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Abstract

Metastasis is the most common cause of cancer-related death and, as such, there is an
urgent need to discover new therapies to treat metastasized cancers. Cancer cell lines
are widely-used models to study cancer biology and evaluate drug candidates. However,
it is still unknown whether they adequately recapitulate the disease in patients. The
recent accumulation of large-scale genomic data in cell lines, mouse models, and patient
tissue samples provides an unprecedented opportunity to evaluate the suitability of
cancer cell lines as models for metastatic cancer research. Through comprehensively
comparing the genomic profiles of 57 breast cancer cell lines with those of metastatic
breast cancer samples, we found their substantial genomic differences. We also
identified cell lines that more closely resemble different subtypes of metastatic breast
cancer. However, we found none of the currently established Basal-like cell lines
sufficiently resemble the samples of Basal-like metastatic breast cancer, a subtype of
high interest in therapeutic discovery. Further analysis of mutation, copy number
variation and gene expression data suggested that MDAMB231, the most commonly
used triple negative cell line, had little genomic similarity with Basal-like metastatic
breast cancer samples. Our work demonstrates an urgent need of cell lines that more
closely resemble Basal-like metastatic breast cancer samples, and could guide cell line
selection in other metastasis-related translational research.

Author summary

Why was this study done?

> Cancer cell lines are commonly used as models to understand cancer metastasis and
test drug candidates preclinically, while the degree to which these cell lines accurately
reflect metastatic breast cancer in vivo is not well established. We leveraged large-scale
genomic data to comprehensively evaluate breast cancer cell lines as models for
metastatic breast cancer.
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What did the researchers do and find?

> The comparison of genetic profiles between breast cancer cell lines and metastatic
breast cancer samples revealed that cell lines poorly recapitulated the somatic mutation
spectrum of metastatic breast cancer samples, while copy-number variation profiles were
considerably consistent.

> Gene expression correlation analysis identified cell lines which closely resembled
metastatic breast cancer samples of LuminalA /LuminalB/Her2-enriched subtypes, but
none of the currently established cell lines resembles Basal-like metastatic breast cancer
samples. Specifically, the most commonly used triple negative cell line MDAMB231 had
low genomic similarity with metastatic breast cancer samples from patients.

> Global transcriptome analysis revealed striking differences between breast cancer cell
lines and metastatic breast cancer samples.

What do these findings mean?

> These findings indicate that we should keep in mind the large genomic disparity
between breast cancer cell lines and metastatic breast cancer samples when using cell
lines in translational research, and we are still in urgent need of new cell lines (or other
preclinical models) for Basal-like metastatic breast cancer research.

Introduction

Cancer cell lines were initially derived from tumors and cultured in a 2D environment.
Because of the merit of cell culture, they have been widely used as models to study
cancer biology and test drug candidates [1]. However, the fact that many drugs have
great preclinical profiles but fail in the clinic urges the reinvestigation of cell lines as
tumor models [2]. The differences between cell lines and tumors have raised the critical
question to what extent do cell lines recapitulate the biology of tumor samples [3}[4].

The emergence of large-scale genomic data provides an unprecedented opportunity
to quantify their biological differences. The Cancer Genome Atlas (TCGA) project
characterized both genetic and transcriptomic profiles of more than 10,000 human tissue
samples across 32 tumor types [5]. The Cancer Cell Line Encyclopedia (CCLE)
characterized both genetic and transcriptomic profiles for more than 1,000 cell lines [6].
Silvia et al. performed comprehensive comparison of molecular profiles between 47
ovarian cancer cell lines and ovarian tumor samples, and they showed that popular cell
line models did not closely resemble high-grade serous ovarian cancers [7]. In addition,
they identified several rarely used cell lines that closely resembled the profile of ovarian
cancer. We examined the transcriptome similarity between hepatocellular carcinoma
(HCC) cell lines and HCC tumor samples and demonstrated that nearly half of the
HCC cell lines did not resemble HCC tumors [8]. Jian et al. conducted a comprehensive
comparison of molecular portraits between breast cancer cell lines and primary breast
cancer samples and found both similar and dissimilar molecular features [10].

