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Abstract

Recent studies have proposed deep learning techniques, namely recurrent neural
networks, to improve biomedical text mining tasks. However, these techniques rarely
take advantage of existing domain-specific resources, such as ontologies. In Life and
Health Sciences there is a vast and valuable set of such resources publicly available,
which are continuously being updated. Biomedical ontologies are nowadays a
mainstream approach to formalize existing knowledge about entities, such as genes,
chemicals, phenotypes, and disorders. These resources contain supplementary
information that may not be yet encoded in training data, particularly in domains with
limited labeled data.

We propose a new model, BO-LSTM, that takes advantage of domain-specific
ontologies, by representing each entity as the sequence of its ancestors in the ontology.
We implemented BO-LSTM as a recurrent neural network with long short-term memory
units and using an open biomedical ontology, which in our case-study was Chemical
Entities of Biological Interest (ChEBI). We assessed the performance of BO-LSTM on
detecting and classifying drug-drug interactions in a publicly available corpus from an
international challenge, composed of 792 drug descriptions and 233 scientific abstracts.
By using the domain-specific ontology in addition to word embeddings and WordNet,
BO-LSTM improved both the F1-score of the detection and classification of drug-drug
interactions, particularly in a document set with a limited number of annotations. Our
findings demonstrate that besides the high performance of current deep learning
techniques, domain-specific ontologies can still be useful to mitigate the lack of labeled
data.

Author summary

A high quantity of biomedical information is only available in documents such as
scientific articles and patents. Due to the rate at which new documents are produced,
we need automatic methods to extract useful information from them. Text mining is a
subfield of information retrieval which aims at extracting relevant information from text.
Scientific literature is a challenge to text mining because of the complexity and
specificity of the topics approached. In recent years, deep learning has obtained
promising results in various text mining tasks by exploring large datasets. On the other
hand, ontologies provide a detailed and sound representation of a domain and have been
developed to diverse biomedical domains. We propose a model that combines deep
learning algorithms with biomedical ontologies to identify relations between concepts in
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text. We demonstrate the potential of this model to extract drug-drug interactions from
abstracts and drug descriptions. This model can be applied to other biomedical
domains using an annotated corpus of documents and an ontology related to that
domain to train a new classifier.

Introduction 1

Traditional relation extraction methods employ machine learning algorithms, often 2

using kernel functions in conjunction with Support Vector Machines [1, 2] or based on 3

features extracted from the text [3]. In recent years, deep learning techniques have 4

obtained promising results in various Natural Language Processing (NLP) tasks [4], 5

including relation extraction. These techniques have the advantage of being easily 6

adaptable to multiple domains, using models pre-trained on unlabeled documents [5]. 7

The success of deep learning for text mining is in part due to the high quantity of raw 8

data available and the development of word vector models such as Word2vec [6] and 9

GloVe [7]. These models can use unlabeled data to predict the most probable word 10

according to the context words (or vice-versa), leading to meaningful vector 11

representations of the words in a corpus, known as word embeddings. 12

A high volume of biomedical information relevant to the detection of Adverse Drug 13

Reactions (ADRs), such as Drug-Drug Interactions (DDI), is mainly available in articles 14

and patents [8] A recent review of studies about the causes of hospitalization in adult 15

patients has found that ADRs were the most common cause, accounting for 7% of 16

hospitalizations [9]. Another systematic review focused on the European population, 17

identified that 3.5% of hospital admissions were due to ADRs, while 10.1% of the 18

patients experienced ADRs during hospitalization [10]. 19

The knowledge encoded in the ChEBI (Chemical Entities of Biological Interest) 20

ontology is highly valuable to detect and classify DDIs, since we not only get access to 21

important characteristics of each individual compound but more importantly we gain 22

access to the underlying semantics of the relations between compounds. For instance, 23

dopamine (CHEBI:18243), a chemical compound with several important roles in the 24

brain and body, can be characterized as being a catecholamine (CHEBI:33567), an 25

aralkylamino compound (CHEBI:64365) and an organic aromatic compound 26

(CHEBI:33659) (Fig 1). When predicting if a certain drug interacts with dopamine, its 27

