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Abstract

In the last decade, Genome-wide Association studies (GWASs) have contributed to decoding the
human genome by uncovering many genetic variations associated with various diseases. Many follow-
up investigations involve joint analysis of multiple independently generated GWAS data sets. While
most of the computational approaches developed for joint analysis are based on summary statistics,
the joint analysis based on individual-level data with consideration of confounding factors remains to
be a challenge. In this study, we propose a method, called Coupled Mixed Model (CMM), that enables
a joint GWAS analysis on two independently collected sets of GWAS data with different phenotypes.
The CMM method does not require the data sets to have the same phenotypes as it aims to infer the
unknown phenotypes using a set of multivariate sparse mixed models. Moreover, CMM addresses the
confounding variables due to population stratication, family structures, and cryptic relatedness, as
well as those arising during data collection such as batch effects that frequently appear in joint genetic
studies. We evaluate the performance of CMM using simulation experiments. In real data analysis,
we illustrate the utility of CMM by an application to evaluating common genetic associations for
Alzheimers disease and substance use disorder using datasets independently collected for the two
complex human disorders. Comparison of the results with those from previous experiments and
analyses supports the utility of our method and provides new insights into the diseases.
The software is available at https://github.com/HaohanWang/CMM

1 Introduction

Genome-wide Association Studies (GWASs) have helped reveal about 10,000 associations between ge-
netic variants in the human genome and diseases (Visscher et al., 2017). With the success of GWASs
involving analysis of single data sets, a natural follow-up is to investigate multiple data sets (Wu et al.,
2014), which we refer to as joint analysis. A joint analysis may uncover genetic mechanisms that cannot
be discovered in a single analysis (Mukherjee et al., 2013). For example, recent studies have revealed
overlapping genetic factors that influence multiple psychiatric disorders (Pain et al., 2018), genetic cor-
relations between schizophrenia, ADHD, depression, and cannabis use (Walters et al., 2018), as well as
an association between schizophrenia and illicit drug use (Mallard et al., 2018). Also, co-occurrences
of substance use disorders (SUDs) and psychopathology have been observed in national epidemiologic
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Figure 1: Illustration of the existing challenges when conducting a joint analysis on two independently
collected data sets with two different phenotypes.

surveys (Grant et al., 2015, 2016), which suggests a further joint analysis should be conducted to uncover
potential common genetic factors underlying both SUDs and diseases involving cognitive dysfunction.

However, a joint genetic analysis using two independently collected data sets can be very challenging.
In addition to the issues commonly expected from single data sets such as population stratification
(Devlin and Roeder, 1999), a straightforward application of computational methods proposed for single
data sets for the joint analysis could result in false discoveries caused by confounding factors such as
the batch effects due to different data collection procedures. Moreover, two independently collected
data sets do not often share the phenotypes of interest. To help better understand these challenges, we
illustrate them in detail in Fig. 1. For the two data sets 1 and 2 originally collected for independent
studies of the red and blue phenotype, respectively, a joint analysis aims to discover common genetic
variants associated with both of these phenotypes. However, in order to perform such analysis, as shown
in Fig. 1, all the information that is enclosed in the boxes with dashed lines needs to be inferred which
could pose major challenges for these analyses; questions need to be answered involve, e.g., what is the
blue phenotype of the samples in data set 1 since the blue phenotype may not be collected when the data
set 1 is generated? How to deal with different confounding factors present in different data sets, including
population stratification, family structures, cryptic relatedness, and data collection confounders?

Existing methods for joint analysis on genetic data are mostly built on summary statistics (e.g.,
McGeachie et al., 2014; Giambartolomei et al., 2014; Kang et al., 2014; Zhu et al., 2015; Bulik-Sullivan et al.,
2015; Nieuwboer et al., 2016; Hu et al., 2017; Wen et al., 2017; Liu et al., 2017; Sha et al., 2018; Guo and Wu,
2018) More recently, Turley et al. (2018) introduced multi-trait analysis of GWAS (MTAG) that can
perform joint analysis using the summary statistics calculated from cohorts with overlapping samples.
Zeng et al. (2018) proposed a regularized Gaussian mixture model called iMAP to infer the association
between SNPs to correlated phenotypes. Qi and Chatterjee (2018) presented a heritability-informed
power optimization method that finds an optimal linear combinations of association coefficients.