Cancer metastasis is the most common cause of cancer-related death, thus there is
an urgent need of new drugs for treating cancer metastasis |[11L{12]. Previous cell line
evaluation analysis were mainly performed in reference to primary tumors. It remains
unknown whether cell lines closely resemble metastatic cancer and thus are
appropriately used in translational research. Robinson et al. performed whole-exome
and transcriptome sequencing on about 500 metastatic cancer samples and recently
released their dataset (refer to MET500) [13]. This large-scale genomic profiling
combined with existing genomic data allows the evaluation of the suitability of cell lines
as models for metastatic cancer. As a case study, in this work we focus on breast cancer,
where cell lines are frequently used to study metastasis.
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We found breast cancer cell lines poorly recapitulated somatic mutation spectrum
while the CNV (copy-number-variation) profiles were highly consistent. In addition, we
showed cell lines could resemble the transcriptome of metastatic breast cancer and
identified suitable cell lines for LuminalA /LuminalB/Her2-enriched subtypes. Our
analysis indicated that none of the cell lines closely resembled Basal-like metastatic
breast cancer samples. Specifically, the heavily-used triple negative cell line MDAMB231
shows low genomic similarity with metastatic breast cancer samples, which could be
confirmed by using independent in vivo and in vitro data. Our work reveals the
similarity and difference between metastatic breast cancer samples and cell lines and
provides guidance for choosing cell lines in metastasis-related translational research.

Materials and methods

Datasets

The raw RNASeq data of MET500 samples were downloaded from dbGap (under
accession number phs000673.v2.pl) and further processed using RSEM [14}[15]. The
FPKM values were used as gene expression measure. The somatic mutation and copy
number variation (CNV) data of MET500 samples were downloaded from MET500 web
portal (https://met500.path.med.umich.edu/downloadMet500DataSets). All CCLE
data (including gene expression profiled by RNASeq and microarray, somatic mutation
call and CNV) were downloaded from the CCLE data portal
(https://portals.broadinstitute.org/ccle). Somatic mutation calling results of TCGA
breast cancer samples were downloaded from cBioPortal [16}|17]
(http://www.cbioportal.org/) and CNV data were downloaded from BROAD GDAC
Firehose (https://gdac.broadinstitute.org/). RSEM-processed TCGA gene expression
data were downloaded from UCSC Xena data portal (http://xena.ucsc.edu/) [18].
Besides the MET500 dataset, we also searched GEO and manually assembled another
microarray dataset which contains gene expression value of 117 metastatic breast cancer
samples [19H22]. The GEO accession numbers used were GSE11078, GSE14017,
GSE14018, and GSE54323.

Identification of differentially mutated genes between MET500
and TCGA

Given a gene, to test whether it has significantly higher mutation frequency in
metastatic breast cancer samples, we computed the right-tailed p-value as follows:

n

p1=1=> Pr(i;N,q) (1)

=0

Where Pr(i;N,g) is the probability mass function of binomial distribution, N is the
number of genotyped MET500 breast cancer cohorts, n is the number of MET500 breast
cancer cohorts in which the gene is mutated and ¢ is the mutation frequency of the gene
in TCGA dataset.

Similarly, we computed the left-tailed p-value to test whether a gene has significantly
lower mutation frequency in metastatic breast cancer samples:

p2=1-—p1 (2)

To control false discovery rate, we applied the Benjamini-Hochberg procedure on the
left-tailed and right-tailed p-values respectively [23].
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Gene expression correlation analysis

To perform gene expression correlation analysis, we first rank-transformed the gene
RPKM values (or probeset intensity values) of each CCLE cell line and then ranked all
the genes (or probesets) according to their rank variation across CCLE cell lines. The
1000 most-varied genes (or probesets) were then selected and used to compute the
spearman rank correlation between cell lines and metastatic breast cancer samples.

PAMS50 sub-typing and t-SNE visualization

The genefu package was used to determine breast cancer subtype [24}25]. To visualize
tumor samples with t-SNE, we first computed the pair-wise distance between every two
samples as 1 minus the spearman rank correlation (across PAM50 genes) and then
applied the function Rtsne to perform 2D dimensional reduction [26)].

Pubmed search

The number of PubMed abstracts or full texts mentioning a CCLE breast cancer cell
line was determined using the PubMed Search feature on May 10, 2018
(https://www.ncbinlm.nih.gov/pubmed/). For each cell line, we searched with a
keyword ”[cell line name] metastasis”. We repeated this step for the terms “metastatic”,
“breast cancer”, and “metastatic breast”. These searches returned highly correlated
results, so we used the search terms which returned the most results: ”[cell line name]
metastasis”.