ancestors will provide additional information that is not usually directly expressed in 28

the text. While the reader can consult additional materials to better understand a 29

biomedical document, traditional relation extraction models are trained solely on 30

features extracted from the training corpus. Thus, ontologies are an advantage to 31

relation extraction models due to the semantics encoded in them regarding a particular 32

domain. Since ontologies are described in a common machine-readable format, methods 33

based on ontologies can be applied to different domains and incorporated with other 34

sources of knowledge, bridging the semantic gap between relation extraction models, 35

data sources, and results [11]. 36

Fig 1. An excerpt of the ChEBI ontology showing the first ancestors of dopamine,
using “is-a” relationships.

Deep learning for biomedical NLP 37

Current state-of-the-art text mining methods employ deep learning techniques, such as 38

Recurrent Neural Networks (RNN), to train classification models based on word 39

embeddings and other features. These methods use architectures composed of multiple 40
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layers, where each layer attempts to learn a different kind of representation of the input 41

data. This way, different types of tasks can be trained using the same input data. 42

Furthermore, there is no need to manually craft features for a specific task. 43

Long Short-Term Memory (LSTM) networks have been proposed as an alternative to 44

regular RNN [12]. LSTMs are a type of RNN that can handle long dependencies, and 45

thus are suitable for NLP tasks, which involve long sequences of words. When training 46

the weights of an RNN, the contribution of the gradients may vanish while propagating 47

for long sequences of words. LSTM units account for this vanishing gradient problem 48

through a gated architecture, which makes it easier for the model to capture long-term 49

dependencies. Recently, LSTMs have been applied to relation extraction tasks in 50

various domains. Miwa and Bansal [13] presented a model that extracted entities and 51

relations based on bidirectional tree-structured and sequential LSTM-RNNs. The 52

authors evaluated this model on three datasets, including the SemEval 2010 Task 8 53

dataset, which defines 10 general semantic relations types between nominals. 54

Bidirectional LSTMs have been proposed for relation extraction, obtaining better 55

results than one-directional LSTMs on the SemEval 2010 dataset [14]. In this case, at 56

each time step, there are two LSTM layers, one that reads the sentence from left to 57

right, and another that reads from right to left. The output of both layers is combined 58

to produce a final score. 59

The model proposed by Xu et al. [15] combines Shortest Dependency Paths (SDP) 60

between two entities in a sentence with linguistic information. SDPs are informative 61

features for relations extraction since these contain the words of the sentence that refer 62

directly to both entities. This model has a multichannel architecture, where each 63

channel makes use of information from a different source along the SDP. The main 64

channel, which contributes the most to the performance of the model, uses word 65

embeddings trained on the English Wikipedia with Word2vec. Additionally, the authors 66

study the effect of adding channels consisting of the part-of-speech tags of each word, 67

the grammatical relations between the words of the SDP, and the WordNet hypernyms 68

of each word. Using all four channels, the F1-score of the SemEval 2010 Task 8 was 69

0.0135 higher than when using only the word embeddings channel. Although WordNet 70

can be considered an ontology, its semantic properties were not explored in this work, 71

since only the class of word is extracted, and the relations between classes are not 72

explored. 73

Ontologies for biomedical text mining 74

While machine learning classifiers trained on word embeddings can learn to detect 75

relations between entities, these classifiers may miss the underlying semantics of the 76

entities according to their respective domain. However, the semantics of a given domain 77

are, in some cases, available in the form of an ontology. Ontologies aim at providing a 78

structured representation of the semantics of the concepts in a domain and their 79

relations. In this paper, we consider a domain-specific ontology as a directed acyclic 80

graph where each node is a concept (or entity) of the domain and the edges represent 81

known relations between these concepts [16]. This is the traditional representation of 82

existing biomedical ontologies, which are nowadays a mainstream approach to formalize 83

knowledge about entities, such as genes, chemicals, phenotypes, and disorders. 84

