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Abstract 
The versatility of the current DNA sequencing platforms and the development of 16 

portable, nanopore sequencers means that it has never been easier to collect genetic 

data for unknown sample ID. In fact, the distinction between fieldwork and the laboratory 18 

is becoming blurred since genome-scale data can now be collected in challenging 

conditions in a matter of hours. However, the full scientific and societal benefits of these 20 

new methods can only be realised with equally rapid and portable analyses. At present, 

field-based analyses of genomic data, despite advances in computing technology, 22 

remain problematic; laptop computers are relatively expensive and limited in scalability, 

while cloud- and cluster-based analyses depend, for the time being, on sufficiently 24 

reliable high-bandwidth data uplinks to transmit primary data for analysis. 

 Single board computers (SBCs), such as the Raspberry Pi, offer a potential 26 

solution to this problem: while less powerful than their laptop cousins, their very 

individual low cost and power consumption mean modest arrays of SBCs could be used 28 

for field-based preprocessing, or complete analyses or primary data. In this study we 

investigate the performance of one SBC, the Pi 3 Model B+, on a range of typical field-30 

sequencing tasks versus laptop and cloud-based form-factors. Our data analysis 

pipeline has been made available as a workflow on Github for simple, scalable 32 

deployment for a range of uses. 
 34 
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Introduction 
The nucleic acids present in every living organism provide not only the essential information 36 

needed for species identification to characterise biodiversity in a sample, site, or ecosystem. 

They can also be interpreted to reconstruct evolutionary histories hundreds of millions of years 38 

back into geologic time, or furnish us with detailed information about the metabolic and 

immunological activity of a sample of mud, blood, or water. From the discovery of the structure 40 

of DNA (1953) this information was hard-won, requiring laboratories with specialised equipment 

and staff.  42 

This is changing, fast. Portable single molecule, real-time DNA sequencers (such as the 

Oxford Nanopore MinION have now become a commercial reality. Portable sequencers allow 44 

DNA-sequencing to happen anywhere, in real-time, with important applications that include 

disease surveillance and food-chain monitoring. In less than a decade, these devices have 46 

moved from the drawing-board to the mainstream of genomics and there is every suggestion 

that science is set to undergo a transformation: millions of researchers, clinicians, conservation 48 

professionals and citizen-scientists will have the potential to sequence and analyse genomic 

material anytime, anywhere (Erlich, 2015). Uses so far have included epidemic monitoring in 50 

Guinea (Quick et al., 2016), extremophile sequencing in Antarctica (Michael et al., 2017), 

assembly of complete plant genomes on a single flowcell, in a week (Johnson et al., 2017), 52 

species ID and phylogenomics in the field (Parker et al., 2017, 2018). The real-time nature in 

which reads are generated, and the very long length of nanopore reads compared with 54 

traditional high-throughput sequencing (HTS) inserts (tens of thousands of base-pairs compared 

with a few hundred), plus the availability of PCR-free direct sequencing methods, also make 56 

multilocus metagenomics and phylogenomics possible; a potential advantage over molecular 

barcoding approaches, which are far slower and also subject to error arising from reticulate 58 

(non-tree-like) evolution which can confound identification and inference (Mallo & Posada 2016; 

Liu et al. 2017).  60 

While bioinformaticians and experimentalists are well-versed in the seeming existence of 

Moore’s Law as applicable to high-performance computing (HPC) clusters and its implications, 62 

the past decade has also seen a parallel rise in the availability and interest of single-board 

computers (SBCs), most notably the Raspberry Pi family. These stripped-back computing 64 

devices are cheap (€50 or so), tiny – typically described as ‘credit-card-sized’, although many 
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are smaller still – and typically consume a tenth of the power needed for a laptop, much less a 66 

powerful desktop, fatnode or cluster. Several authors have noted the potential for small (4-20 

node) SBC clusters to replace on-site laptops or remote computing resources, in diverse 68 

applications ranging from cyberwarfare (Matthews, 2016) to teaching (Barker et al, 2013; Cox et 

al., 2013). The application of SBC clusters to field-sequencing is nonetheless as immature as 70 

the field-sequencing devices are new. 

 72 

In the present study, we investigate the utility of SBCs for field-based bioinformatics analyses. 

Several analyses of previously published datasets are carried out to test the performance of the 74 

Raspberry Pi 3, perhaps the most common SBC available at the present time, in carrying out 

typical tasks. Run times are benchmarked and compared to typical values for other platforms. 76 

Finally, the wider context and possible future development of this field are considered. 

