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Abstract  37 
To advance our understanding of adaptation to temporally varying selection pressures, we 38 
identified signatures of seasonal adaptation occurring in parallel among Drosophila 39 
melanogaster populations. To study these evolutionary dynamics, we estimated allele 40 
frequencies genome-wide from flies sampled early and late in the growing season from 20 41 
widely dispersed populations. We identify parallel seasonal allele frequency shifts across North 42 
America and Europe, demonstrating that seasonal adaptation is a general phenomenon of 43 
temperate fly populations. The direction of allele frequency change at seasonally variable 44 
polymorphisms can be predicted by weather conditions in the weeks prior to sampling, linking 45 
the environment and the genomic response to selection. The extent of allele frequency 46 
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fluctuations implies that seasonal evolution drives substantial (5-10%) allele frequency 47 
fluctuations at >1% of common polymorphisms across the genome. Our results suggest that 48 
fluctuating selection is an important evolutionary force affecting the extent and stability of linked 49 
and functional variation. 50 
 51 

Introduction  52 
Fluctuations in the environment are an inescapable condition for all organisms. While many of 53 
these fluctuations are unpredictable, some are predictable to a degree, including those that occur 54 
on diurnal and seasonal time scales. The predictability of cyclic fluctuations is reflected in the 55 
fact that many species exhibit plastic physiological and behavioral strategies that enable them to 56 
survive the unfavorable season and exploit the favorable one (Denlinger 2003; Kostál 2006); 57 
such plastic responses represent the classical form of seasonal adaptation (Tauber et al. 1986). 58 
However, seasonally varying selection can - in principle - maintain fitness related genetic 59 
variation if some genotypes have high fitness in one season but not another (Gillespie 1973). 60 
Thus, in the organisms that undergo multiple generations per year (multivoltine), a distinct form 61 
of seasonal adaptation occurs when the frequency of alternate genotypes changes in response to 62 
seasonal fluctuations in the environment.  63 
 64 
Seasonal adaptation can be seen as a form of local adaptation but local adaptation in time – 65 
adaptation to temporally varying selection pressures - rather than in space. However, such 66 
adaptation in time has been considered by some to be uncommon and, when present, unlikely to 67 
result in long-term balancing selection (Ewing 1979; Hedrick 2006). Classic quantitative genetic 68 
theory suggests that an optimal, plastic genotype will eventually dominate a population that is 69 
exposed to periodically changing environments (Scheiner 1993). This is particularly so when 70 
certain environmental cues are reliable indicators of changes in selection pressure (Levins 1968; 71 
Via & Lande 1985). Predictions from traditional population genetic models suggested that 72 
periodically changing environments will lead to the rapid loss of seasonally favored ecotypes as 73 
slight changes in selection pressure from one year to another eventually push allele frequencies 74 
at causal alleles to fixation (Hedrick 1976). 75 
 76 
Recent theoretical models have called these classical predictions into question. For instance, a 77 
quantitative genetic model by Botero et al. (Botero et al. 2015) examined whether adaptive 78 
tracking, plasticity, or bet-hedging evolve as a consequence of environmental fluctuations. They 79 
showed that adaptive tracking rather that plasticity is likely to become a predominant feature of 80 
populations living in seasonally fluctuating environments when populations undergo more than 81 
three generations per season. Additionally, a population genetic model by Wittmann et al 82 
(Wittmann et al. 2017) has demonstrated that seasonally varying selection can maintain fitness 83 
related genetic variation at many loci throughout the genome provided that dominance shifts 84 
from season to season in such a way that, on average, the seasonally favored allele remains even 85 
slightly dominant (Curtsinger et al 1994). These recent models, along with others that highlight 86 
the importance of population cycles (Bertram & Masel 2019), as well as overlapping generations 87 
and age structure (Ellner 1996; Ellner & Sasaki 1996; Ellner & Hairston 2015; Bertram & Masel 88 
2019), suggest that seasonal adaptation and adaptive tracking (Kain et al. 2015) could be an 89 
important feature of multivoltine organisms such as Drosophila (Behrman et al. 2015). More 90 
generally, it is possible that adaptive tracking of environmental fluctuations on other time scales 91 
might be more common than generally acknowledged. 92 
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 93 
Despite the lack of theoretical agreement on whether and how seasonal adaptation operates in 94 
multivoltine organisms, there is substantial empirical evidence for seasonal adaptation in many 95 