Biomedical ontologies are usually publicly available and cover a large variety of 85

topics related to Life and Health Sciences. In this paper, we use ChEBI, an ontology for 86

chemical compounds with biological interest, where each node corresponds to a chemical 87

compound [17]. The latest release of ChEBI contains nearly 54k compounds and 163k 88

relationships. Note that, the success of exploring a given biomedical ontology for 89

performing a specific task can be easily extended to other topics due to the common 90

structure of biomedical ontologies. For example, the same measures of metadata quality 91
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have been successfully applied to resources annotated with different biomedical 92

ontologies [18]. 93

Other authors have previously combined ontological information with neural 94

networks, to improve the learning capabilities of a model. Li et al. [19] mapped each 95

word to a WordNet sense disambiguation to account for the different meanings that a 96

word may have and the relations between word senses. Ma et al. [20] proposed the 97

LSTM-OLSI model, which indexes documents based on the word-level contextual 98

information from the DBpedia ontology and document-level topic modeling. Some 99

authors have explored graph embedding techniques, converting relations to a low 100

dimensional space which represents the structure and properties of the graph [21]. For 101

example, Kong et al. [22] combined heterogeneous sources of information, such as 102

ontologies, to perform multi-label classification, while Dasigi et al. [23] presented an 103

embedding model based on ontology concepts to represent word tokens. 104

However, few authors have explored biomedical ontologies for relation extraction. 105

Textpresso is a project that aims at helping database curation by automatically 106

extracting biomedical relations from research articles [24]. Their approach incorporates 107

an internal ontology to identify which terms may participate in relations according to 108

their semantics. Other approaches measure the similarity between the entities and use 109

the value as a feature for a machine learning classifier [25]. One of the teams that 110

participated in the BioCreative VI ChemProt task used ChEBI and Protein Ontology to 111

extract additional features for a neural network model that extracted relation between 112

chemicals and proteins [26]. To the best of our knowledge, our work is the first attempt 113

at incorporating ancestry information from biomedical ontologies with deep learning to 114

extract relations from text. 115

In this manuscript, we propose a new model, BO-LSTM that can explore domain 116

information from ontologies to improve the task of biomedical relation extraction using 117

deep learning techniques. The code and results obtained with the model can be found 118

on our GitHub repository (https://github.com/lasigeBioTM/BOLSTM), while a 119

Docker image is also available (https://hub.docker.com/r/andrelamurias/bolstm), 120

simplifying the process of training new classifiers and applying them to new data. We 121

compare the effect of using ChEBI, a domain-specific ontology, and Wordnet, a generic 122

English language ontology, as external sources of information to train a classification 123

model based on LSTM networks. This model was evaluated on a publicly available 124

corpus of 792 drug descriptions and 233 scientific abstracts annotated with DDIs 125

relevant to the study of adverse drug effects. Using the domain-specific ontology in 126

addition to word embeddings and WordNet, BO-LSTM improved the F1-score of the 127

classification of DDIs by 0.0207. Our model was particularly efficient with document 128

types that were less represented in the training data. These results validate our 129

hypothesis that domain-specific information is useful to complement data-intensive 130

approaches such as deep learning. 131

Results 132

We evaluated the performance of our BO-LSTM model on the SemEval 2013: Task 9 133

DDI extraction corpus [27]. This gold standard corpus consists of 792 texts from 134

DrugBank [], describing chemical compounds, and 233 abstracts from the MedLine 135

database [28]. DrugBank is a cheminformatics database containing detailed drug and 136

drug target information, while MedLine is a database of bibliographic information of 137

scientific articles in Life and Health Sciences. Each document was annotated with 138

pharmacological substances and sentence-level DDIs. We refer to each combination of 139

entities mentioned in the same sentence as a candidate pair, which could either be 140

positive if the text describes a DDI, or negative otherwise. In other words, a negative 141
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candidate is a candidate pair that is not described as interacting in the text. Each 142

positive DDI was assigned one of four possible classes: mechanism, effect, advice, and 143

int, when none of the others were applicable. 144

In the context of the competition, the corpus was separated into training and testing 145

sets, containing both DrugBank and MedLine documents. After shuffling we used 80% 146

of the training set to train the model and 20% as a validation set. This way, the 147

validation set contained both DrugBank and MedLine documents, and overfitting to a 148

specific document type is avoided. It has been shown that the DDIs of the MedLine 149

documents are more difficult to detect and classify, with the best systems having almost 150

a 30 point F1-score difference to the DrugBank documents [29]. 151

We implemented the BO-LSTM model in Keras, a Python-based deep learning 152

library, using the Tensorflow backend. The overall architecture of the BO-LSTM model 153

is presented in Fig 2. More details about each layer can be found in the Methods section. 154