 78 
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Methods 
 80 

Equipment: To conduct the present study we assembled a small cluster (6 nodes, plus 

headnode; see Figure 1a) of Raspberry Pi 3 Model B+ SBCs, and used this cluster to 82 

benchmark typical field-sequencing genomics analyses tasks in comparison to a consumer 

laptop (Apple MacBook Pro, 2011) and a bioinformatics fatnode / enterprise HPC machine  (Dell 84 

PowerEdge). Field-analysis cluster components are listed in Table 1; specifications for 

comparison machines in Table 2.  86 

 

Data: Source data was taken from field-sequencing studies previously reported in Parker et al. 88 

(2017) and Parker et al. (2018a); see Table 3. Briefly DNA was extracted from fresh plant tissue 

using commercial kits (Qiagen DNEasy Plant Miniprep) and whole genome shotgun libraries 90 

were prepared for MinION R9 and R9.5 chemistry using rapid (SQK-RAD001/RAD003) 

protocols and kits. Field-extraction and sequencing were carried out in Richmond Park, London, 92 

and Snowdonia National Park, Wales. A full list of equipment required for field-sequencing is 

given in the Supplementary Information for those papers. 94 

 

Operating system/pipeline: Ubuntu 16.04.3 LTS was installed on all nodes. Having 96 

experimented with various job schedulers (Condor, Slurm) and chunking approaches, we 

determined that the most stable configuration was also the simplest (nodes dedicated to 98 

individual tasks, working in series from a common read pool). A watch-script was used to 

monitor a shared 1TB NFS drive, to which the MinION sequencing laptop also had write access 100 

to deposit newly sequenced reads in real-time. In prototype, 1000-read chunks were analysed 

and moved sequentially through the pipeline (shown in Figure 1b).   102 

 

Guppy basecaller: The basecaller is an algorithm responsible for converting raw 104 

measurements from the sequencing machine into nucleotide sequences. We used the 

experimental Guppy basecaller, source provided by Oxford Nanopore Technologies. To 106 

benchmark performance a complete set of 4000 reads (N50 1.9kbp; max >50kbp) from the 

Parker et al. (2018b) acute oak decline study was analysed for five replicates, and an 108 

approximate handling time per read averaged. 
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 110 

Read mapping/matching: BLASTN (Camacho 2008) is typically used to test all reads for the 

presence of host, contaminant/control (human; phage lambda) and target pathogen DNA 112 

sequences. In benchmarking, reads from the 2017 Parker et al. study were subsampled 

randomly without replacement (as in Parker et al., 2018a) and matched against the A. thaliana 114 

reference genome (TAIR10) using BLAST with 1, 2, 3 or 4 threads and only best hits retained. 

 116 

ab initio gene prediction: SNAP was used to predict the occurrence of coding genes directly 

from individual reads. 118 

 

Phylogeny inference: Once a set of orthologous genes have been identified, they can be 120 

aligned and a phylogeny (evolutionary hypothesis) inferred. Multiple alignments comprising 6-10 

taxa and 500-2000bp were created from theten best  SNAP-identified, BLAST-checked genes 122 

with Muscle and phylogenies inferred with RAxML (as in Parker et al., 2017)  

 124 

Metagenomic classification: Kraken (Wood, 2014) were used for metagenomic classification 

of MinION reads from mixed samples using k-mer hashing, here tested against the acute oak 126 

decline dataset. 
 128 
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Results 

 130 

Guppy basecaller: 4000 .fast5 reads were basecalled using Guppy. Results are given in Table 

S1. To execute adequately, the options for single threading and small (1000) chunk size were 132 

required. Basecalling the whole set on a Raspberry pi required mean execution real / user time 

of 15,146/30,217s (s.d., 213/426s) for the set (approx 3.5s (real) / 7.6s (user) per read; N=5). 134 

On the fatnode mean execution real / user time was 530/3194s (s.d., 33/27s) for the set (approx 

0.25s (real) / 1s (user) per read; N=3). Effectively, reads were basecalled seven times slower 136 

using a single Pi node. 

 138 

Read mapping/matching: BLASTN (Camacho 2008) ran adequately on the Pi SBCs by 

comparison to other systems running equivalent query task sizes (Table 3; Table S2; Figure 140 

3a). As expected, wall clock time increased approximately as O(n) with number of reads, with 

each platform analysed (Figure 3b). 142 

 

ab initio gene prediction, alignment, and phylogeny inference: SNAP ran adequately on all 144 

systems and installed simply on the Pi’s ARM architecture. However execution as measured by 

wall-clock time was approximately an order of magnitude slower than for the lab node (Figure 146 

4a; Table S3). Similarly, muscle and RAxMLboth installed to the Pi easily, and in series ran well 

on the SBC nodes though an order of magnitude slower than the lab node (Table S4; Figure 148 

4b). Surprisingly higher thread count did not make an appreciable difference to run times. 