organisms including Drosophila. Seasonal adaptation was first observed in D. pseudoobscura by 96 
Dobzhansky and colleagues (e.g., Dobzhansky 1948) by tracking allele frequencies of inversions 97 
over seasons. Later studies confirmed and extended these early findings to other species 98 
including D. melanogaster (Stalker 1976; Stalker 1980; Kapun et al. 2016) and D. subobscura 99 
(Rodríguez-Trelles et al. 2013).  100 
 101 
In D. melanogaster, multiple additional lines of evidence from phenotypic and genetic analyses 102 
demonstrate the presence of seasonal adaptation. When reared in a common laboratory 103 
environment, flies collected in the spring show higher stress tolerance (Behrman et al. 2015), 104 
greater propensity to enter reproductive dormancy (Schmidt & Conde 2006), increased innate 105 
immune function (Behrman et al. 2018), and modulated cuticular hydrocarbon profiles 106 
(Rajpurohit et al. 2017) as compared to flies collected in the fall. Rapid adaptation over seasonal 107 
time scales in these and related phenotypes has also been observed in laboratory (Schmidt & 108 
Conde 2006) and field-based mesocosm experiments (Rajpurohit et al. 2017; 2018). Genome-109 
wide analysis indicated that a large number of common polymorphisms change in frequency 110 
over seasonal time scales in one mid-latitude orchard (Bergland et al. 2014), and allele frequency 111 
change among seasons has been observed using candidate gene approaches (Cogni et al. 2014). 112 
In several cases, these adaptively oscillating polymorphisms have been linked to seasonally 113 
varying phenotypes (Paaby et al. 2014; Behrman et al. 2018).  114 
 115 
Despite ample evidence of seasonal adaptation in D. melanogaster, many aspects of this system 116 
remain unexplored. First, we do not know whether seasonal adaptation is a general feature of D. 117 
melanogaster populations across its range. Previous work (Schmidt and Conde 2006, Bergland et 118 
al. 2014, Cogni et al. 2014, Behrman et al. 2015, Behrman et al. 2018) detected seasonal 119 
fluctuations in a single locality over the span of one to three years. However, we do not know 120 
whether these results of fluctuating selection can be extrapolated to other localities. Second, it is 121 
unclear how responsive such adaptation is to specific local environmental conditions. Do seasons 122 
generate entirely idiosyncratic selective pressures that are not shared across populations, or does 123 
Drosophila experience partly generic selective pressures that are common to temperate 124 
populations? A related question is whether seasonal adaptation across the range involves a 125 
partially shared set of seasonal polymorphisms. Finally, we do not yet have estimates of the 126 
magnitude of effect and the fraction of polymorphisms genome-wide that are affected by 127 
seasonal adaptation through direct or linked selection, both in terms of the number of causal 128 
variants and the overall stochastic effect on linked variants. 129 
 130 
The most straightforward and statistically powerful way to start answering these questions is to 131 
assess the extent of parallel shifts in allele frequencies over seasonal time across the D. 132 
melanogaster range. Should such parallel shifts be detected we can then infer that seasonal 133 
adaptation is widespread and at least partly driven by a common set of variants. It will also help 134 
us determine the magnitude of the shifts and give us a glimpse into the genetic architecture of 135 
seasonal adaptation, for instance whether or not the variants are found genome-wide or clustered 136 
into linked blocks or even supergenes.  137 
 138 
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Examining patterns of allele frequency change on seasonal timescales across a species’ range 139 
faces two problems. The first problem is logistical: the power of any analysis of parallel seasonal 140 
adaptation across dispersed populations requires a large sample size. Such sampling can become 141 
prohibitively expensive and logistically difficult for any single lab to carry out, and these 142 
difficulties are further exacerbated if heavy constraints are placed on the exact timing of the 143 
sampling. The second, and related problem, is the determination of the timing of sampling. We 144 
have an intuitive sense of what seasons are; however, it is not clear how to match seasons across 145 
locations. While it is possible, albeit logistically difficult, to sample flies according to some 146 
matching of seasons using the calendar window (e.g. first week of June for the “spring” and the 147 
first week of November for the “fall”) or using a pre-determined physiological time (e.g., 148 
“spring“ is the time after 21 cumulative growing degree days), it is not at all clear that any such 149 
matching would be meaningful in terms of the ecology, physiology, and evolution of local 150 
populations.  151 
 152 
We have elected to solve these two related problems by (i) working as a consortium of 153 
Drosophila biologists (DrosRTEC or the Drosophila Real Time Evolution Consortium) and (ii) 154 
sampling in a somewhat haphazard manner. A similar effort is being carried out primarily in 155 