While summary statistics can help uncover common genetic factors from joint analysis, individual-
level data nonetheless contains more information that allows the analyst to adjust for patient-level
covariates, repeated measures, etc. (Siddique et al., 2015). Recently, Dai et al. (2018) proposed a method
for joint analysis which integrates individual-level data together with summary-level data. Yang et al.
(2018) directly used individual-level data for the joint analysis of traits that are collected separately
from different cohorts. However, none of these methods took advantage of the rich information of the
distribution of SNPs in the individual-level data, which allows the analyst to infer and correct the sample
population structure or other potential confounding factors. In this work, we introduce a computational
method for joint genetic analysis using individual-level data with correction of potential confounding
factors.

Here, we propose a method, namely Coupled Mixed Model (CMM), for a joint association analysis
that directly operates on two GWAS sequence data sets. CMM aims to address all the challenges above
and to provide a reliable joint analysis of the data sets by inferring the missing information as illustrated
in Fig. 1. In particular, CMM infers the missing phenotypes and various confounding factors with the
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maximum likelihood estimation. It is also noteworthy that our method is different from the approaches
for missing phenotype imputation such as (Dahl et al., 2015; Hormozdiari et al., 2016) in that our method
aims to address the challenges when there are no empirical data which allows the correlation between
different phenotypes to be measured – a common situation for independently collected data sets which
are not originally generated for joint analysis purposes. We first verify the performance of our methods
with simulation experiments, and then apply our method to real GWAS data sets previously generated
for investigating genetic variants associated with substance use disorders (SUDs) and Alzheimer’s disease
(AD), respectively, for joint analysis.

2 Materials and methods

2.1 Coupled Mixed Model

The following are the notations we use in this work: The subscript denotes the identifier of data set,
and the superscript in parentheses denotes the identifier of phenotypes. Genotypes and phenotypes are
denoted as X and y, respectively. Also, n denotes the sample size, and p denotes the number of SNPs.
Specifically, consider a scenario as illustrated in Fig. 1, X1 and X2 represent the genotypes of the samples

in data sets 1 and 2 with the dimension of n1 × p and n2 × p, respectively. y
(1)
1 and y

(2)
1 denote the

vectors of phenotypes 1 and 2, respectively, of the dimension n1 × 1 for the samples in data set 1. Note

that y
(2)
1 is not observed. Similarly, y

(1)
2 and y

(2)
2 denote the vectors of phenotypes 1 and 2, respectively,

of the dimension n2 × 1 for the samples in data set 2. y
(1)
2 is not observed.

Our method does not require n1 = n2. However, for the convenience of the discussion, we will
assume n1 = n2 = n. The case of n1 6= n2 can be easily generalized by weighing the corresponding
cost function components with 1/n1 and 1/n2, respectively. Following the similar logic, we introduce our
method with the simplest linear models, but our method can be extended to the case of generalized linear
models; for example, for case-control data, one can directly apply our method to binary trait data, as
done by many previous examples (Moser et al., 2015; Speed and Balding, 2014; Weissbrod et al., 2016;
Zhou et al., 2013; Zeng et al., 2018). Also, one can use our method with the residual phenotype after
regressing other additional covariates (e.g, age or sex).

Straightforwardly, for the scenario shown in Fig. 1, we have:

y
(1)
1 = X1β

(1) + u
(1)
1 + v1 + ǫ

(1)
1

y
(2)
1 = X1β

(2) + u
(2)
1 + v1 + ǫ

(2)
1

y
(1)
2 = X2β

(1) + u
(1)
2 + v2 + ǫ

(1)
2

y
(2)
2 = X2β

(2) + u
(2)
2 + v2 + ǫ

(2)
2

(1)

where u
(j)
i accounts for the confounding effects due to population stratification, family structures and

cryptic relatedness in data set i with phenotype j; and vi accounts for the confounding effects due to data

collection (e.g., batch effects) in data set i; ǫ
(j)
i stands for residual noises for data set i with phenotype

j, and ǫ
(j)
i ∼ N(0, Iσ2

ǫ ), where I is an identity matrix with the shape of n× n. Notice that we will drop

the unidentifiable term ǫ
(j)
i later during parameter estimation, otherwise these terms will turn the entire