Identification of differentially expressed genes between cell lines
and metastatic breast cancer samples

DESeq2 was used to identify differentially expressed genes and DAVID bioinformatics
sever was used to perform Gene Ontology (GO) enrichment analysis [27,28]. The 50
hallmark gene sets were downloaded from MSigDB
(http://software.broadinstitute.org/gsea/msigdb/) and the R package GSVA was used
to perform ssGSEA analysis [29-32]. To identify gene sets which have different activity
between cell lines and metastatic breast cancer samples, we used the Wilcoxon rank test
to compute a p-value for each of the 50 gene sets and then applied Benjamini-Hochberg
procedure to select significant gene sets (FDR < 0.01).

Software tools and statistical methods

All of the analysis was conducted with R and the code is freely available at
https://github.com/Bin-Chen-Lab/MetaBreaCellLine. The ggplot2 and
ComplexHeatmap packages were used for data visualization [33}/34]. The tumor purity
was estimated using ESTIMATE [35]. CNTools was used to map the segmented CNV
data to genes [36]. If not specified, the Wilcoxon rank test was used to compute p-value
in hypothesis testing.

Results
Comparison of genetic profiles between metastatic breast cancer
and cell lines

We first compared the gene somatic mutation profile between MET500 breast cancer
samples and breast cancer cell lines. Whole-exome sequencing was performed for
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MET500 samples, while hybrid capture sequencing was performed for cell lines. We
thus only focused on the 1630 genes genotyped in both studies. We are particularly
interested in two types of genes that may play important roles in breast cancer
metastasis: genes that are highly mutated in metastatic breast cancer, and genes that
are differentially mutated between metastatic and primary breast cancers.

Consistent with previous research, we identified a long-tailed mutation spectrum of
the 1630 genes in MET500 breast cancer samples (Fig Sla). There were 69 highly
mutated genes whose mutation frequency is higher than 0.05 and the five most-altered
genes were TP53 (0.67), PIK3CA (0.35), TTN (0.29), OBSCN (0.19), and ESR1 (0.14).
We applied a statistical method to identify genes which have significantly different
mutation frequency between MET500 and TCGA and 19 genes passed the criteria
FDR <0.001. The top five most significant genes were ESR1, TNK2, OBSN,
CAMKK?2, and CLK1 (Fig S1b and Table 1). Interestingly, all of these 19
differentially-mutated genes had higher mutation frequency in MET500 breast cancer
samples, which is consistent with previous study showing that metastatic cancer has
increased mutation burden compared to primary cancer |13]. 68% of them were also
among the 69 highly mutated genes mentioned above. After merging the two gene lists,
75 unique genes remained (Figl and Table S1). The median mutation frequency of the
75 genes across breast cancer cell lines is 0.07 and only 9% of them (PRKDC, MAP3K1,
TTN, ADGRG4, TP53, FN1, and AKAP9) are mutated in at least 50% of cell lines,
suggesting that the majority of these gene mutations could be recapitulated by only a
few cell lines. In accordance with this finding, the median number of mutated genes of
the 57 cell lines is 10, with CAL51, MDAMB453, UACC812, CAL148, and HCC1569
being the five most-mutated cell lines. Additionally, nine out of the 75 genes (ESRI,
GNAS, PIKFYVE, FFAR2, RNF213, MYBL2, KAT6A, MAP4K4, and FMO4) are not
mutated in any cell lines. Notably, ESR1 has been identified as a driver gene of cancer
metastasis and associated mutations could cause endocrine resistance of metastatic
cancer cells [37},/38], but none of the cell lines could be used to accurately model it .

We next asked whether there were any genes which were specifically hypermutated
in breast cancer cell lines. To address this question, we examined the mutation
spectrum of the 32 genes that are mutated in at least 50% of the breast cancer cell lines.
Surprisingly, 25 of them (78.1%) have low mutation frequency (< 0.05) in MET500
breast cancer samples. Further analysis of somatic mutation profiles of the 25 genes in
TCGA breast cancer samples confirmed their hypermutation was specific to breast
cancer cell lines (Fig Slc).

Besides the somatic mutation spectrum, we also compared CNV profiles between
MET500 breast cancer samples and breast cancer cell lines. We observed a very strong
correlation of median CNV values across the 1630 commonly genotyped genes
(spearman rank correlation = 0.81, Fig 1b). Surprisingly, we noticed that the
gain-of-copy-number events in cell lines appeared to resemble metastatic breast cancer
while loss-of-copy-number events did not. As shown in Fig S1d, for genes that show
copy-number-loss in breast cancer cell lines, their median CNV values across breast
cancer cell lines are significantly lower than those from MET500; however, no significant
difference was detected in genes with copy-number-gain.