Europe by the parallel Drosophila Population Genomics Consortium DrosEU (Kapun et al. 156 
2018). Both consortia began as a result of the 2012 Catalysis Meeting at the National 157 
Evolutionary Synthesis Center (NESCent) in Durham, NC, USA. These consortia organize a 158 
collective effort of Drosophila biologists who sample at their own locations which then in turn 159 
allows for the sampling to be carried out range-wide. We are continuing this effort and 160 
expanding the consortium going forward (“Drosophila Evolution in Space and Time”, DEST) to 161 
meet this ambitious goal.   162 
 163 
We chose to carry out haphazard sampling for logistical and inferential reasons. In this study, the 164 
“spring” sample was generally taken close to the time when the populations of D. melanogaster 165 
become locally abundant. The “fall” is either simply later in the summer or early fall, generally 166 
prior to the time that populations crash at the onset of winter. Beyond the impracticality of 167 
requiring that everyone collect flies at a given point in time we simply do not know when, 168 
exactly, would be the most appropriate time to collect flies or what the fine-scaled temporal or 169 
spatial factors matter for driving changes in allele frequency. Given this lack of knowledge, 170 
choosing a specific time point, collection method, or substrate limits the covariance of collection 171 
attributes with allele frequencies thereby preventing us from testing for specific gene-172 
environment associations a posteriori. Thus, a haphazard approach might in fact have the 173 
greatest inferential power provided that the signal of seasonal adaptation can be detected in such 174 
a complex dataset.  175 
 176 
Using allele frequency data from 20 paired seasonal samples from 15 localities in North America 177 
and Europe, we find evidence of parallel, pervasive, and strong seasonal adaptation in D. 178 
melanogaster. First, we demonstrate that seasonal adaptation is a general phenomenon that 179 
occurs in multiple populations of D. melanogaster on two continents. We provide evidence 180 
suggesting that at least some of the same polymorphisms cycle between seasons in populations 181 
sampled across vast geographic distances. Further, we show that allele frequency change 182 
between seasons is predictable to some extent when taking into account weather in the weeks 183 
immediately prior to sample collection, which hints at the complex and nonlinear nature of 184 
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seasonal adaptation. Seasonal alleles tend to show clinal variation, with the alleles that increase 185 
in frequency through the summer generally being more frequent in lower latitude locations. 186 
Finally, using a simulation approach, we show that the detected seasonal signal is consistent with 187 
substantial (5-10%) seasonal allele frequency fluctuations at more than 1% of all common 188 
polymorphisms. Taken together, our work demonstrates that seasonal adaptation is a general and 189 
predictable feature of D. melanogaster populations and has pervasive effects on patterns of allele 190 
frequencies genome-wide. More generally we establish that metazoan populations can exhibit 191 
adaptive tracking of environmental conditions on extremely short time scales, most likely shorter 192 
than a single growing season encompassing ~10 generations, suggesting that such rapid and 193 
cyclic evolutionary shifts cannot be discounted a priori.   194 
 195 

Results 196 
Fly samples and sequence data. We assembled 72 samples of D. melanogaster collected from 23 197 
localities in North America and Europe (Supplemental Table 1, Supplemental Figure 1). For 15 198 
sampling localities, flies were collected in the spring and fall over the course of one to six years 199 
(Figure 1A). Our sampling and sequencing efforts also complement other genome-wide datasets 200 
that investigate genetic variation within and among D. melanogaster populations throughout 201 
their range (Kolaczkowski et al. 2011; Mackay et al. 2012; Pool et al. 2012; Campo et al. 2013; 202 
Reinhardt et al. 2014; Kim et al. 2014; Grenier et al. 2015; Svetec et al. 2016; Lack et al. 2016; 203 
Zhao & Begun 2017; Kapun et al. 2018). 204 
 205 
For our analysis, we divided our samples into three subsets (Figure 1B). The first subset 206 
(hereafter ‘Core20’) is composed of 20 populations consisting of one spring and one fall sample. 207 
Populations in the Core20 set are drawn from 15 localities in North America and Europe and we 208 
use at most two years of sampling from any one locality. Samples in the Core20 set are used in 209 
our basic analyses of seasonal adaptation. The second subset (hereafter ‘ValidationSet’) is 210 
composed of spring and fall samples from four populations. Populations in the ValidationSet are 211 
drawn from the two localities where there are more than two years of sampling. The 212 
ValidationSet is used as a part of our leave-one-out analysis. The third subset (hereafter the 213 
‘clinal’ set) of samples was used to examine patterns of clinal variation along the East Coast of 214 
