/c queues can be used to model metabolic pathways for simulation purposes, 

181 and instead of solving a set of ODEs (1), simulate a network of interconnected M(t)/M(t)/c queues, 

182 provided that the concentrations C1(t), …, CN(t) are digitized. The arrival rates are for the queues and the 

183 service rates are the reaction rates vi,j(C1(t), …, CN(t), t) normalized to the duration of a single simulation 

184 time step  and the concentration increment , which denotes a finite change of Ci(t) in time ∆𝑡𝑖  ∆(𝐶𝑖(𝑡))

185 increment of  . The normalization is done according to the formula:∆𝑡𝑖

186 (2)

187                                                                                                                                                                                               𝜇𝑖,𝑗 =
𝑣𝑖,𝑗(𝐶1(𝑡), …, 𝐶𝑁(𝑡), 𝑡)∆𝑡𝑖 

∆(𝐶𝑖(𝑡))

188
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189 If the normalized rate µi,j is positive, it is an arrival rate while if it is negative it is a service rate. The 

190 instantaneous length of each queue provides a possible realization of a stochastic Markovian process 

191 representing variations of concentration of the given metabolite. Of course, the average changes in 

192 concentration can be achieved by averaging the simulation results for several simulation runs. To ensure 

193 correctness of simulation, the simulation time step   and the concentration increment , have to ∆𝑡𝑖  ∆(𝐶𝑖(𝑡))

194 be chosen in such a way that all µi,j are lower than 1, as the arrival and service rates represent the 

195 probabilities of arrival and service of  in the given time interval. It should be noted that for ∆(𝐶𝑖(𝑡))

196 ensuring that just a single  is processed in each time interval the conditions are as follows:    ∆(𝐶𝑖(𝑡))

197 (3)

198 µi,j << 1,   

199 for j = 1, …, Ki and i = 1, …, N

200

201 However, neither the simulation time step   nor the concentration increment ,  do not ∆𝑡𝑖  ∆(𝐶𝑖(𝑡))

202 need to be the same for all i = 1, …,N, but can be chosen in a way that minimizes the simulation time, while 

203 ensuring that the condition (3) is satisfied. Though the time increment can be calculated dynamically within 

204 each step, for the current model we have chosen a constant time increment to speed up simulation time. 

205 Given the stochastic nature of chemical reactions, where the reaction rates can vary depending on 

206 environmental conditions, the reaction rates can be randomized by adding the Gaussian (or other) noise to 

207 the kinetic constants used to calculate values of vi,j(C1(t), …, CN(t), t). The same can be performed for the 

208 initial concentrations at time instant t0 of C1(t0), …, CN(t0).

209 A queue representing concentration of a single metabolite is shown in Fig 1, where the inputs to the 

210 represent reactions leading to production of the metabolite and outputs represent reactions using this 

211 metabolite. The cloud connected to the queue via bi-directional arrow represents processes not considered 

212 (or not even currently discovered) that result in an imbalance between an aggregated input to- and an 

213 aggregated output from the queue. The arrivals to the queue, representing discrete increments in 
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214 concentration of the metabolite are modeled as Poisson processes, while the service time (time intervals 

215 between two consecutive output events) is modeled by an exponential distribution. Assuming that in total 

216 there are c-outputs from the queue, the queue can be considered as a standard M(t)/M(t)/c queue, as 

217 described before.

218 Fig 1. Example Queue. 

219 Queue representing concentration Ci(t) of the metabolite Mi; µi,j, j = 1, …, Li, are arrival rates as 

220 corresponding to processes resulting in production of metabolite  Mi;    µi,j , j = Li + 1, Li + 2, …, Ki*, are 

221 service rates corresponding to processes using metabolite Mi. Ki* = number of reactions considered in the 

222 model metabolite Mi is involved in.