We focused on the effect of using different sources of information to train the model. As 155

such, we tuned the hyperparameters to obtain reasonable results, using as reference the 156

values provided by other authors that have applied LSTMs to this gold standard [30,31]. 157

We first trained the model using only the word embeddings of the SDP of each 158

candidate pair (Fig 2A). Then we tested the effect of adding the Wordnet classes as a 159

separate embedding and LSTM layer (Fig 2B) Finally, we tested two variations of the 160

ChEBI channel: first using the concatenation of the sequence of ancestors of each entity 161

(Fig 2C), and second using the sequence of common ancestors of both entities (Fig 2D). 162

Fig 2. BO-LSTM Model architecture, using a sentence from the Drug-Drug
Interactions corpus as an example. Each box represents a layer, with an output
dimension, and merging lines represent concatenation. We refer to (A) as the Word
embeddings channel, (B) the Wordnet channel and (C) the ancestors concatenation
channel and (D) the common ancestors channel.

Table 1 shows the DDI detection results obtained with each configuration using the 163

evaluation tool provided by the SemEval 2013: Task 9 organizers on the gold standard, 164

while Table 2 shows the DDI classification results, using the same evaluation tool and 165

gold standard. The difference between these two tasks is that while detection ignores 166

the type of interactions, the classification task requires identifying the positive pairs and 167

also their correct interaction type. We compare the performance on the whole gold 168

standard, and on each document type (DrugBank and MedLine). The first row of each 169

table shows the results obtained using an LSTM network trained solely on the word 170

embeddings of the SDP of each candidate pair. Then, we studied the impact of adding 171

each information channel on the performance of the model, and the effect of using all 172

information channels, as shown in Fig 2. 173

Table 1. Evaluation scores obtained for the DDI detection task on the DDI corpus and on each type of document, comparing
different configurations of the model.

DDI test DrugBank MedLine

Configuration P R F P R F P R F

Word embeddings 0.7551 0.6865 0.7192 0.7620 0.7158 0.7382 0.6389 0.377 0.4742
+ Wordnet 0.716 0.6936 0.7046 0.7267 0.7143 0.7204 0.5800 0.4754 0.5225
+ Common Ancestors 0.7661 0.6738 0.7170 0.7723 0.7003 0.7345 0.6667 0.3607 0.4681
+ Concat. Ancestors 0.7078 0.7489 0.7278 0.7166 0.7578 0.7366 0.6032 0.623 0.6129
+ Wordnet + Ancestors 0.6572 0.8184 0.7290 0.6601 0.8385 0.7387 0.5574 0.5574 0.5574

Evaluation metrics used: Precision (P), Recall (R) and F1-score (F). Each row represents the addition of an information
source to the initial configuration.
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For the detection task, using the concatenation of ancestors results in an 174

improvement of the F1-score in the MedLine dataset, contributing to an overall 175

improvement of the F1-score in the full test set. The most notable improvement was in 176

the recall of the MedLine dataset, where the concatenation of ancestors increased this 177

score by 0.246. The usage of ontology ancestors did not improve the F1-score of 178

detection of DDIs in the DrugBank dataset. In every test set, it is possible to observe 179

that the concatenation of ancestors results in a higher recall, while considering only the 180

common ancestors is more beneficial to precision. Combining both approaches with the 181

Wordnet channel results in a higher F1-score. 182

Table 2. Evaluation scores obtained for the DDI classification task on the DDI corpus and on each type of document,
comparing different configurations of the model.