model unidentifiable.
We have u

(j)
i ∼ N(0,Kiσ

2
u(j)) for data set i with phenotype j. As observed by Devlin and Roeder

(1999), population stratification can cause false discoveries because there exist real associations between
a phenotype and untyped SNPs that have similar allele frequencies with some typed SNPs that are
not actually associated with the phenotype, which, as a result, can lead to false associations between
the phenotype and the typed SNPs. Since these false associations due to confounders from population
stratification are phenotype specific, we model σ2

u(j) as phenotype-specific. Hence, although we have

four different variance terms (i.e., u
(1)
1 , u

(2)
1 , u

(1)
2 , and u

(2)
2 ) accounting for population confounders, they

are only parameterized by two scalars, σ2
u(1) and σ2

u(2) . Ki = XiX
T
i is the kinship matrix, constructed

following the genetics convention (Yang et al., 2014). A more sophisticated construction of the kinship
matrix may be used to improve detection of the signals, but these details are beyond the scope of this
paper. One can refer to examples in (Listgarten et al., 2013; Tucker et al., 2014; Wang et al., 2017) for
more details.

To model the confounders due to data collection, we have vi ∼ N(0, Iσ2
vi
) for data set i. Because

these confounders are only related to the data collection procedure, we model σ2
vi

as data set-specific.
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For the independently collected data sets, we only observe 〈X1,y
(1)
1 〉 and 〈X2,y

(2)
2 〉. Since we are

interested in estimating β(1) and β(2), we also need to estimate y
(2)
1 , y

(1)
2 , σ2

u1 , σ2
u2 , σ2

v1
, and σ2

v2
in Eq. 1.

As noted earlier, we drop the ǫ
(j)
i .to avoid the model to become unidentifiable.

In order to estimate β(1) and β(2), we minimize the joint negative log-likelihood function. Because
there are only a subset of SNPs that contribute to the phenotype, we introduce the standard ℓ1 regu-
larization by setting the prior distribution of β(1) and β(2) as a Laplace distribution. Additionally, to
encourage our method to find common SNPs associated with both phenotypes, we use a simple con-
straint, as shown in Constraint (3). Taken together, the optimization problem for solving our model in
Eq. 1 can be represented as follows:

argmin
β(1),β(2),t

σ̂22

2t
||y

(1)
1 −X1β

(1)||22 +
σ̂11

2t
||y

(2)
2 −X2β

(2)||22

+
1

2
log t+ λ1||β

(1)||11 + λ2||β
(2)||11

(2)

s.t. ||β(1) − β(2)|| < ξ (3)

where
σ̂11 =(y

(1)
1 )T (y

(1)
1 ) + (β(1))T (X2)

T (X2)(β
(1))

+ 2 tr(K1σ
2
u(1)) + σ2

v1
+ σ2

v2

σ̂22 =(y
(2)
2 )T (y

(2)
2 ) + (β(2))T (X1)

T (X1)(β
(2))

+ 2 tr(K2σ
2
u(2)) + σ2

v1
+ σ2

v2

t =|Σ|

(4)

where Σ is the covariance matrix defined as:

Σ =

[
σ̂11 σ̂12

σ̂21 σ̂22

]

and we have:

σ̂12 = σ̂21 =(y
(1)
1 )TX1β

(2) + (β(1))TX2y
(2)
2 +

tr(K1σ
2
u(1)) + tr(K2σ

2
u(2)) + σ2

v1
+ σ2

v2
,

and ξ denotes a small number. The detailed derivation is described in Supplement Section S1. The key

steps involve replacing y
(2)
1 with X1β

(2), and replacing y
(1)
2 with X2β

(1), and then writing out the joint
likelihood function of Equation 1.

To solve the optimization Function (2), we propose a strategy as follows. We first estimate the
parameters {σ2

u(1) , σ
2
u(2) , σ

2
v1
, σ2

v2
} following the P3D set-up (Zhang et al., 2010). Then we propose an

iterative updating algorithm that decouples the dependency between {β(1), β(2)} and t in the optimization
function 2 and solves for {β(1), β(2)} and t with ADMM (Boyd et al., 2011), which naturally uses the
Constraint 3. We also offer a proof to show that our iterative updating algorithm will converge. The
details of the algorithm and the convergence proof are presented in the Supplement Section S2 and S3,
respectively.