North America and consists of four populations sampled in the spring (see Material and Methods 215 
and Supplemental Table 1).  216 
 217 
To estimate allele frequencies genome-wide we performed pooled DNA sequencing of multiple 218 
individual flies per population (Zhu et al. 2012; Schlötterer et al. 2014). For each sample, we 219 
resequenced pools of ~75 individuals (range 27-164) to an average of 94x coverage (range 22-220 
220, Supplemental Table 1). Analyses presented here use a total of 51 samples. Data from the 221 
remaining samples, including those that do not constitute paired spring/fall samples, are not 222 
included in our analyses here but nonetheless form a part of our larger community-based 223 
sampling and resequencing effort and are deposited with the rest of the data. All raw sequence 224 
data have been deposited at the NCBI Short Read Archive (SRA; BioProject Accession 225 
#PRJNA308584; individual accession numbers for each sample can be found in Supplemental 226 
Table 1), a VCF file with allele frequencies from all populations, scripts of the analyses 227 
presented here, and genome-wide SNP statistics for seasonality and clinality are available on 228 
DataDryad (doi:10.5061/dryad.4r7b826). 229 
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 230 
Pooled resequencing identified ~1.75M SNPs following quality control and filtering for read 231 
depth and average minor allele frequency (minor allele frequency > 0.01). We applied a second 232 
filtering to identify ~775,000 SNPs that have observed polymorphism in each population 233 
sampled. Unless otherwise noted, we use the smaller set of more common SNPs. Whether this 234 
SNP selection process generates bias in our estimates of the strength and magnitude of 235 
seasonally variable selection remains to be determined but note that the smaller set still 236 
represents approximately half of all detected SNPs. 237 
 238 
To gain insight into basic patterns of differentiation among the sampled populations, we 239 
performed a principal component (PC) analysis across all samples. Samples cluster by locality 240 
and geography (Figure 1C) with PC 1 separating European, North American West Coast and 241 
East Coast populations while PC 2 separates the eastern North America samples by latitude 242 
(linear regression p = 3*10-15, R2 = 0.84). No PC is associated with season, as defined by the time 243 
of collection, following correction for multiple testing.  244 
 245 
Figure 1: 246 

 247 
 248 

Figure 1. Sampling times, localities, and basic population structure of samples used in this 249 
study. A) Distribution of collection times during the spring (red) and fall (blue) in relation to 250 
latitude. For samples where the collection month, but not day, was recorded, we specified the 251 
15th of the month to calculate Julian Day. B) Sampling localities for the primary seasonal 252 
analysis (‘Core20’: green), the cross-validation analysis (‘ValidationSet’: blue) and the 253 
latitudinal cline analysis (‘Cline’: red), distributed across North America and Europe. Numbers 254 
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represent the number of years of spring/fall comparisons at that locality. C) Principal 255 
components analysis of SNP allele frequencies. Circles are placed around samples from three 256 
geographic regions: Europe (EU), California (CA) and Eastern North America (East NA); points 257 
are colored by latitude and shapes represent seasons, as defined by collection time. 258 

 259 
Seasonal adaptation is a general feature of fly populations. Our first objective was to determine 260 
whether or not we find evidence of seasonally cycling genetic variation. To identify such a signal 261 
of allele frequency change over time we assessed the per-SNP change in allele frequency 262 
between spring and fall among the Core20 set of populations. We first used a generalized linear 263 
model (GLM), regressing allele frequency at each SNP on season across all of the populations 264 
(see Materials and Methods for details). Indeed, we find that the observed genome-wide 265 
distribution of ‘seasonal’ p-values from this model is not uniform and there is a pronounced 266 
excess of SNPs with low p-values (Figure 2A; compare the red line for the observed data with 267 
the grey lines for the shuffled data). We assessed the statistical significance of this result by 268 
utilizing the paired spring/fall nature of our dataset. Specifically, we performed a permutation 269 
analysis whereby we shuffled the seasonal labels within populations to create 100 permuted 270 
datasets and then refit the seasonal GLM model to each such permutation. These permutations 271 
have the advantage of retaining all of the features of the data except for the seasonal labels 272 
within populations. We do find an excess of low p-values in the observed distribution compared 273 
to the permutations (Figure 2A), with a greater proportion of SNPs with p<0.001 in the 274 
unpermuted dataset than in 98% of the permutations. Our permutation analysis thus suggests that 275 
the genome-wide excess of SNPs with low p-values contains a signal of parallel seasonal 276 