223 For the description to be valid, the sums of all arrival rates, µi,j, j = 1, …, Li, and the sum of all 

224 service rates µi,j, j = Li + 1, Li + 2, …, Ki* must each be lower than 1. A fulfilment of this condition can be 

225 satisfied by either reducing the duration of time increment or increasing the concentration unit. Of course, 

226 reducing the time increment increases the simulation time, as more simulation steps must be considered for 

227 the duration of an experiment, while increasing the concentration unit may reduce the accuracy of the 

228 simulation results. Therefore, a careful balance must be struck while choosing those parameters. 

229 Furthermore, from the perspective of implementing simulation of the metabolic process, it is convenient to 

230 ensure that in a given simulation step only one concentration unit of a given metabolite Mi is going to be 

231 processed. Assuming that there are  possible reactions that can be utilizing metabolite Mi, the 𝐽𝑖 = 𝐾 ∗
𝑖 ‒ 𝐿𝑖

232 probability Pi1 that this happens is given by the formula: 

233 (4)

234  𝑃𝑖1 = ∑𝐽𝑖
𝑗 = 1𝜇𝑖,𝑗∏

𝐽𝑖
𝑘 = 1
𝑘 ≠ 𝑗

(1 ‒ 𝜇𝑖,𝑘)

235

236 and the conditional probability  that if just one concentration unit is processed in a particular 𝑃𝑖{𝑗|1}

237 simulation step, it is processed in reaction associated with reaction rate µi,j, is given by: 
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238 (5)

239 𝑃𝑖{𝑗|1} =
𝜇𝑖,𝑗

(1 ‒ 𝜇𝑖,𝑗)∑𝐽𝑖
𝑘 = 1

𝜇𝑖,𝑘
(1 ‒ 𝜇𝑖,𝑘)

240

241 It is important to notice here that metabolomics data often include missing or semi-quantitative data, 

242 and some connections between the metabolites might have not been discovered, yet. To account for those 

243 unknown or missing reactions, an additional input/output pathway is included in the model for every 

244 metabolite considered, and shown in Fig 1 as a dashed line connection, which can be bi-directional. The 

245 rate µi* is to be determined as the rate balancing the steady state value of the concentration Ci(t). If the rate 

246 µi*  is positive, then for a corresponding metabolite concentration different from the steady state value, the 

247 rate is scaled by a factor equal to the ratio of the actual concentration to the concentration at the steady 

248 state. If it is negative, the scaling is inversely proportional. As previously mentioned, we have used 

249 queueing theory to describe additional biological pathways. In such, [34,35] provide further explanations of 

250 the proposed queueing theory methods. Additionally, pseudocode of the queueing theory application has 

251 been provided in the appendix section.  

252

253 Results

254 For the current study, our interest was in the ability to mechanistically model enzymatic reactions 

255 and stochastically simulate the dynamics of glycolysis utilizing queues. In general, queueing theory is a 

256 mathematical tool used to describe, model and analyze waiting lines, or queues [36]. At cellular level, 

257 metabolites are produced, absorbed, or used by cellular processes, thus forming “queues” of metabolites. 

258 Production or absorption of the metabolite adds to the appropriate queue length, and usage of the 

259 metabolite reduces the queue length. Both production and usage of a given metabolite are described by 

260 discrete random processes, referred to as an arrival and service process, respectively[37]. The queues can 

261 be easily interconnected, and as such are ideally suited to model metabolic networks, the same way as they 
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262 are used to model the Internet [15]. Our previous work shows the ability to accurately simulate conditions 

263 seen in vivo using a fraction of the computing power of classical quantitative approaches at the time [22].  

264 We have adjusted our queuing theory-based approached to model metabolic pathways given mechanistic 

265 rate equations of all glycolytic reactions and validated experimental metabolite data. As a core metabolic 

266 pathway common to all lifeforms, glycolysis is the enzymatic breakdown of glucose into a usable form of 

267 energy, additionally supplying intermediate metabolites as “building blocks” for connecting pathways to 

268 further support life. Naturally, glycolysis provides a scaffold to begin extending our model to incorporate 

269 additional metabolic pathways.