Out of the 57 breast cancer cell lines, 24 were derived from metastatic sites (Table
S2). We further divided the cell lines into two groups (according to whether derived
from metastatic sites or not). Then, we compared the CNV profiles of each group with
MET500 breast cancer samples. We found cell lines derived from metastatic sites more
closely resembled the CNV status of genes with high copy-number-gain (CNV > 0.4) in
MET500 breast cancer samples (Fig 1c, 1d, and Fig Sle), which is expected and
consistent with the results of additional expression analysis (see Section 3 for more
details).
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Fig 1. Comparison of the genetic profile between metastatic breast cancer samples
and breast cancer cell lines. (a) Somatic mutation profile of the 75 genes across
METS500 breast cancer samples and breast cancer cell lines. The top-side color-bar
indicates data source (MET500 or CCLE) and the right-side color-bar indicates
mutation frequency of genes. (b) Comparison of CNV profiles between MET500 breast
cancer samples and breast cancer cell lines with 1630 commonly genotyped genes. The
x-axis represents the median CNV value of one gene across 57 breast cancer cell lines
and y-axis represents the median CNV value of one gene across 53 MET500 breast
cancer samples. (¢) Comparison of CNV profile between MET500 breast cancer samples
and CCLE breast cancer cell lines derived from primary site. The x-axis represents the
median CNV value across 33 breast cancer cell lines derived from primary site and
y-axis represents the median CNV value across 53 MET500 breast cancer samples.
Genes with high CNV value in MET500 breast cancer samples are red. (d) Comparison
of CNV profile between MET500 breast cancer samples and breast cancer cell lines
derived from metastatic sites. The x-axis represents the median CNV value across 24
breast cancer cell lines derived from metastatic sites and y-axis represents the median
CNYV value across 53 MET500 breast cancer samples. Genes with high CNV value in
MET500 breast cancer samples are red.

Table 1. Differentially mutated genes between MET500 and TCGA

genename TCGA mutation frequecny | MET500 mutation frequency | FDR
ESR1 0.008 0.139 2.76E-08
TNK?2 0.001 0.069 6.70E-7
OBSCN 0.031 0.194 2.46E-06
CAMKK?2 ]| 0.004 0.083 7.93E-06
CLK1 0 0.056 1.80E-05
FN1 0.009 0.097 1.12E-04
DST 0.020 0.125 3.30E-04
GNAS 0.008 0.083 3.30E-04
MLLT3 0.003 0.056 3.30E-04
CDKN2A 10 0.042 3.30E-04
NGFR 0 0.042 3.30E-04
NUP133 0 0.042 3.30E-04
RBPJ 0 0.042 3.30E-04
FFAR2 0 0.042 3.30E-04
MCL1 0 0.042 3.30E-04
TP53 0.421 0.667 7.98E-04
TEK 0.007 0.069 9.10E-04
FER 0.004 0.056 9.90E-04
MAPAK4 ] 0.004 0.056 9.90E-04

Correlating breast cancer cell lines with metastatic breast
cancer samples using transcriptomic data

Gene expression correlation analysis is proven to be an effective approach to evaluate
the suitability of cell lines for research purpose [7H9]. Therefore, we ranked all 1019
CCLE cell lines according to their median spearman rank correlation with MET500
breast cancer samples. The 20 most-correlated cell lines were all breast cancer cell lines
(Fig 2a), illustrating the potential of breast cancer cell lines to resemble the
transcriptomic profile of metastatic breast cancer. MDAMB415 and HMC18 are the two
cell lines that have highest and lowest correlation respectively.
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Since MET500 breast cancer samples were derived from multiple biopsy sites, we
asked whether the cell lines resembling the transcriptome of metastatic breast cancer
from different biopsy sites were identical. We were only able to consider liver and lymph
node due to the paucity of enough samples from other biopsy sites in the MET500
dataset. We performed biopsy-site-specific gene expression correlation analysis (i.e.,
correlating breast cancer lines with samples derived from a specific biopsy site) and
found that the cell line rankings obtained from liver and lymph node were highly
correlated (Fig 2b, spearman rank correlation = 0.97), with MDAMB415 being the
most correlated cell line for both biopsy sites. In addition, we detected no significant
difference of the correlations with MDAMB415 cell line between different biopsy sites
(Fig S2a).