2.2 Implementation

The implementation of the CMM method is available as a python software. Without installation, one
can run the software with a single command line. It takes binary data in a standard Plink format
for each of the two data sets as input. If there are mismatched SNPs between the data sets, CMM
will use the intersection of these SNPs. We recommend the users to query CMM to identify a specific
number of SNPs for each data set and CMM can tune the hyperparameters accordingly (Wang et al.,
2018). However, users can also choose to specify the regularization parameters. If none of the above
information is specified, CMM will automatically conduct five-fold cross-validation to tune parameters. ξ
does not need to be specified or tuned, because it can be dropped due to ADMM. The implementation is
available as a standalone software1. More detailed instructions of how to use the software are presented
in Supplement Section S4.

1https://github.com/HaohanWang/CMM
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In theory, the computational complexity of the first step of the algorithm is O(n3), and complexity
of the second step is O(np). In practice, as we observe on two data sets with hundreds of samples and
200k SNPs, it takes CMM around a minute to converge given a set of hyperparameters on a modern
server (2.30GHz CPU and 128G RAM, Linux OS), and up to an hour to finish the entire hyperparameter
tuning process.

3 Results

3.1 Simulation Experiments

We compare CMM to several approaches using simulated data sets.

• HG(W): Joint analysis conducted with the hypergeometric tests (McGeachie et al., 2014) when
the two independent problems are each solved by the standard univariate Wald testing with the
Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg, 1995). This is the most popular
approach in GWAS for a single data set.

• HG(L): Joint analysis conducted with the hypergeometric tests (McGeachie et al., 2014) when the
two independent problems are each solved by a standard linear mixed model with the Benjamini-
Hochberg (BH) procedure (Benjamini and Hochberg, 1995).

• CD: Combining data-set approach. CD merges two data sets X1 and X2 into one X = [X1;X2]
and create a pseudo phenotype y ∈ {0, 1}n1+n2 where y(i) = 1 if the ith sample has either one of
the two diseases.

• iMAP: integrative MApping of Pleiotropic association, which is a method for joint analysis that
models summary statistics from GWAS results by integrating SNP annotations in the model
(Zeng et al., 2018). For a fair comparison of the methods, we do not use the SNP annotations
with this method.

• MTAG: multi-trait analysis of GWAS (Turley et al., 2018), which is also a method for joint analysis
of GWAS data sets using summary statistics, which accounts for potential confounders due to
population stratification or cryptic relatedness.

• LR: ℓ1-regularized logistic regression, which can be directly applied to the two independent data
sets for joint analysis. We select the intersection of the identified SNPs associated with each of the
phenotypes as the SNPs jointly associated with both phenotypes.

• AL: Adaptive Lasso, which is an extension of the Lasso that weighs the regularization term (Zou,
2006) (enabled by the method introduced in (Huang et al., 2008) for high-dimensional data). AL
is applied to the independent data sets in the same manner as LR. We use the logistic-regression
version of the method if the phenotypes are binary.

• PL: Precision Lasso, a novel variant of the Lasso, that is developed for analyzing data with corre-
lated and linearly dependent features, commonly seen in genomic studies (Wang et al., 2018). PL
is applied to the independent data sets in the same manner as LR.

• JL: Joint Lasso, which is a method we implement in this study for a fair comparison of our proposed
CMM method. JL solves the lasso problems jointly with the constraint β(1) = β(2) with ADMM.
This approach can be seen as a CMM method without consideration of the confounding factors in
the data.

• CMM: Coupled Mixed Model. Our proposed method.

We simulate two independent data sets with binary phenotypes, whose SNPs are generated via
SimuPop (Peng and Kimmel, 2005) with population structures. We also introduce the influences from
confounding factors, resulting in a roughly 0.25 signal-to-noise ratio for effect sizes. We mainly experiment
with two different settings: the number of the associated SNPs and the fraction of these SNPs that are
jointly associated with both phenotypes. We repeat the experiments with 10 different random seeds.
Details of simulation are in Supplement Section S5.1.

We first evaluate these methods with the focus on finding the SNPs associated with both phenotypes,
and compare the performance of the competing methods with ROC curves. For the univariate testing
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Figure 2: The ROC curves of the compared methods in terms of identifying the SNPs that are jointly
associated with both phenotypes.

methods (HG, CD, MTAG), the curves are plotted by varying the null-hypothesis-rejecting threshold
of p-values, while for multivariate regularized regression methods, the curves are plotted by varying the
regularizing hyperparameter (200 different choices evenly distributed in logspace from 10−5 to 105).