adaptation across multiple populations.  277 
 278 
To further verify the observed signal of seasonal adaptation, we used a second statistical method 279 
for measuring seasonal variation. For this we developed a semi-parametric test, the “rank 280 
Fisher’s method” (RFM), which is calculated by combining the per-population changes in allele 281 
frequency (represented as p-values from a Fisher’s exact test) between the two seasons 282 
normalized by the genome-wide distribution of SNPs with similar attributes (see Materials and 283 
Methods for details). This model was motivated by the observation that the GLM model can be 284 
affected by an inflated precision of allele frequency estimates (Supplemental Figure 2) or other 285 
statistical complexities (Machado et al 2016; Wiberg et al 2017) and that the observed 286 
distribution of the p-values in the GLM is shifted to small values even in the shuffled datasets 287 
(Figure 2A). The limitations of the GLM are particularly relevant, as our data are from pooled 288 
sequencing, for which we can only estimate an effective sample size (Machado et al. 2016). The 289 
RFM, by contrast, is relatively insensitive to the sample size estimate (Supplemental Figure 2). 290 
Using the RFM we again find a deviation from the expected test statistic distribution indicating 291 
an excess of seasonally varying polymorphisms (Figure 2B; compare the red line for the 292 
observed data with the grey lines for the shuffled data). Performing a permutation analysis 293 
analogous to that used for the GLM, we found the observed enrichment to be greater than in 294 
98.2% of permutations. Together, our GLM and RFM results provide robust evidence that 295 
parallel seasonal adaptation is a general feature of these fly populations.  296 
 297 
Predictability of seasonal adaptation among populations 298 
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The genome-wide signature of seasonal adaptation that we observe indicates that there are 299 
consistent changes in allele frequencies between seasons, broadly defined, among populations 300 
sampled across multiple years, and localities separated by thousands of miles (Figure 1A,B). 301 
However, it is not yet clear whether all populations show signatures of seasonal adaptation at a 302 
common set of SNPs and if not, whether such populations are associated with specific 303 
environmental effects, such as unusually short summer or an unusually mild winter. To 304 
investigate these questions, we performed a leave-one-out analysis. In this analysis, we 305 
sequentially removed each of the 20 paired spring-fall populations within the Core20 set and re-306 
identified seasonally variable SNPs among the remaining 19 populations (hereafter, ‘discovery 307 
set’) as well as for the dropped, 20th population (‘test set’). We then tested (1) if there is an 308 
enrichment of SNPs showing signals of seasonal evolution in both the discovery and test sets, 309 
and (2) if allele frequencies changed in the same direction (i.e., concordant allele frequency 310 
change) for SNPs that show a significant allele frequency change in both the discovery and test 311 
sets (see Materials and Methods for more details). For each population, we then calculated a 312 
‘predictability score’. This score reflects the genome-wide rate of concordance change as a 313 
function of the joint significance threshold. Note that populations with a positive predictability 314 
score are those in which the concordance rate is greater than 50% over the bulk of the genome or 315 
chromosome.  316 
 317 
Our predictability analysis yielded several basic results. First, we find that there is an enrichment of 318 
polymorphisms identified as strongly seasonal in both the test and discovery sets for a limited number of 319 
populations. For instance, at a joint significance quantile of 1%, 4 out of the 20 test sets show a 320 
significant enrichment of seasonal SNPs compared to their conjugate discovery set (nominal p-value < 321 
0.05 based on genome-wide Fisher’s exact test; Supplemental Figure 3). The populations that show 322 
significant enrichment of strongly seasonal sites in the discovery and test sets include: Esparto, CA, 323 
USA, 2012 (CA_es); Gross-Enzersdorf, Austria 2012 (AT_gr); Sudbury, Ontario, Canada 2015 324 
(ON_su); and, Charlottesville, VA 2015 (VA_ch). For these populations, enrichment was modest – at 325 
most on the order of 25-50%. Although only four populations show nominally significant enrichment at 326 
a joint significance quantile of 1%, 14 out of 20 populations show a positive enrichment, and no 327 
population shows a significant negative enrichment at a joint significance threshold of 1%. It is unclear 328 
whether the extent of this modest, yet sometimes statistically significant, enrichment is due to statistical 329 
power, sampling effort, ecology, or the idiosyncratic nature of the evolutionary process (Gould 1989).  330 
 331 
Second, we find that the majority of populations show a positive predictability score (Figure 2C). 332 
For populations that show the strongest positive predictability score, the concordance rate 333 