Given the genomic heterogeneity of breast cancer, we further asked whether the cell
lines resembling the transcriptome of metastatic cancer of different subtypes were
identical. To address this question, we first determined the PAM50 subtype of MET500
breast cancer samples with R package genefu. Since genefu was initially developed with
primary breast cancer data, we further applied the machine learning method t-SNE on
expression data of PAM50 genes and confirmed the PAM50 genes could be used to
classify metastatic breast cancer samples. As shown in Fig 2c, Basal-like samples were
clustered together and separated with other subtypes, which is in accordance with
previous research [39,42]. Additionally, the majority of
LuminalA /LuminalB/Her2-enriched /Normal-like samples were mixed together except
two skin-derived samples (HER2-enriched samples seemed to be separated with
LuminalA /LuminalB samples but the boundary was not clear). We confirmed the
finding by performing the same analysis on a combined dataset which contains both
MET500 and TCGA breast cancer samples (Fig S2b). We next performed
subtype-specific gene expression correlation analysis (i.e., correlating breast cancer cell
lines with samples of a specific subtype) and found the ranking of breast cancer cell lines
obtained from LuminalA /LuminalB/Her2-enriched subtypes were highly correlated with
each other (spearman rank correlation values were 0.96, 0.97, and 0.96 respectively), but
they all showed relatively lower correlation with the Basal-like subtype (Fig 2d).

To confirm the robustness of the results, we searched the GEO database and
assembled a microarray dataset containing the expression value of another 117
metastatic breast cancer samples, and repeated the above analysis. As expected, the
results obtained from two different platforms were highly consistent with each other.
First, there was a large overlap of the top-ranked cell lines. Out of the 10 cell lines that
were most correlated with the 117 metastatic breast cancer samples, six of them were
within top 10 cell lines that were most correlated with MET500 breast cancer samples.
Second, cell line ranking results between liver and lymph node were highly correlated
(Fig S3, spearman rank correlation = 0.95). Third, cell line ranking results obtained
from Basal-like samples still showed relatively lower correlations with other subtypes
(Fig S4).

We also noticed that the expression correlation analysis results derived from bone
showed lower correlation with other tissues. To exclude the possibility that this was
caused by tumor purity issues, we applied ESTIMATE on the microarray data and
found the tumor purity of bone-derived metastatic breast cancer samples was not
significantly lower than that of liver, lymph node and lung (Fig S5). Our results may
not be too surprising given the fact that bone provides a very unique microenvironment
including enriched expression of osteolytic genes [40]; however, this result needs to be
confirmed in the future as more data becomes available.
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Fig 2. Gene expression correlation analysis between MET500 breast cancer samples
and breast cancer cell lines. (a) Ranking 1019 CCLE cell lines according to their median
expression correlation with MET500 breast cancer samples. Each dot represents a cell
line with breast cancer cell lines marked as red. (b) Cell line ranking results of liver and
lymph node are highly correlated. Each dot represents a breast cancer cell line. (c)
t-SNE plot of MET500 breast cancer samples. Biopsy-sites are labeled by color. (d)
Pair-wise comparison of cell line ranking results among four breast cancer subtypes. The
upper-triangle part shows the pair-wise spearman rank correlation. The lower-triangle
part shows the pair-wise scatter plot, with each dot representing a breast cancer cell line.

Suitable cell lines for metastatic breast cancer research

We attempted to identify suitable cell line models for metastatic breast cancer based on
the results of subtype-specific gene expression correlation analysis. Given a subtype, we
noticed that for a random cell line, the median expression correlation (with MET500
breast cancer samples of that subtype) was normally distributed (Fig S6). Based on
that, we fit a normal distribution using the median expression correlation values of all
non-breast-cancer cell lines and then assigned each of the 57 breast cancer cells lines a
right-tailed p-value. We identified 20, 28, and 19 significant cell lines as suitable models
for LuminalA, LuminalB, and Her2-enriched subtypes, respectively (FDR < 0.01, see
Table S3). Notably, most of these suitable cell lines were derived from metastatic sites
and 18 of them were shared by the three subtypes. Surprisingly, no cell line passed the
criteria FDR < 0.01 for the Basal-like subtype. We further examined whether this was
due to the limited number of Basal-like samples. However, the number of LuminalA
samples was even less than that of Basal-like samples.