270 For the initial development of the model, we made use of previously derived mechanistic equations 

271 employing Michaelis-Menten kinetics. For the model simulations, all intermediate metabolites were 

272 represented by different queues, as described in the methods section. Additionally, the queues representing 

273 metabolites have been connected if there is a reaction converting one metabolite into another. Fig 2 shows 

274 the assembled queueing network representing glycolysis from glucose to pyruvate; where GLC, glucose; 

275 G6P, glucose 6-phosphate; F6P, fructose 6-phosphate; F16BP, fructose 1,6-bisphosphate; F26BP, fructose 

276 2,6-bisphosphate; GAP glyceraldehyde 3-phosphate; DHAP, dihydroxyacetone phosphate; 13BPG, 1,3-

277 bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; 

278 PYR, pyruvate.

279 Fig 2. Simulated metabolic pathway from glucose to pyruvate. 

280 Arrows denote the modeled reactions. Vi, i = 0, …, 10, and V3A, V3B, are the reaction rates; for 

281 bidirectional arrows the direction is determined by the sign of the corresponding reaction rate with the 

282 positive direction being from the top down. GLC, glucose; G6P, glucose 6-phosphate; F6P, fructose 6-

283 phosphate; F16BP, fructose 1,6-bisphosphate; F26BP, fructose 2,6-bisphosphate; GAP glyceraldehyde 3-

284 phosphate; DHAP, dihydroxyacetone phosphate; 13BPG, 1,3-bisphosphoglycerate; 3PG, 3-

285 phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyruvate.
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286 For the stochastic simulations presented, the rate equations and model parameters were used as they 

287 are indicated in the literature (Table 1 and Table 2). Highlighting the significance of the approach, the 

288 current methods enabled rapid alteration of parameter adjustment and additional simulations under a variety 

289 of selected in silico conditions. Due to the rapid catalytic conversion 3-PG and 2-PG in combination with 

290 the low metabolic concentrations, as separate queues the metabolites 3-PG and 2-PG were readily depleted 

291 given the 1 microsecond time scale used for the metabolite calculations. Thus, 3-PG and 2-PG were 

292 grouped in a single queue avoiding the occurrence of complete deficiency. Furthermore, the summation of 

293 the two consecutive metabolites within a queue slightly decreases total calculations and consequently, 

294 simulation time.

295 As previously noted biochemical reactions, and biological system, in general, are inherently 

296 stochastic processes. Consequently, randomness and variation were incorporated to add additional 

297 stochastic elements to the model simulations. Reaction rates were randomized during simulation by adding 

298 an arbitrarily chosen 10% Gaussian noise to the kinetic constants used to calculate values of vi,j(·). The 

299 same was performed for the initial concentrations at time instant t0 of all glycolytic intermediates. During 

300 the simulations, each simulated cell is calculated independently; that is, concentrations of each molecule in 

301 the metabolic network is stochastic, and bound by error values listed in the literature. The queueing theory 

302 approach causes the actual concentrations of given molecule types to be simulated as separate queues 

303 within each cell. The probability of a movement happening at any time slice from one queue to the next is 

304 determined by the relevant reaction speed. Movements between storages happen at a particular time instant 

305 if a number randomly drawn from the interval [0,1] at that time instant is smaller than the reaction speed 

306 governing the movement. After simulations have been performed for every considered cell, the results are 

307 averaged over the cell population. Variations of 10% glucose levels are randomly computed for every 

308 simulated second. The simulations were run with a 1 microsecond time step, and random variations in the 

309 values of kinetic constants used in calculating reaction rates were introduced every second. Initial 

310 concentrations were randomized by adding 10% Gaussian noise.
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311

312 Glycolytic Flux  

313 Previously, Mulukutla et al. aimed to assess the control of different isoforms of the three rate 

314 limiting glycolytic enzymes on overall pathway flux behavior. The rate limiting enzymes of glycolysis, 

315 hexokinase (HK), phosphofructokinase (PFK), the bifunctional enzyme phophofructokinase-2/ fructose 

316 2,6-bisphosphatase (PFKFB), and pyruvate kinase (PK) each have multiple isoforms and may be expressed 