DDI test DrugBank MedLine

Configuration P R F P R F P R F

Word embeddings 0.5819 0.5291 0.5542 0.5868 0.5512 0.5685 0.5000 0.2951 0.3711
+ Wordnet 0.5754 0.5574 0.5663 0.5845 0.5745 0.5795 0.4600 0.3770 0.4144
+ Common Anc. 0.5968 0.5248 0.5585 0.6045 0.5481 0.5749 0.5152 0.2787 0.3617
+ Concat. Anc. 0.5282 0.5589 0.5431 0.5286 0.5590 0.5434 0.4921 0.5082 0.5000
+ Wordnet + Anc. 0.5182 0.6454 0.5749 0.5171 0.6568 0.5787 0.4590 0.4590 0.4590

Evaluation metrics used: Precision (P), Recall (R) and F1-score (F). Each row represents the addition of an information
source to the initial configuration.

Regarding the classification task (Table 2), the F1-score was improved on each 183

dataset by the usage of the ontology channel. Considering only the common ancestors 184

led to an improvement of the F1-score in the DrugBank dataset and on the full corpus, 185

while the concatenation improved the MedLine F1-score, similarly to the detection 186

results. 187

To better understand the contribution of each channel, we studied the relations 188

detected by each configuration by one or more channels, and which of those were also 189

present in the gold standard. Fig 3 and Fig 4 show the intersection of the results of each 190

channel in the full, DrugBank, and MedLine test sets. We compare only the results of 191

the detection task, as it is simpler to analyze and show the differences in results of 192

different configurations. In Fig 3, we can visualize false negatives as the number of 193

relations unique to the gold standard and the false positives of each configuration as the 194

number of relations that does not intersect with the gold standard. The difference 195

between the values of this figure and the sum of their respective values in Fig 4 is due 196

to the system being executed once for each dataset. Overall 369 relations in the full test 197

set were not detected by any configuration of our system, out of a total of 979 relations 198

in the gold standard. We can observe that 60 relations were detected only when adding 199

the ontology channels. 200

Fig 3. Venn diagram demonstrating the contribution of each configuration of the
model to the results of the full test set. The intersection of each channel with the gold
standard represents the number of true positives of that channel, while the remaining
correspond to false negatives and false positives.

Fig 4. Venn diagram demonstrating the contribution of each configuration of the
model to the DrugBank (A) and MedLine (B) test set results. The intersection of each
channel with the gold standard represents the number of true positives of that channel,
while the remaining correspond to false negatives and false positives.
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In the MedLine test set, the ontology channel identified 7 relations that were not 201

identified by any other configuration (Fig 4B). One of these relations was the effect of 202

quinpirole treatment on amphetamine sensitization. Quinpirole has 27 ancestors in the 203

ChEBI ontology, while amphetamine has 17, and they share 10 of these ancestors, with 204

the most informative being “organonitrogen compound”. While this information is not 205

described in the original text, but only encoded in the ontology, it is relevant to 206

understand if the two entities can participate in a relation. However, this comes at the 207

cost of precision, since 10 incorrect DDIs were classified by this configuration. 208

Discussion 209

Comparing the results across the two types of documents, we can observe that our 210

model was most beneficial to the MedLine test set. This set contains only 1301 211

sentences from 142 documents for training, while the DrugBank set contains 5675 212

sentences from 572 documents. Naturally, the patterns of the DrugBank documents will 213

be easier to learn than the ones of the MedLine documents because more examples are 214

shown to the model. Furthermore, the MedLine set has 0.18 relations per sentence, 215

while the DrugBank set has 0.67 relations per sentence. This means that DDIs are 216

described much more sparsely than in the DrugBank set. This demonstrates that our 217

model is able to obtain useful knowledge that is not described in the text. 218

One disadvantage of incorporating domain information in a machine learning 219

approach is that it reduces its applicability to other domains. However, biomedical 220

ontologies have become ubiquitous in biomedical research. One of the most successful 221

cases of a biomedical ontology is the Gene Ontology, maintained by the Gene Ontology 222