We next examined the popularity of the 57 breast cancer cell lines. MCF7 is most
commonly used in metastatic breast cancer research (n=2299 Pubmed citations).
Although we found it was a suitable cell line for LuminalB subtype, its correlation with
MET500 LuminalB samples was lower than that of BT483, the most significant cell line
for LuminalB subtype (Fig S7a). Following MCF7 in mentions is MDAMB231 (n=2118
Pubmed citations); however, we found that it was not an suitable cell line to use for
every subtype based on our results. The third most popular cell line T47D (n=204
Pubmed citations) was a suitable cell line for both LuminalA and Her2-enriched
subtype. T47D did not show significantly lower correlation with LuminalA samples
than EFM192A, the most correlated cell line for LuminalA subtype (Fig S7b); however,
it was significantly less correlated with Her2-enriched subtype than EFM192A, the most
correlated cell line for Her2-enriched subtype (Fig S7c¢). Additional subtype-specific
gene expression correlation analysis in the microarray dataset further confirmed our
results (Fig S8).

While the triple negative cell line MDAMB231 is one of the most frequently used cell
lines in metastatic breast cancer research, it might not be the most suitable cell line to
model metastasis biology. We ranked all of the 1019 CCLE cell lines according to their
median expression correlation with MET500 Basal-like breast cancer samples and the
rank of MDAMB231 was 583 (Fig 3a). It showed significantly lower correlation with
MET500 Basal-like breast cancer samples than HCC70, the most correlated cell line.
Similar patterns were observed with CNV data (Fig 3b). We also examined how
MDAMB231 recapitulated the somatic mutation spectrum of Basal-like breast cancer
samples and found only three of the 25 highly mutated genes (mutation frequency >0.1
in Basal-like METS500 breast cancer samples) were mutated in MDAMB231. Since
CCLE data for MDAMB231 was generated in vitro, we obtained another independent
dataset which profiled the gene expression of MDAMB231 cell lines derived from lung
metastasis in vivo [41] in order to confirm our finding. We found, however, that even
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these in vivo MDAMB231 cell lines did not most closely resemble the transcriptome of
lung metastasis breast cancer samples. The cell line which showed highest correlation
(with lung metastasis breast cancer samples) is the CCLE cell line EFM192A (Fig 3d).
Our analysis indicates that although MDAMB231 presents many favorable properties
for metastatic breast cancer research, its genomic profile is substantially different from
metastatic tissue samples.

Fig 3. The widely used cell line MDAMB231 may not be the most suitable model for
metastatic breast cancer research. (a) MDAMB231 shows poor expression correlation
with MET500 breast cancer samples of Basal-like subtype. The left panel shows the
ranking of all 1019 CCLE cell lines according to their median expression correlation
with METS500 breast cancer samples of Basal-like subtype. The top-left scatter plot
shows the expression of the most varied 1000 genes with x-axis represents expression
value in MDAMB231 and y-axis represents median expression value across MET500
Basal-like breast cancer samples. The boxplot on the right panel shows the distribution
of correlation values (with MET500 breast cancer samples of Basal-like subtype) for
MDAMB231 and HCC70. (b) MDAMB231 shows poor CNV correlation with MET500
breast cancer samples of Basal-like subtype. The left panel shows the ranking of all
1019 CCLE cell lines according to their median CNV correlation with MET500 breast
cancer samples of Basal-like subtype; the boxplot on the right panel shows the
distribution of correlation values (with MET500 breast cancer samples of Basal-like
subtype) for MDAMB231 and HCC70. (c) Somatic mutation profile of the 25 highly
mutated genes across MDAMB231 and MET500 breast cancer samples of Basal-like
subtype. (d) Boxplot of expression correlation between CCLE breast cancer cell lines,
lung-metastasis-derived MDAMB231 (colored by red) and lung-derived metastatic
breast cancer samples.

Differential gene expression analysis between metastatic breast
cancer and cell lines

The gene expression correlation analysis has shown that many cell lines could resemble
metastatic breast cancer; however, they are still different in many aspects [3,4]. To
characterize such differences, we compared the gene expression profile of MET500 breast
cancer samples with breast cancer cell lines and identified 3044 differentially expressed
genes (FDR < 0.001, abs(log2FC) > 1). We further performed GO enrichment analysis
for the up-regulated and down-regulated genes respectively and listed the results in
Table S4. The top five most significant enriched GO terms for up-regulated genes are
extracellular matrix organization, cell adhesion, type I interferon signaling pathway,
interferon-gamma-mediated signaling pathway and immune response; the top five most
significant GO terms for down-regulated genes are all related to cell cycle: cell division,
mitotic nuclear division, sister chromatid cohesion, DNA replication, and chromosome
segregation.