317 in combination within single cell in a cell-type dependent manner. We considered regulatory mechanisms 

318 of PFK, PFKFB, and PK by including parameters and terms in the rate equations to consider the feedback 

319 inhibition and activation, keeping both upper and lower glycolytic regulatory loops active in our 

320 simulations. The feedback considered consists of F26BP (an important activator of glycolytic flux) and 

321 F16BP activation of PFK, F16BP activation of PK, and PEP inhibition of PFKFB activity. The parameters 

322 set to simulate the feedback loops are as follows: K_PFKf16bp=0.65 mM and K_PKf16bp=0.04 mM. The 

323 PFKFB kinase/phosphatase (K/P) ratio, the ratio between the kinase and phosphatase activity, was set to 

324 0.1 by adjusting the value of the PFKFBPase Vmax leaving the kinase Vmax at its original value. Different 

325 K/P ratios are given in the literature based on specific tissue and cell type. The range varies from less than 1 

326 to 710 depending on the isoform of PFKFB expressed and the tissue type in which it is found. Notably, 

327 PFKFB is highly dependent on signaling and hormonal regulation, which can transiently change the K/P 

328 ratio given the stimulus. Signaling regulation was not considered in this model, though this component is of 

329 interest for further study. Thus, we aimed to keep F26BP relatively constant throughout the initial steady 

330 state testing to keep the flux toward a stable level. We found that the K/P ratio of 0.1 kept F26BP and all 

331 other metabolites constant over time, the given the parameters used. Therefore, the 0.1 K/P ratio was used 

332 to further test the ability of the model to simulate metabolite changes. Simulations were repeated for 30 

333 cells, once completed, the average concentrations of each metabolite per cell were graphed as a function of 

334 time (Fig 3). 

335 Fig 3. Steady state glycolytic flux. 
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336 Metabolite concentrations were simulated with an input of 5 mM glucose over the course of 1200 seconds 

337 to model an unperturbed and constant state.

338

339 GAPDH Inhibition 

340 In vitro experiments and model simulations were performed to assess the performance of the 

341 proposed queueing approach. FK866 is a non-competitive inhibitor of Nicotinamide phosphoribosyl 

342 transferase (NAMPT), the enzyme that supplies the majority of the intracellular pool of NAD+, a required 

343 substrate for the GAPDH reaction. Extensive research has been performed analyzing the effects of FK866 

344 on high glycolytic flux in cancer cells [38–41]. Under limited NAD+ concentrations, the GAPDH reaction 

345 represents a bottleneck in glycolysis producing a block in the glycolytic flux. Experimental results show the 

346 upper level glycolytic metabolites, including G6P, F6P, F16BP, GAP and DHAP accumulate while the 

347 lower metabolites, 13BPG, 3PG/2PG, PEP, and PYR, decrease as substrates become unavailable. Thus, we 

348 hypothesized that with the reduction of GAPDH activity and consequently simulation of enzyme inhibition 

349 in silico, the model should be able to mimic the qualitative metabolic trends seen in vitro. Notably, kinetics 

350 and enzyme concentrations for the specific cancer cell lines were unknown,  therefore, to account for the 

351 differences between the cancerous and non-cancerous simulations, the reaction rates were scaled (See 

352 Supplemenary file S5). The effects of FK866 are presented in the experimental data provided by [40] in 

353 Figs 4, 6, 8 and 10, and by the present model outcomes of GAPDH activity inhibition in Figs 5, 7, 9 and  

354 11. 

355 Fig 4. Effects of FK866 on G6P and F6P concentrations in vitro. 

356 Experimental metabolomics data measuring G6P and F6P concentrations with the inhibitor FK866 in (solid 

357 blue and dashed green lines) A2780 and (red) HCT116 cancer cells.