 150 

Metagenomic classification: Kraken metagenomic classification of reads from mixed samples 

did not perform well. Owing to RAM constraints, only the very smallest databases could be 152 

queried. 

 154 
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Discussion 

Successes: high-compute, low-memory tasks (BLASTN, Muscle, RAxML) 156 

Those tasks focused on CPU resource rather than memory performed well on the SBCs, 

even in comparison with the other systems (roughly as a function of clock speed, 158 

unsurprisingly). 

 160 

Plausible: high-compute, intermediate-memory tasks (Guppy basecaller) 

We found that execution of the experimental Guppy basecaller was plausible for these 162 

machines, but higher memory (RAM) constraints meant the low availability on these SBCs 

limited performance, and careful argument optimisation was needed to gain stable behaviour. 164 

Nonetheless, since performance on a single node was within an order of magnitude to that 

obtained with a lab node, it is feasible that a larger number of Pis (perhaps 4-8) could keep 166 

pace with real-time nanopore read generation easily. 

 168 

A failure: metagenomic classification via Kraken (high-memory) 

Kraken is usually recommended for a minumum of 8Gb RAM and unsurprisingly all but 170 

the smallest databases (a few taxa) could not be loaded into the limited physical RAM (1Gb) 

found on the Raspberry Pis. 172 

 

Advantages of SBC clusters 174 

Aside from their low cost (and so scalability), the power consumption and portability of 

SBC clusters compares well with other systems; a grid of 10-20 SBCs, powered from a single 176 

AC generator outlet or vehicle cell, would draw no more than 10A/50W (~0.5A, 5vDC each), 

comparable to (or less than) a single laptop, and with more computational power. A 20-node 178 

SBC cluster could, with careful design, dissemble into a small rucksack. 

 180 

Outstanding challenges 

The main shortcoming of these systems is their low RAM, since this precludes the 182 

Kraken metagenomic classifier (and genome assembly). However, we have previously argued 

(Parker et al. 2017; 2018a) that classification of extremely long, but noisy, reads using an exact 184 

k-mer approach (as in Kraken) is counterintuitive, and shown that mapping whole reads 
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(BLASTN; Exonerate; LASTAL) has many underappreciated merits; in this context, the good 186 

performance of BLASTN on the SBC cluster is heartening. Our job scheduling/load balancing 

approach is also naïve and while full MPI parallelisation is unlikely to be efficient (given the 188 

limited node interconnect bandwidth available for these systems), further work to optimise an 

existing scheduler deployment (Slurm; Condor) or devise a new reatltime system, perhaps 190 

based on Watchdog or node.js, is likely to yield quick rewards. Finally it should be borne in mind 

that, since these clusters’ main use is envisaged for low-bandwidth sites, pushing software 192 

updates or expanding reference datasets in the field will remain challenging.  

 194 

Conclusion 

We have shown that SBC clusters are adequate for a surprising range of useful bioinformatics 196 

tasks related to field-based DNA sequencing and analysis. While a single SBC’s performance is 

inferior to a laptop (let alone an HPC/cloud resource) in every aspect except power 198 

consumption, the performance gap is not too great to render SBC clusters adequate to perform 

analyses in cases where cost is a factor, an expensive laptop might not survive, or insufficient 200 

bandwidth exists for uplink to remote resources. However, high-memory tasks, including de 

novo assembly, remain outside the scope of these architectures, and are likely to remain so for 202 

the near-future. In addition, improved load balancing / job scheduling efficiency for these 

resources would greatly improve their utility. 204 
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Figures and tables 

A 

 
B  

 
 284 

Figure 1a: 
Picture of bioinformatics cluster for field-sequencing comprising 8 Raspberry Pi SBCs plus headnode. A, 286 
detail of worker nodes, enclosure and cableing; B, overview of the whole cluster, including headnode 
with IO peripherals. The cluster (excluding power) fits into a standard daysack. 288 
 

290 
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 290 
 
Figure 2b: 292 
Block diagram of principal workflow units. Reads are passed from the MinION controller (laptop running 
MinKNOW client) to the common read pool (shared NFS drive on SBC cluster). Individual nodes are 294 
assigned discrete tasks in the pipeline (delimited by subdirectory structure) with responsibility for 
monitoring upstream progress and passing completed outputs to the next node., 296 
 

298 
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A 298 

 
B 300 

  