Fig. 2 shows the ROC curves of the compared methods in terms of their abilities to find the SNPs
associated with both phenotypes. Overall, the results favor our CMM method significantly. In compari-
son with the other methods, the superiority of the proposed CMM is more evident when there are fewer
associated SNPs in each data set, and also when there are fewer SNPs associated with both phenotypes.
For example, as shown in Fig. 2, when only 0.1% of the SNPs are associated with a phenotype (first row),
the advantage of CMM can be clearly seen; however, when 1% of SNPs are associated with a phenotype
(last row), CMM barely outperforms HG(L) methods.

By comparing the performances of the compared methods in different columns in Fig. 2, we can see
how the common SNPs (i.e., those associated with both phenotypes) affect the results: as the percentage
of the common SNPs increases, in general, the performances of all the compared methods increase. Also,
we notice that the performance of CMM does not vary significantly as the number of the common
SNPs varies, This observation indicates that the Constraint (3) in our optimization problem does not
necessarily deteriorate the method’s performance even when the two phenotypes are less related.

With the clear advantage of CMM, we now proceed to discuss more about the other competing
methods. We notice that multivariate methods (LR, AL, JL) tend to perform well when there are less
associated SNPs as well as less common SNPs, while univariate methods (HG(W), HG(L), CD) favor
the opposite scenarios with more associated SNPs and more common SNPs. For instance, JL, which can
be considered as a multivariate version of CD, barely outperforms CD. As the number of the common
SNPs increases, the performance of CD improves clearly, while that of JL does not. This result can be
explained as follows: CD only aims to recover the common SNPs, while JL balances between minimizing
the two logistic regression cost functions and minimizing the differentiation between coefficients which
may not result in a more effective recovery of the common SNPs. Unfortunately, summary statistics-
based methods (iMAP and MTAG) do not perform well in our simulation experiment settings, most
likely due to the presence of the multiple sources of confounding factors in the simulated data. Also,
iMAP is introduced as a method which leverages the power of SNP annotations for joint analysis, but
we do not include the annotation information in the experiments for fair comparisons.

We also notice that LMM performs surprisingly well when there are many associated SNPs. For
example, when there are 1% of the associated SNPs (last row of Fig. 2), LMM performs as the second
best method. However, LMM does not perform well with fewer associated SNPs, as shown in the first
two rows of Fig. 2. Furthermore, we plot the results of the ROC curves of the compared methods
regarding their abilities in uncovering the associated SNPs separately for each data set, which are shown
in Supplement Section S4.2. Together, these simulation results demonstrate that CMM outperforms the
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other methods in terms of finding common SNPs associated with both phenotypes, as well as finding
associated SNPs with individual phenotype.

We also tested our CMM method for predicting the phenotypes across data sets in comparison to the
other competing regression-based methods. The results are presented in Supplement Section S5.2 and
S5.3.

Table 1: The SNPs that the CMM method identifies from both the SUD and the AD data

sets. The SNPs are ranked by the absolute values of their estimated effect sizes, and showed in the
“SUD rank” and “AD rank” columns. The information of whether a SNP is located within a region of
a gene is taken from the Database for Single Nucleotide Polymorphisms (dbSNP) (Sherry et al., 2001),
and listed in the “Gene” column.

SNP SUD rank AD rank Chr. Chr. Position Gene
rs2131691 1 1 11 26574855 ANO3
rs1709317 5 8 2 23536638 KLHL29
rs4713797 6 10 6 34490756 PACSIN1
rs224534 12 3 17 3583408 TRPV1
rs1057744 16 11 14 105150705 JAG2