358 Fig 5. Effects of GAPDH Inhibition on G6P and F6P concentrations in silico. 

359 Simulation of the dynamics of glucose 6-phosphate (G6P) and fructose 6-phosphate (F6P) with the 

360 inhibition of Glyceraldehyde phosphate dehydrogenase (GAPDH). The Vmax of GAPDH was set at 0, 25, 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 1, 2018. ; https://doi.org/10.1101/336677doi: bioRxiv preprint 

https://doi.org/10.1101/336677
http://creativecommons.org/licenses/by/4.0/


16

361 50, 90, 95, 97, 98, 99, and 100 percent of its initial value in separate model simulations to simulate varied 

362 levels of pharmacological inhibition on the enzyme. 

363 Fig 6. Effects of FK866 on FBP concentrations in vitro. 

364 Experimental metabolomics data measuring fructose 1,6-bisphosphate concentrations with the inhibitor 

365 FK866 in (solid blue and dashed green lines) A2780 and (red) HCT116 cancer cells.

366 Fig 7. Effects of GAPDH Inhibition on FBP concentrations in silico. 

367 Simulation of the dynamics of fructose 1, 6-bisphosphate (FBP) with the inhibition of Glyceraldehyde 

368 phosphate dehydrogenase (GAPDH). The Vmax of GAPDH was set at 0, 25, 50, 90, 95, 97, 98, 99, and 

369 100 percent of its initial value in separate model simulations to simulate varied levels of pharmacological 

370 inhibition on the enzyme. 

371 Fig 8. Effects of FK866 on G6P and F6P concentrations in vitro. 

372 Experimental metabolomics data measuring GAP and DHAP concentrations with the inhibitor FK866 in 

373 (solid blue and dashed green lines) A2780 and (red) HCT116 cancer cells.

374 Fig 9. Effects of GAPDH Inhibition on GAP and DHAP concentrations in silico. 

375 Simulation of the dynamics of glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate 

376 (DHAP) with the inhibition of Glyceraldehyde phosphate dehydrogenase (GAPDH). The Vmax of GAPDH 

377 was set at 0, 25, 50, 90, 95, 97, 98, 99, and 100 percent of its initial value in separate model simulations to 

378 simulate varied levels of pharmacological inhibition on the enzyme. 

379 Fig 10. Effects of FK866 on PEP concentrations in vitro. 

380 Experimental metabolomics data measuring G6P and F6P concentrations with the inhibitor FK866 in (solid 

381 blue and dashed green lines) A2780 and (red) HCT116 cancer cells.

382 Fig 11. Effects of GAPDH Inhibition on PEP concentrations in silico. 

383 Simulation of the dynamics of phosphoenolpyruvate (PEP) with the inhibition of Glyceraldehyde 

384 phosphate dehydrogenase (GAPDH). The Vmax of GAPDH was set at 0, 25, 50, 90, 95, 97, 98, 99, and 
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385 100 percent of its initial value in separate model simulations to simulate varied levels of pharmacological 

386 inhibition on the enzyme.

387 GAPDH activity was reduced by adjusting the Vmax of the reaction catalyzed by GAPDH. 

388 Inhibition was simulated at 0%, 25%, 50%, 90%, 95%, 97%, 98%, 99%, 100% GAPDH activity, with each 

389 inhibitory level run as a separate simulation for a cell population of 30. The simulated results of GAPDH 

390 inhibition of G6P+F6P, F16BP, GAP+DHAP, and PEP, are plotted as dose reponse curves in Figs 5, 7, 9 

391 and 11 to reproduce the effect of metabolite changes from experimental (Figs 4, 6, 8 and 10) 

392 pharmacological inhibition of two cancerous cell lines. The FK866 inhibitor concentrations used in both 

393 A2780 ovarian and HCT116 colorectal cancer cell lines in vitro, were compared to in silico reduction of the 

394 percent GAPDH activity. Of note, we are making the assumption that at the lowest FK866 concentration 

395 (0.3 nM) used in vitro did not inhibit GAPDH activity, whereas the highest inhibitor concentrations (40 

396 nM) used completely inhibit its forward catalytic activity since the degree of inhibition corresponding to an 

397 exact inhibitor dosage is not reported. Thus, for the present comparisons we aimed to observe the 

398 qualitative metabolite changes within the experimental and simulated data, noting complications in making 

399 rigorous quantitative comparisons.