Consortium [32]. The Gene Ontology defines over 40,000 concepts used to describe the 223

properties of genes. This project is constantly updated, with new concepts and relations 224

being added every day. However, there are ontologies for more specific subjects, such as 225

microRNAs [33], radiology terms [34] and rare diseases [35]. BioPortal is a repository of 226

biomedical ontology, currently hosting 685 ontologies. Furthermore, while manually 227

labeled corpora are created specifically to train and evaluate text mining applications, 228

ontologies have diverse applications, i.e., they are not developed for this specific purpose. 229

We evaluate the proposed model on the DDI corpus because it is associated with a 230

SemEval task, and for this reason, it has been the subject of many studies since its 231

release. However, while applying our model to a single domain, we designed its 232

architecture so it can fit any other domain-specific ontology. In fact, the methodology 233

proposed can be easily followed to apply to any other biomedical ontology that describes 234

the concepts of a particular domain. For example, the Disease Ontology [36], that 235

describes relations between human diseases, could be used with the BO-LSTM model on 236

a disease relation extraction task, as long as there is an annotated training corpus. 237

While we studied the potential of domain-specific ontologies based only on the 238

ancestors of each entity, there are other ways to integrate semantic information from 239

ontologies into neural networks. For example, one could consider only the ancestors 240

with highest information content, since those would be the most helpful to characterize 241

an entity. The information content can be estimated either by the probability of a given 242

term in the ontology or in an external dataset. Alternatively, a semantic similarity 243

measure that accounts for non-transitive relations could be used to find similar concepts 244

to the entities of the relation [37], or one that considers only the most relevant 245

ancestors [38]. 246
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Methods 247

In this section, we describe the proposed BO-lSTM model in detail, as shown in Fig 2, 248

with a focus on the aspects that refer to the use of biomedical ontologies. 249

Data preparation 250

The objective of our work is to identify and classify relations between biomedical 251

entities found in natural language text. We assume that the relevant entities are already 252

recognized. Therefore, we process the input data in order to generate instances to be 253

classified by the model. Considering the set of entities E mentioned in a sentence, we 254

generate
(
E
2

)
instances of that sentence. We refer to each instance as a candidate pair, 255

identified by the two entities that constitute that pair, regardless of the order. A 256

relation extraction model will assign a class to each candidate pair. In some cases, it is 257

enough to simply classify the candidate pairs as negative or positive, while in other 258

cases different types of positive relations are considered. 259

An instance should contain the information necessary to classify a candidate pair. 260

Therefore, after tokenizing each sentence, we obtain the Shortest Dependency Path 261

(SDP) between the entities of the pair. For example, in the sentence “Laboratory Tests 262

Response to Plenaxise1 should be monitored by measuring serum total testosteronee1 263

concentrations just prior to administration on Day 29 and every 8 weeks thereafter”, the 264

shortest path between the entities would be Plenaxis - Response - monitored - by - 265

measuring - concentrations - testosterone. For both tokenization and dependency 266

parsing, we use the spacy software library (https://spacy.io/). The text of each entity 267

that appears in the SDP, including the candidate entities, is replaced by the generic 268

string to reduce the effect of specific entity names on the model. For each element of 269

the SDP, we obtain the WordNet hypernym class using the tool developed by Ciaramita 270

and Altun [39]. 271

To focus our attention on the effect of the ontology information, we use pre-trained 272

word embedding vectors. Pyysalo et al. [40] released a set of vectors trained on PubMed 273

abstracts (nearly 23 million) and PubMed Central full documents (nearly 700k), trained 274

with the word2vec algorithm [6]. Since these vectors were trained on a large biomedical 275

corpus, it is likely that its vocabulary will contain more words relevant to the 276

biomedical domain than the vocabulary of a generic corpus. 277

We match each entity to an ontology concept so that we can then obtain its 278

ancestors. Ontology concepts contain an ID, a preferred label, and, in most cases, 279

synonyms. While preprocessing the data, we match each entity to the ontology using 280

fuzzy matching. The adopted implementation uses the Levenshtein distance to assign a 281

score to each match. 282

Our pipeline first attempts to match the entity string to a concept label. If the 283

match has a score equal to or higher than 0.7 (determined empirically), we accept that 284

match and assign the concept ID to that entity. Otherwise, we match to a list of 285