We also compared the ssGSEA score of the 50 MSigDB hallmark gene sets between
MET500 breast cancer samples and breast cancer cell lines (Fig 4). In total,37 gene sets
were identified as showing differential activity (FDR < 0.01, Table S6). Out of them,
27 showed significantly higher activity in MET500 breast cancer samples and the
remaining 10 showed significantly lower activity. The five gene sets showing largest
positive effect size are EPITHELIAL_MESENCHYMAL_TRANSITION,
ANGIOGENESIS, COAGULATION, INTERFERON_ALPHA _RESPONSE, and
INTERFERON_GAMMA _RESPONSE. The five gene sets showing smallest negative
effect size are G2/M check point and DNA repair, E2F_TARGETS,
MYC_TARGETS_V2, MYC_TARGETS_V1, and SPERMATOGENESIS. Interestingly,
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we noticed that some MET500 breast cancer samples derived from liver (in dashed box
of Fig 4) had enriched metabolism-related gene sets (such as
XENOBIOTIC_METABOLISM and BILE_ACID_METABOLISM). This suggests that
liver-metastasis cancer cells may have their unique metabolic mechanism comparing to
primary tumors.

It is worth noting that the ssGSEA results are highly consistent with the gene
differential expression analysis. The up-regulated genes (and over-activated gene sets in
MET500) reflect the large difference of microenvironment between metastatic breast
cancer and cell lines; also, the down-regulated genes (and less-activated gene sets in
MET500) suggest that cell lines have more active cell cycles. All of these differences
should be kept in mind when using cell lines in translational research.

Fig 4. Comparison of ssGSEA score of the 50 MSigDB hallmark gene sets. The gene
sets are re-ordered according to p-value computed by the Wilcoxon rank test. In
MET500 dataset, there are 37 LuminalA /LuminalB/Her2-enriched breast cancer
samples. For reference, we randomly picked out equal number of TCGA breast cancer
samples and included their ssGSEA scores in the figure.

Discussion

In cancer research, cell lines have been traditionally used to test drug candidates and
study disease mechanism. Our comprehensive analysis has both raised doubt and shed
light on the suitability of breast cancer cell lines as models for metastatic breast cancer
research.

Somatic mutation profile analysis indicated that breast cancer cell lines poorly
recaptured the mutation patterns of metastatic breast cancer samples. Most of the
highly-mutated genes (or differentially-mutated genes between metastatic and primary
lesions) were only mutated in a limited number of cell lines. In addition, there were 25
genes showing cell-line-specific hypermutation, which may be due to culture effects.
Remarkably, the CNV profiles between breast cancer cell lines and metastatic breast
cancer samples were much more consistent. We also performed a gene expression
correlation analysis to explore whether breast cancer cell lines could resemble the
transcriptome of metastatic breast cancer samples. The results of biopsy-site-specific
analysis suggested that for liver and lymph node derived metastatic breast cancer
samples, the biospy site did not play a role in determining the cell lines which closely
resembled their transcriptome and such conclusion was validated in analysis of two
independent datasets. It has been shown that breast cancer is a heterogeneous disease
with multiple subtypes. We found that the PAMS50 subtype were maintained in
metastatic breast cancer samples regardless of the tissues it metastasize to and this
corroborates with the results from a recent study [42]. Through a subtype-specific
analysis, we found that the cell lines that most closely resembled the transcriptome of
LuminalA /LuminalB/Her2-enriched subtypes were highly overlapped. Surprisingly,
none of the currently established cell lines adequately resemble Basal-like metastatic
breast cancer samples. Moreover, we found that the two most commonly used cell lines,
MCF7 and MDAMB231 (together accounting for more than 80% of total PubMed
publications mentioning metastatic breast cancer), were not the best choice for
metastatic breast cancer research in terms of transcriptomic similarity. Specifically,
there is dramatic difference between Basal-like metastatic breast cancer samples and
MDAMB231 (the most commonly used triple negative cell line), which was
demonstrated by both in wvitro and in vivo data. Note that although some cell lines
closely resemble tissue samples of LuminalA /LuminalB/Her2-enriched subtypes, it does
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not mean they could be directly employed to study cancer metastasis as many other
criteria are needed for the assessment. Nevertheless, this analysis does suggest that we
are in urgent need of new Basal-like cell lines which more closely resemble the biology of
Basal-like metastatic breast cancer samples.

The results of our gene expression correlation analysis also raises a new question:
when picking out cell lines to test drugs targeting breast cancer metastasis, which
factors should be taken into consideration? According to our analysis, it appears that
for lymph node and liver metastasis, the subtype information is sufficient since the
biopsy-site-specific gene expression correlation analysis results were highly concordant
with each other. However, we found that the results computed with bone metastases
showed low correlation with other tissues. This implies that even for the same subtype,
a cell line that is appropriate to model metastasis of other sites may not be appropriate
for bone metastasis study.