400 F16BP and PEP were measured reported as individual metabolites in the two cancer cell lines, 

401 A2780 and HCT116. The comparison of the simulated and experimental data is presented in Figs 6-7 and 

402 10-11. Because of the difficulties in distinguishing isobaric metabolites from one another, G6P+F6P and 

403 GAP+DHAP were grouped in the experimental data, and the sum of these metabolites are reported. The 

404 model is able to determine the individual metabolite concentrations, however, following each simulation 

405 the two metabolites from the model data (G6P+F6P and GAP+DHAP) were added for a closer comparison 

406 to the experimental data. Moreover, the data was normalized so that each experiment (in vitro and in silico) 

407 began with the same metabolite concentration, again for a clearer comparison of the actual changes 

408 occuring as FK866 doses increased (experimental) and as GAPDH inhibition increased (model 

409 simulations). 
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410 In silico, we observed increases in all upper glycolytic metabolites with inhibition of GAPDH, 

411 supporting the metabolic data of NAMPT inhibition. The lower glycolytic metabolite, PEP shows reduction 

412 following increased inhibition of GAPDH, in agreement the results seen in the experimental data. Using a 

413 K/P ratio of 0.1, F26BP was the only metabolite that did not change mean values over time throughout the 

414 course of GAPDH inhibition at any level. Notably, the experimental data shows a fairly wide range of 

415 metabolite concentrations with similar inhibitor doses, between and even within both cell lines. For 

416 example, the G6P+F6P concentration in the HCT116 cell line increased from 0.052 mM to 0.512 mM with 

417 the highest FK866 treatment, and in the two separate experiments with the A2780 cells the metabolite 

418 concentrations increased to only 0.18 mM and 0.13 mM (Fig 4). Again, the aim for the inhibition 

419 simulations was to observe the overall trend of metabolite changes, meant for a qualitative comparison. 

420 There are slight variations from the experimental data and the model data. Still the results are similar or 

421 within range of the experimental data; in the model simulation the F16BP concentration increased from 

422 0.0022 mM to 0.0548 mM at the highest inhibition level, while the F16BP concentration in the HCT116 

423 cell line rose from 0.0022 mM to 0.0496 mM at the highest FK866 treatment (Figs 6-7). Specific kinetics 

424 and prior knowledge of experimental data may only aid in reproducing even more consistent results in the 

425 future. 

426 The glycolysis model was additionally simulated in the SimBiology app in MatLab using the 

427 ode15s solver [32]. The rate equations, parameters and initial concentrations were identical to those used in 

428 the queueing theory model in the steady state simulation. When running the simulations, the metabolites 

429 reached steady state levels up to 10 seconds. Following the 10 second mark, however 2PG and 3PG 

430 progressed to positive infinity and negative infinity, respectively. Moreover, many metabolites had negative 

431 concentration values in the steady state simulations. The compiled SimBiology ode15s solver was easy to 

432 both operate and simulate deterministic outcomes quickly, however the simulation produced unstable and 

433 negative values. As mentioned in the methods section, queueing theory modeling ensures positive 

434 concentrations, a clear benefit when attempting to track metabolite or biological species concentration 
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435 changes. In the uncompiled version, the current queueing theory model was able to complete 20 minutes of 

436 simulation time for 30 cells in roughly two hours.   

437

438 Conclusion

439 The paper presents a pathway model of glycolysis as a queueing network, a modeling approach 

440 widely used in modeling telecommunication packet networks. Dynamic modeling of biological systems, 

441 while exceptionally useful poses certain limitations computationally and in reproducing observed 

442 phenotypic changes. The application of queueing theory in dynamical modeling may offer a method to 

443 overcome such limitations. The current applications of this work hold significant promise for advancing 

444 computational biology and biochemical research. The queueing theory represents a mainstay modeling 

445 approach of telecommunication networks with application to simulate intracellular metabolism. By viewing 

446 enzymes as “gates” and their substrates as “packets,” we have reduced the computational complexity of the 

447 simulation to the advantage of much more rapid calculation. Moreover, we have shown previously that we 

448 can model intracellular mechanisms and do so while simulating the random variation which exists between 

449 and within living cells.