synonyms of ontology concepts. If that match has a score higher than the original score, 286

we assign the ID of the matched synonym to the entity, otherwise, we revert to the 287

original match. It is preferable to match to a concept label since these are more specific 288

and should reflect the most common nomenclature of the concepts. 289

The DDI corpus has a high imbalance of positive and negative relations, which 290

hinders the training of a classification model. Even though only entities mentioned in 291

the same sentence are considered as candidate DDIs, there is still a ratio of 1:5.9 292

positive to negative instances. Other authors have suggested reducing the number of 293

negative relations through simple rules [41,42]. We excluded from training and 294

automatically classify as negative the pairs that fit the following rules: 295
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• entities have the same text (regardless of case): in nearly every case a drug does 296

not interact with itself; 297

• the only text between the candidate pair is punctuation: consecutive entities, in 298

the form of lists and enumerations, are not interacting, as well instances were the 299

abbreviation of an entity is introduced; 300

• both entities have anti-positive governors: we follow the methodology proposed 301

by [41], where the head words of entities that do not interact are used to filter less 302

informative instances. 303

BO-LSTM model 304

The main contribution of this work is the integration of ontology information with a 305

neural network classification model. A domain-specific ontology is a formal definition of 306

the concepts related to a specific subject. We can define an ontology as a tuple 307

< C,R >, where C is the set of concepts and R the set of relations between the 308

concepts, where each relation is a pair of concepts (c1, c2) with c1, c2 ∈ E. In our case, 309

we consider only subsumption relations (is-a), which are transitive, i.e. if (c1, c2) ∈ R 310

and (c2, c3) ∈ R, then we can assume that (c1, c3) is a valid relation. Then, the 311

ancestors of concept c are given by 312

Anc(c) = a : (c, a) ∈ T (1)

where T is the transitive closure of R on the set E, i.e., the smallest relation set on E 313

that contains R and is transitive. Using this definition, we can define the common 314

ancestors of concepts c1 and c2 as 315

CA(c1, c2) = Anc(c1) ∩Anc(c2) (2)

and the concatenation of the ancestors of concepts c1 and c2 as 316

Conc(c1, c2) = Anc(c1)⊕Anc(c2) (3)

We consider two types of representations of a candidate pair based on the ancestry of its 317

elements: the first consisting of the concatenation of the sequence of ancestors of each 318

entity; and second, consisting of the common ancestors between both entities. Each set 319

of ancestors is sorted by its position in the ontology so that more general concepts are 320

in the first positions and the final position is the concept itself. Common ancestors are 321

also used in some semantic similarity measures [43–45], since they normally represent 322

the common information between two concepts. Due to the fact that in some cases 323

there can be almost no overlap between the ancestors of two concepts, the 324

concatenation provides an alternative representation. 325

We first represent each ontology concept as a one-hot vector vc, a vector of zeros 326

except for the position corresponding to the ID of the concept. The ontology embedding 327

layer transforms these sparse vectors into dense vectors, known as embeddings, through 328

an embedding matrix M ∈ RD×C , where D is the dimensionality of the embedding 329

layer and C is the number of concepts of the ontology. Then, the output of the 330

embedding layer is given by 331

f(c) = M · vc
In our experiments, we set the dimensionality of the ontology embedding layer as 50, 332

and initialized its values randomly. Then, these values were tuned during training 333

through back-propagation. 334

The sequence of vectors representing the ancestors of the terms is then fed into the 335

LSTM layer. RNNs model the probability of each element, taking into account all 336
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previous elements of the sequence. This makes sense for our objective since we want to 337

model the semantics of each concept according to its ancestors. RNNs contain hidden 338

units, also known as neurons, which perform linear operations on the input followed by 339

a non-linear operation, such as sigmoid or tanh. The state of the t-th hidden unit is 340

given by 341

ht = f(Uht−1 +Wct)

where f is a non-linear function, ct is the element at position t, U is the weight matrix 342

for the previous element and W the weight matrix for the current element. Since the 343

weight matrix of each position is affected by the matrices of the previous positions, 344

during back-propagation, the contribution of the gradient to the earlier positions may 345

become too small or too large, leading to the vanishing and exploding gradient 346

problems. One possible solution to these problems is through a gated RNN architecture, 347

where the non-linear activation function is modified to regulate the contribution of 348

earlier positions. LSTM units are a popular RNN architecture, composed of three gates 349