reaches ~65% (range 52-69%; all populations significantly different from 50% at a nominal p-334 
value < 0.05) among the ~65 (range 36-199) SNPs with the most stringent joint significance 335 
threshold. At more modest joint significance thresholds (e.g., the top 10% in both sets), the 336 
concordance rate is lower but still statistically different from 50% (maximum nominal p-value at 337 
the top 5% of sites is 0.008). Intriguingly, we found that four of the 20 populations had 338 
significantly negative predictability scores (Benton Harbor, Michigan 2014; Lancaster, 339 
Massachusetts 2012; Topeka, Kansas 2014; and Esparto, California 2012). For these populations, 340 
the strength of negative predictability was, in general, as strong as those populations with 341 
positive predictability. The predictability score per population does not vary in a systematic way 342 
with enrichment (e.g., at a joint significance threshold of 1%, the correlation between enrichment 343 
and predictability score is -0.25, p = 0.41) and, notably, populations with negative predictability 344 
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scores have some of the strongest enrichment in the leave-one-out analysis. The sign and 345 
magnitude of predictability scores varies among chromosomes (Supplemental Figure 4), 346 
although the genome-wide score is correlated with the per-chromosome scores, particularly for 347 
chromosome arms 2L and 2R (Supplemental Figure 5).  348 
 349 
Figure 2.  350 
 351 

 352 
 353 
Figure 2.  Generality and predictability of seasonal adaptation. A) GLM p-value distribution 354 
of per-SNP seasonal regressions (red = original dataset in which all seasonal labels are taken at 355 
face value; blue = flipped dataset that was generated after detecting that some populations exhibit 356 
the opposite pattern of fluctuations compared to the rest of the populations – see the text and 357 
Figs. 2CDEF) and permutations (grey)). The y-axis represents the proportion of SNPs within p-358 
value bins between 0 and 1 with bin size 0.001. Note, the expected value of a uniform 359 
distribution is 0.001, as represented by the dashed line. B) RFM X2 distribution of per-SNP 360 
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seasonal allele frequency change for the original dataset (red), the flipped dataset (blue), 361 
permutations (grey), and the null expectation (dashed). Plotted is the proportion of sites with a 362 
X2 value greater than expected per X2 threshold. C) The fraction of concordant allele frequency 363 
changes from the leave-one-out analysis of the Core20 populations. Each line represents one 364 
population, colored by the inferred genome-wide predictability score. Value for each population 365 
are plotted only when the nominal p-value < 0.05 from a binomial test of difference from the null 366 
expectation of a 50% concordance rate (dashed line) with a minimum of 35 SNPs. D) Model fits 367 
(r2) from the thermal limit models. Black points represent models that fit the observed variation 368 
in genome-wide predictability scores better than 95% of permutations. E) Surface plot of the best 369 
fit thermal model from the leave-one-out analysis; color scheme matches color legend in F; 370 
points are colored with their observed genome-wide concordance score. Value on the x- and y-371 
axis are the expected number of days (observed fraction multiplied by 21; some localities had a 372 
day or two of weather data missing). F) The best thermal limit models from the Core20 analysis 373 
models genome-wide predictability scores of the ValidationSet (diamonds). Circles represent the 374 
model-based estimates of Core20 population based on the best fit models identified in Figure 2C.   375 
 376 
We sought to explain why some populations display negative predictability by constructing a 377 
weather based, thermal-limit model. We hypothesized that populations with negative genome-378 
wide predictability scores were exposed to warm springs or cool falls prior to our sampling. To 379 
test this hypothesis, we calculated the number of days in the three weeks prior to spring sampling 380 
when maximum temperatures fell above a specified upper thermal limit and the number of cool 381 
days in the three weeks prior to fall sampling when minimum temperatures fell below a lower 382 
limit. We refer to these counts of days as ‘critical days.’ The use of a three-week window to 383 
assess critical days is somewhat arbitrary but we note that this duration corresponds to one to two 384 
generations and the general period from egg to peak adult reproduction (McMillan et al. 1970; 385 
Schmidt et al. 2005; Bergland et al. 2012; Klepsatel et al. 2013). Thus, a three-week window is a 386 
biologically relevant time window. We tabulated the critical days for each population across a 387 
range of spring and fall thermal limits (0°C - 40°C). For each combination of spring and fall 388 
thermal limits, we regressed predictability scores on the number of spring and fall critical days 389 
and assessed model fit in contrast with a null distribution obtained via permutation. We found 390 