450 Research and experimental techniques in metabolomics have rapidly evolved since its introduction. 

451 Modeling strategies must also be able to be adaptable to accommodate novel information and amend the 

452 data as needed. The modularity of queues incorporated provides a suitable approach for further model 

453 extension, whether that be additional metabolic reactions, parameter refinement, or multi-scale modelling 

454 approaches. Moreover, this approach enables the ability to simulate biochemical reactions stochastically 

455 without the need to implement or solve stochastic algorithms. As seen above, GAP and DHAP were 

456 represented experimentally as a combination of metabolic intermediates, due to their chemical similarities. 

457 Although MS technological methods have become increasingly sensitive to detecting small molecules, 

458 isobaric metabolites are often difficult to distinguish from one another. This is the case not only for several 

459 metabolic intermediates of glycolysis, but also to additional metabolic pathways. An advantage to the in 
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460 silico mechanistic modeling of metabolic networks, is the ability to represent such metabolites as individual 

461 entities investigating distinct metabolic reactions and the dynamics of each metabolite providing a more in-

462 depth observation of the intracellular interactions. 

463 The need for models to be informed from and then simulate data using metabolomics sources 

464 represents a significant advance in future possibilities of the use of this approach. With the small-scale 

465 investigation and advanced and large-scale experimental biology, computers have become pivotal in not 

466 only managing data but also in understanding the biological significance of the results and developing 

467 further hypotheses for future research. Due to the ability to change variables and quickly analyze the 

468 resulting metabolic effects, investigators can then simulate the effects of drugs or mutation on such 

469 processes. In all, the ability to accurately and quickly simulate intracellular and intra-tissue pathways 

470 represents a considerable leap forward in the ability to understand central biochemical underpinnings of 

471 cellular life. The advancement of technology in both experimental biology and computational systems has 

472 allowed scientific discovery and investigation on the chemical level. Elucidation of intracellular metabolite 

473 and chemical dynamics can provide valuable insight into how cells utilize cellular components to grow, 

474 respond to environmental stimuli, and ultimately support life. While deterministic models are able to 

475 describe glucose metabolism and metabolic systems in general, we believe queueing theory may have the 

476 potential to more realistically describe metabolic behavior by providing stochasticity to the pathway. In 

477 summary, the current study presents the application of queuing theory as a beneficial modeling approach in 

478 simulating metabolic pathway dynamics and predicting the effects of pharmacological inhibition.

479
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Table 1. Initial Concentrations of Glycolytic Metabolites
Metabolite Concentration(mM) Reference
GLC 5.0 [1]

G6P 0.039 [1]

F6P 0.013 [1]

F1,6BP 0.00231 [1]

F2,6BP 0.004 [3]

DHAP 0.02 [2]

GAP 0.00194 [2]

1,3BPG 0.000369 [1]

3PG 0.069 [1]

2PG 0.01 [1]

PEP 0.017 [1]

PYR 0.0586 [1]

Intracellular concentrations for each metabolic intermediate. The 
metabolite concentrations (millimolar) are used in each simulation to 
initiate the model and are allowed to change over the course of the 
simulation.  
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Table 2. Additional Metabolites and Energy Nucleotides
Metabolite Concentration(mM) Reference
MgATP 1.52 [1]

MgADP 0.11 [1]

NAD 0.0599 [1]

NADH 0.000245 [1]

Pi 1.0 [1]

Mg 0.4 [1]

ATP 0.159 [1]

ADP 0.0937 [1]

AMP 0.03 [1]

H+ 0.0000721 [2]

2,3BPG 3.1 [1]

GSH 3.2 [1]

ALA 0.2 [3]

G16BP 0.106 [1]

Intracellular concentrations required for rate equation calculations. The following 
metabolites influence the kinetics of the reactions yet were held constant for simulations 
to directly highlight concentration changes seen in glycolytic intermediates. 
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