  
Table 1 

Figure 3: 302 
Performance of single cluster node on sample classification using BLASTN. A, log10 user time (seconds) 
to map 100 reads, mean of 30 replicates. B, performance of (clockwise from top-left): Raspberry Pi 2; 304 
Raspberry Pi 3; Lab node; Macbook Pro. 
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 306 

 
Figure 4a: 308 
Performance of single cluster node on direct raw-read annotation using SNAP. 96,000 Nanopore reads 
were annotated using SNAP (N=5). 310 
 

 312 
Figure 4b:  
Performance of single cluster node on phylogeny inference using Muscle and RAxML. A dataset of 10 314 
coding genes was aligned and a phylogeny inferred with varying numbers of threads (N=5) 
 316 
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Component Qty 
Cost 
each 

(£GBP) 
Subtotal Link 

Raspberry Pi 3 Model 
B+ 7  £29.99   £209.93  https://uk.rs-online.com/web/p/processor-

microcontroller-development-kits/8968660/ 

USB-micro power 
cables 7  £-     £-    

 

60cm ethernet cables, 
cat 5e 7  £0.77   £5.39  https://uk.rs-online.com/web/p/cat5e-cable-

assemblies/0556538/ 

Touchscreen display 
for headnode 1  £50.39   £50.39  https://uk.rs-online.com/web/p/graphics-

display-development-kits/8997466/ 

Touchscreen enclosure 1  £14.99   £14.99  
https://uk.rs-
online.com/web/p/development-board-
enclosures/1003894/?origin=PSF_502004|acc 

Rack enclosure for 
nodes 4  £12.95   £51.80  

https://uk.rs-
online.com/web/p/development-board-
enclosures/1270213/ 

Ethernet switch 1  £20.55   £20.55  https://uk.rs-online.com/web/p/network-
hubs-switches/1363019/ 

USB power hub 1  £36.44   £36.44  https://uk.rs-online.com/web/p/usb-
hubs/7067117/ 

32Gb microSD 7  £15.92   £111.44  https://uk.rs-online.com/web/p/secure-
digital-cards/7603615/ 

     

Totals:  
 

£389.49    
 318 
Table 1: 
Component list for Raspi field-sequencing cluster 320 
 

System  Architecture CPU type, 
clock GHz 

Number 
of cores RAM Gb Scratch 

size, Gb  
Lab node (PowerEdge) i686  Xeon E5620, 2.4 8 64 1000, SSD 
Raspberry Pi 2 B+   ARM  ARMv7, 1.0 1 1 8, microSD 
Raspberry Pi 3 B+   ARM  ARMv7, 1.2 1 1 32 microSD 
Macbook Pro (2011)  x64  Core i7, 2.2 4 8 250, SSD 
(EC2 m4.10xlarge )  x64  Xeon E5, 2.4 40 160 320, SSD 
 322 
Table 2: 
Comparison of systems evaluated in this study. 324 
 

326 
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Machine  Number of 
threads 

Number of 
queries 

Mean wall 
clock time (s) Std. dev 

10 0.17 0.11 
100 1.12 0.84 

1000 8.18 3.18 
1 

10000 58.67 7.53 
10 0.14 0.03 

100 0.75 0.38 
1000 3.98 2.04 

2 

10000 41.70 3.53 
10 0.11 0.02 

100 0.71 0.41 
1000 2.96 0.39 

4 

10000 31.38 1.40 
10 0.09 0.00 

100 1.43 1.91 
1000 2.93 1.67 

Lab node 

8 

10000 34.10 2.64 
10 0.53 0.07 

100 2.23 0.93 1 
1000 20.43 4.66 

10 0.48 0.09 
100 1.56 0.57 2 

1000 23.45 13.69 
10 0.44 0.12 

100 1.87 1.43 4 
1000 17.09 8.48 

10 0.59 0.21 
100 2.87 2.11 

MacBook 
Pro 

8 
1000 16.73 9.89 

10 3.04 1.09 
50 6.77 5.08 

100 11.79 9.23 
500 33.68 17.65 

1000 56.52 20.25 

Raspberry 
Pi 2 4 

5000 262.25 40.06 
10 37.62 49.64 1 

100 18.86 1.96 
10 9.06 1.67 2 

100 14.47 2.13 
10 11.37 2.96 3 

100 19.32 9.87 
10 3.16 2.16 
50 9.08 15.92 

100 10.12 6.92 
500 31.39 17.73 

1000 49.17 19.47 

Raspberry 
Pi 3 

4 

5000 241.11 40.32 
Table 3: 
Summary BLASTN results. Reads from the A. thaliana dataset were subsampled without replacement 328 
and matched to the TAIR10 genome database with BLASTN. 
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