that the number of days prior to sampling in the spring above ca. 35°C (32-37°C) and number of 391 
days in the fall below ca. 5°C (0-10°C) is significantly correlated with genome-wide 392 
predictability scores of the 20 populations (Fig. 2D,E; R2max = 75.7, pperm = 0.0025 for the most 393 
significant set of spring and fall thermal limits). Inferred model parameters for the best fit models 394 
(those with pperm < 0.05) and critical days across the range of thermal limits for each population 395 
can be found in Supplemental Tables 2 and 3, respectively. 396 
 397 
These best fit models indicate that populations experiencing warm temperatures prior to the 398 
spring sampling or cool temperatures prior to the fall sampling will have negative genome-wide 399 
predictability scores (Figure 2E). This situation would naturally arise if these particular spring 400 
and fall fly samples were collected at a tail of the season. However, genome-wide predictability 401 
scores are not correlated with spring or fall collection date (p = 0.6 and 0.9, respectively), 402 
cumulative growing degrees (p = 0.5, 0.86), collection locale (residential vs. orchard, p = 0.6, 403 
0.4), collection method (aspirator vs. net vs. trap, p = 0.9, 0.9), collection substrate (contrasting 404 
various types of fruit, compost, p = 0.8, 0.9), percent D. simulans contamination (0.8, 0.8), 405 
latitude (p = 0.9), or the difference in cumulative growing degree days between spring and fall (p 406 
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= 0.46). The genome-wide predictability score is more related to the specific temperature 407 
patterns observed in the spring and the fall than any other factors tested. Although we cannot rule 408 
out other explanations such as inadvertent sample swapping, our analysis is generally consistent 409 
with a model which suggests that changes in selection pressure within and among seasons may 410 
lead to dramatic changes in allele frequencies. 411 
  412 
We tested the predictive power of our thermal limit model by applying it to the four populations 413 
in the ValidationSet (Figure 1B). We find that populations in the ValidationSet show a similar 414 
variability of predictability scores as those estimated in the leave-one-out analysis of the Core20 415 
set and that two populations have negative predictability scores (Supplemental Figure 6B; 416 
Media, Pennsylvania 2012; Cross Plains, Wisconsin 2013). Next, we used the parameters from 417 
the best fit thermal models derived from the Core20 set (i.e., those where pperm < 0.05; Figure 418 
2D,E; Supplemental Table 2,3) to model the genome-wide predictability scores of the 419 
ValidationSet populations for which collection dates are known. We find that the modeled 420 
genome-wide predictability scores are positively correlated with the observed genome-wide 421 
predictability score of the ValidationSet populations (Fig 2F; median Pearson’s r = 0.37 across 422 
the range of best-fit models, minimum Pearson’s r = 0.09, maximum r = 0.60; see Material and 423 
Methods). While this correlation of three points is not significantly different from zero (p = 0.77, 424 
based on the best fit thermal model), we nonetheless find this correlation is greater than 76% of 425 
the best-fit permuted models (range 56 - 89% across all models with pperm < 0.05). Taken 426 
together with the leave-one-out analysis of the Core20 set, we conclude that coarse-grained 427 
temperature data of the weeks prior to sampling is sufficient to predict some of the seasonal 428 
changes in allele frequencies genome-wide. Our conclusion is consistent with work in other 429 
drosophilids which demonstrate that short term changes in temperature, either directly or 430 
indirectly, elicits dramatic changes in allele frequencies in the wild and in the laboratory 431 
(Rodríguez-Trelles et al. 2013; Tobler et al. 2014; Mallard et al. 2018; Barghi et al 2019). 432 
 433 
The flipped model. In the analysis presented above, we used the time of year that flies were 434 
collected to designate season. However, our leave-one-out analysis and thermal limit model 435 
suggest that the designation of season based on time of year may not completely reflect the 436 
recent selective history of the populations that we sampled. Notably, our analysis suggests that 437 
some populations experienced a particularly warm spring or a cold fall prior to sampling, and 438 
that such temperature extremes elicit dramatic changes in allele frequencies that are opposite 439 
from what would be expected from the calendar time season designation. We therefore reasoned 440 
that our ability to detect seasonally variable polymorphisms, along with our ability to assess 441 
general signals of seasonal adaptation, would improve if we flip the season label of the 442 
populations that show negative genome-wide predictability scores. 443 
  444 
To evaluate this idea, we flipped the season label for the four populations with negative genome-445 
wide predictability (Figure 2C) and calculated seasonal p-values using a GLM (hereafter, the 446 
‘flipped model’). As expected, the genome-wide distribution of p-values from the flipped model 447 