3.2 Real Data Analysis: Joint Genetic Analysis for Alzheimer’s disease and

substance use disorder

3.2.1 Application of CMM to two GWAS data sets for AD and SUDs

In the real data analysis, we apply our proposed CMM method to two GWAS data sets independently
generated previously to investigate genetic association for AD and SUDs, respectively. The AD data set
was collected from the Alzheimers Disease Neuroimaging Initiative (ADNI)2 and the SUD data set was
collected by the CEDAR Center at the University of Pittsburgh3. For the AD data set, we only used
the data generated from the individuals diagnosed with either AD or normal controls. There are 477
individuals in the final AD data set with 188 case samples and 289 control samples. For the SUD data
set, we consider the subjects with drug abuse history as the case group and the subjects with neither
drug abuse nor alcohol abuse behavior as the control group, excluding the subjects with only alcohol
abuse behavior (but not drug abuse history), because alcoholism is usually believed to be related to drug
abuse. There are 359 patients in the final SUD data set with 153 case samples and 206 control samples.
We also exclude the SNPs on X-chromosome following suggestions of previous studies (Bertram et al.,
2008). There are 257361 SNPs in these two data sets left to be examined. Even though the sample
sizes of the AD and the SUD data sets are small, which unfortunately is a common situation for genetic
studies of complex human diseases, particularly for SUDs, our results suggest that our CMM method
can help identify promising genetic variants that are worth further investigation.

Due to the statistical limitation of selecting hyperparameters using cross-validation and information
criteria in high dimensional data (Wang et al., 2018), we tune the hyperparameters according to the
number of SNPs we aim to select, following previous work (Wu et al., 2009; Marchetti-Bowick et al.,
2016; Wang et al., 2018) and the hyperparameters of our model will be tuned automatically through
binary search for the set of parameters according to the number of SNPs we inquire. This hyperparameter
selection procedure has been shown to generate less false positives in general than cross-validation, even
when the queried number of SNPs is (reasonably) misspecified (Wang et al., 2018). To mitigate the
computation load, the algorithm will terminate the hyperparameter search when the number of the
reported SNPs lies within 50% to 200% of the number we inquire.

We inquire for 30 SNPs selected in each data set, and CMM identified five SNPs that are associated
with both SUD and AD, which is reported in Table 1. CMM reported 15 additional SNPs and 35 addi-
tional SNPs for SUD and AD respectively, which are reported in Tables S1 and S2 (Supplement Section
S7). Notably, we do not find much overlap between our findings and those from the previous studies in
the GWAS Catalog (Welter et al., 2013), and we believe this is because our method explicitly favors to
identify the SNPs that are jointly associated with both of the disease phenotypes. Nevertheless, we find
many pieces of evidence supporting our findings. The following discussion focuses on the validation of
these five identified SNPs.

2http://adni.loni.usc.edu/
3http://www.pitt.edu/ cedar/
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Table 2: The minor allel frequencies (MAFs) of the five identified SNPs in the case (“AD” column) and
the control (“C” column) samples. The overall MAFs (in “all” column are reported for reference. The
p-values of the student’s t-tests are also reported. The statistically significant p-values which are below
the threshold of 0.05 are shown in bold.

AD SUD
all C AD P-value all C SUD P-value

rs2131691 0.47 0.41 0.44 4.78E05 0.47 0.46 0.48 4.64E-01
rs1709317 0.36 0.31 0.45 6.82E-06 0.27 0.30 0.22 2.28E-02

rs4713797 0.48 0.47 0.41 6.04E-04 0.41 0.45 0.37 5.32E-02
rs224534 0.33 0.28 0.43 1.41E-06 0.25 0.26 0.25 7.91E-01
rs1057744 0.49 0.45 0.42 4.81E-04 0.39 0.42 0.35 3.71E-02

3.2.2 Validation of the identified common SNPs associated with both AD and SUDs

Statistical validation In order to validate the five identified common SNPs, we first compared the
distribution differences of SNPs between the case and control samples in each of the diseases. We notice
that in most cases, the allele frequencies are different between the case and the control samples (shown in
Table 2). Also, we examine the statistical significance of independence between the SNPs in the control
group vs. the case group with the student’s t-test. Seven out of the ten tests report a statistically
significant sign of independence (shown in Table 2).

Literature support Due to the lack of direct information on the SNPs and the disease phenotypes,
we also verify our findings via literature search based on the relationship between the genes where the
identified SNPs reside and the phenotypes.

Our results show that rs224534 identified by CMM to be associated with both AD and SUD resides
in TRPV1 which encodes transient receptor potential cation channel subfamily V member 1. Pre-
vious evidence showed that positive modulation of the TRPV1 channels could be a potential target
for mitigation of AD (Jayant et al., 2016), suggesting an important involvement of TRPV1 in AD. In
addition, Nguyen et al. (2014) have also shown that TRPV1 plays a key role in morphine addiction.
Blednov and Harris (2009) showed that the deletion of TRPV1 in mice altered behavioral effects of
ethanol which indicates a connection between TRPV1 and alcoholism.