(input, forget and output) and a cell, given by the following equations: 350

it = σ(W ict + U iht−1 + bi) (input gate)
351

ft = σ(W fct + Ufht−1 + bf ) (forget gate)
352

ot = σ(W oct + Uoht−1 + bo) (output gate)
353

m̃t = tanh(Wmxt + Umht−1)
354

mt = ft ⊗mt−1 + it ⊗ m̃t (memory cell)

where W i, W f , W o and Wm correspond to the input weights of each respective gate 355

and cell, U i, Uf , Uo, Um correspond to the weights of the previous position, σ is the 356

sigmoid function and ⊗ corresponds to element-wise multiplication. The output of each 357

LSTM unit is then given by 358

ht = ot ⊗ tanh(mt)

Fig 5 exemplifies how we adapted this architecture to our model, using a sequence of 359

ontology concepts as input. After the LSTM layer, we use a max pool layer which 360

selects the maximum ht value at each position t. The output of the max pool layer is 361

fed into a dense layer with a sigmoid activation function. We experimented bypassing 362

this dense layer, obtaining inferior results. Finally, a softmax layer outputs the 363

probability of each class. 364

Fig 5. BO-LSTM unit, using a sequence of ChEBI ontology concepts as an example.
Circle refers to sigmoid function and rectangle to tanh, while “x” and “+” refer to
element-wise multiplication and addition. h: hidden unit; m̃: candidate memory cell; m:
memory cell; i input gate; f forget gate; o: output gate;

Each configuration of our model was trained through mini-batch gradient descent 365

with the Adam algorithm [46] and with cross-entropy as the loss function. We used the 366

dropout strategy [47] to reduce overfitting on the trained embeddings and weights. We 367

tuned the hyperparameters common to all configurations using only the word 368

embeddings channel on the validation set. Each model was trained until the validation 369

loss stopped decreasing. The experiments were performed on an Intel Xeon CPU 370

(X3470 @ 2.93 GHz) with 16 GB of RAM. 371

The ChEBI and WordNet embedding layers were trained along with the other layers 372

of the network. The DDI corpus contains 1757 of the 109k concepts of the ChEBI 373

ontology. Since this is a relatively small vocabulary, we believe that this approach is 374

robust enough to tune the weights. For the size of the Wordnet embedding layer, we 375

used 50 as suggested by Xu et al. [15], while for the ChEBI embedding layer, we tested 376

50, 100 and 150, obtaining the best performance with 50. 377
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Baseline model 378

As a baseline, we implemented a model based on the SDP-LSTM model of Xu et al. [15] 379

The SDP-LSTM model makes use of four types of information: Word embeddings, 380

Part-of-speech tags, Grammatical relations and Wordnet hypernyms, which we refer to 381

as channels. Each channel uses a specific type of input information to train an 382

LSTM-based RNN layer, which is then connected to a max pooling layer, the output of 383

the channel. The output of each channel is concatenated, and connected to a 384

densely-connected hidden layer, with a sigmoid activation function, while a softmax 385

layer outputs the probabilities of each class. 386

Xu et. al show that it is possible to obtain high performance on a relation extraction 387

task using only the word representations channel. For this reason, we use a version of 388

our model with only this channel as the baseline. We employ the previously mentioned 389

pre-trained word embeddings as input to the LSTM layer. 390

Additionally, we make use of Wordnet as an external source of information. The 391

authors of the SDP-LSTM model showed that Wordnet contributed to an improvement 392

of the F1-score on a relation extraction task. We use the tool developed by Ciaramita 393

and altun [39] to obtain the Wordnet classes of each word according to 41 semantic 394

categories, such as “noun.group” and “verb.change”. The embeddings of this channel 395

were set to be 50-dimensional and tuned during the training of the model. 396
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