Even though many breast cancer cell lines resemble the transcriptome of metastatic
breast cancer samples, a large number of genes were identified as differentially expressed
between them. Some of these genes relate to immune response, possibly reflecting the
large difference between tumor microenvironment and the cell culture. In addition, our
ssGSEA analysis on the 50 hallmark gene sets suggested that there is systematical
difference of important pathway activities.

In summary, by leveraging publicly available gnomic data and machine learning
algorithms, we comprehensively evaluate the suitability of breast cancer cell lines as
models for metastatic breast cancer. Our study also describes a blueprint which can be
easily extended to other cancer types and more advanced model systems, such as
organoids [43]. Although there are concerns about data quality and discrepancies
between different studies/platforms, our large-scale analysis and cross-platform
validation hopefully addresses these concerns and demonstrates the power of leveraging
open data and machine learning algorithms to gain biological insights of cancer
metastasis. As more data becomes available, we can start building an ad-hoc mapping
algorithm linking metastasis samples, cell lines and other models. Inputs into this
algorithm would be the characteristics of metastatic cancer samples (subtype, biopsy
site, or even age, race, etc) as well as the specific scientific question of interest and the
output would be a list of appropriate models. We hope that the recommendations in
this study may facilitate improved precision in selecting relevant and suitable cell lines
for modeling in metastatic breast cancer research, which may accelerate the
translational research.

Supporting information

S1 Fig. (a) Long-tailed gene mutation spectrum in MET500 breast cancer samples.
(b) Volcano plot of gene differential mutation frequency analysis. (¢) Visualization of
log10-transformed mutation frequency of the 25 genes that are specifically
hypermutated in CCLE breast cancer cell lines. (d) Boxplot of median CNV of grouped
genes (according to whether showing gain or loss of copy number in CCLE breast cancer
cell lines) in MET500 breast cancer samples and CCLE breast cancer cell lines. (e)
CCLE breast cancer cell lines derived from metastatic sites more closely resemble the
CNV status of genes with high copy-number-gain in MET500 dataset. Left: absolute
value of median CNV difference between MET500 breast cancer samples and CCLE
breast cancer cell lines derived from primary sites; right: absolute value of median CNV
difference between MET500 breast cancer samples and CCLE breast cancer cell lines
derived from metastatic sites.
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S2 Fig. (a) Metastatic breast cancer samples derived from liver and lymph node do
not show significantly different expression correlation with MDAMB415. (b) t-SNE plot
of TCGA and MET500 breast cancer samples.

S3 Fig. Pair-wise comparison of the results of biopsy-site-specific gene expression
correlation analysis (microarray dataset).

S4 Fig. Pair-wise comparison of the results of subtype-specific gene expression
correlation analysis (microarray dataset).

S5 Fig. Boxplot of tumor purity of the five biopsy sites (microarray data).

S6 Fig. Normal qgplot to confirm the median expression correlation between cell lines
and MET500 breast cancer samples (of a specific subtype) approximately follows
normal distribution. (a) LuminalA subtype. (b) LuminalB subtype. (c) Her2-enriched
subtype. (d) Basal-like subtype.

S7 Fig. (a) MCF7 cell line shows significant lower correlation with MET500
LuminalB samples than BT483. (b) T47D cell line does not show significant lower
correlation with MET500 LuminalA breast cancer samples than MDAMB415. (c) T47D
cell line shows significant lower correlation with MET500 Her2-enriched breast cancer
samples than EFM192A.

S8 Fig. Subtype-specific gene expression correlation analysis results between MET500
and microarray dataset are highly correlated. (a) LuminalA subtype. (b) LuminalB
subtype. (c) Her2-enriched subtype. (d) Basal-like subtype.

S1 Table. Mutation frequency of the 75 highly (or differentially) mutated genes in
CCLE, TCGA, and MET500 dataset.

S2 Table. Characteristic of the 57 CCLE breast cancer cell lines.

S3 Table. Suitable CCLE breast cancer cell lines for LuminalA, LuminalB, and
Her2-enriched subtypes.

S4 Table. GO enrichment results of differentially expressed genes between CCLE
breast cancer cell lines and MET500 breast cancer samples.

S5 Table. Results of differential activity analysis between MET500 breast cancer
samples and CCLE breast cancer cell lines (for the 50 MSigDB hallmark gene sets).
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