Moreover, TRPV1 mediates long-term synaptic depression in the hippocampus (Gibson et al., 2008),
which is key to reward-related learning and addiction (Kauer and Malenka, 2007). Further, we no-
tice that in the “Inflammatory mediator regulation of TRP channels” pathway of the KEGG database
(Kanehisa et al., 2016), TRPV1 serves as a Ca2+ channel. Ca2+ binding to calmodulin (CaM) activates
Ca2+/CaM-dependent protein kinase II (CAMKII). CaMKII is involved in many signaling cascades and
is an important mediator of learning and memory (Yamauchi, 2005), which plays an important role in
neuropsychiatric disorders including drug addiction, schizophrenia, depression and multiple neurodevel-
opmental disorders (Robison, 2014; Müller et al., 2016).

Additional evidence using an independent approach In addition to the statistical and literature
support, we also validate TRPV1 as a SUD-related protein using an independent study of the drug-target
interaction analysis.

In this drug-target interaction analysis, we identified the known ligands of the corresponding pro-
teins of each gene through drug/ligand-target interactions compiled in DrugBank (Wishart et al., 2017)
and STITCH (Szklarczyk et al., 2015) databases. In addition, predicted ligands with high confidence
were obtained by applying a probabilistic matrix factorization (PMF) model (Cobanoglu et al., 2013)
on known drug/ligand-target interactions in DrugBank and STITCH. The data and the method are
accessible on our online server4. Among the identified known and predicted ligands, we focused on the
drugs that are associated with either SUD or AD. The results show that 4 SUD-related drugs are known
to interact with TRPV1 and 5 SUD-related drugs are predicted to interact with TRPV1, which supports
the association between TRPV1 and SUD.

In particular, as illustrated in Fig. 3, our analysis shows that TRPV1 is the known target of med-
ical cannabis (plant use of marijuana), as well as three cannabinoids (nabiximols, cannabidivarin, and
cannabidiol) in cannabis, according to the annotations in DrugBank. In the PMF prediction model,

4http://quartata.csb.pitt.edu
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Figure 3: The interactions between TRPV1 and 9 SUD-related drugs. Violet ellipses represent drugs
of abuse; black solid edges represent known interactions in DrugBank; and red dashed edges represent
predicted interactions using the PMF model.

TRPV1 is the predicted target of two cannabinoids (tetrahydrocannabivarin, cannabichromene) ex-
tracted from cannabis, two synthetic cannabinoids (dronabinol and nabilone) of ∆9-THC (another
cannabinoid from cannabis), as well as a central nervous system (CNS) depressant (flunitrazepam).
These drugs are commonly known as drugs of abuse, and thus these results help verify the association
between TRPV1 and SUD.

Together, these results suggest that our findings, although explorative, may reveal novel genetic
connections between SUD and AD. More discussions on the SNPs shown in Table 1 are presented in
Supplement Section S6. For other SNPs identified by CMM which are associated with either AD or
SUD, we discuss them in detail in Supplement Section S7.

4 Discussion and Conclusion

Following previous successes in joint genetic analysis using summary statistics-based approaches, we
propose a novel method, Coupled Mixed Model (CMM), that operates on individual-level SNP data and
aims to address challenges illustrated in Fig. 1. We further present an algorithm that allows an efficient
parameter estimation of the objective function derived from our model.

With extensive simulation experiments, we showed the superior performance of the CMM method
in comparison with several competing approaches. In the real data analysis, we applied our method to
identify the common SNPs associated with both AD and SUD. CMM identified five SNPs associated
with both of the disease phenotypes. Notably, one of the identified SNPs reside in the gene TRPV1,
which has been linked to both AD and SUD by multiple pieces of evidence, including statistical tests
showing differences in the allele frequencies between the case and the control samples, previous evidence
in the literature, as well as results from an independent study of the drug-target interaction analysis.
Together, we show that our proposed CMM method is able to uncover promising genetic variants that
are associated with different disease phenotypes using individually collected GWAS data sets and reveal
novel connections between diseases.
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