is more heavily enriched for low p-values than the original model. The flipped model out-448 
performs the original model in the permutation analysis, where there are more SNPs with 449 
p<0.001 than 100% of 100 permutations for the flipped model (compared to 98% of the 450 
permutations for the original model; Figure 2A). We also re-calculated the RFM statistic after 451 
flipping the season labels on these four populations and again find a stronger signal than for the 452 
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original model and greater than 100% of the permutations (Figure 2B). Of course, the stronger 453 
signal of seasonal allele frequency change in the flipped model is a foregone conclusion given 454 
the particular way we are changing the seasonal labels.  455 
 456 
To provide an orthogonal assessment of whether flipping the seasonal label for these four 457 
populations improves signals of seasonal adaptation we re-ran our predictability analysis. In this 458 
re-analysis, we calculated the predictability score for each ValidationSet population using the 459 
flipped Core20 model as our discovery set. The observed predictability scores estimated using 460 
the flipped Core20 model is more strongly correlated with the model-based estimates from our 461 
thermal limit model: the median correlation between model-estimated and observed 462 
predictability scores of r = 0.51 (original model: r = 0.37). This correlation coefficient is greater 463 
than 83% of the best-fit permuted models (compared with 68.8% for the original model; 464 
minimum 0.25, maximum 0.73; Supplemental Figure 6ABC). Thus, the use of the flipped model 465 
as a discovery set increased the predictive power of our thermal limit model in an independent 466 
dataset. 467 
 468 
Another way to assess the increased predictive power of the flipped model is to examine the 469 
overlap between seasonal SNPs identified here with those identified by Bergland et al. (2014). 470 
Two populations are shared between those included in the Core20 and those analyzed in 471 
Bergland et al. (2014) and these shared populations could drive the signal of enrichment that we 472 
potentially observe. Accordingly, we identified the top 1% most seasonally variable SNPs from a 473 
model fit with 18 of the Core20 populations that do not overlap with those used in the earlier 474 
Bergland et al. (2014) study. These top SNPs identified here with 18 populations are marginally 475 
enriched for those identified by Bergland et al. (2014) relative to control SNPs matched for 476 
chromosome, heterozygosity, and average recombination rate (log2 odds ratio ± SD = 0.59 ± 477 
0.37, pperm = 0.0512). Applying the flipped season labels for this reduced Core20 set substantially 478 
improves the overlap (log2OR ± SD = 1.02 ± 0.39; pperm = 6e-4). Note that the Pennsylvanian 479 
populations studied by Bergland et al. (2014) were not among those populations with season 480 
labels altered in our flipped model.  481 
 482 
Taken together, we conclude that there is support for the idea that the flipped model generates a 483 
higher confidence set of seasonally varying SNPs. For the remainder of our analyses, presented 484 
below, we used seasonal SNPs identified by both the original and flipped models. In the results 485 
that follow we find that the use of the flipped model generally increases the strength of the 486 
signals that we observe, suggesting improved biological relevance of the flipped model. 487 
 488 
Latitudinal differentiation parallels signatures of seasonal adaptation. Phenotypic and genetic 489 
analyses have demonstrated local adaptation among populations of D. melanogaster sampled 490 
across latitudinal clines (see Adrion et al. 2015 and references therein). Signals of local 491 
adaptation across latitudinal gradients have even been suggested to result from clines in 492 
seasonality (Rhomberg & Singh 1989): higher latitudes are more stressful as a consequence of 493 
severe winters and shorter growing seasons whereas more benign conditions are found in tropical 494 
and sub-tropical areas. Thus, spatial heterogeneity in selection pressures associated with 495 
temperate environments may be paralleled by seasonal fluctuations in similar selection pressures.  496 
 497 
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Figure 3. 498 
 499 

 500 
 501 
Figure 3. Concordance rates of seasonal and clinal polymorphisms. A) Seasonal sites were 502 
identified using 18 of the Core20 populations to avoid a shared collection locale (Linvilla, 503 
Pennsylvania) with populations used for clinal analysis. The y-axis represents the concordance 504 
rate of allele frequency change across time and space, assuming that the winter favored allele is 505 
the same as the allele favored in high latitudes. Seasonal sites were also identified in B) 506 
California populations (n=3) and C) Europe populations (n=3) and contrasted with clinal 507 
polymorphisms identified along the East Coast of North America. Shaded areas are the 96% 508 
confidence intervals of 100 matched control datasets. Stars represent significant differences 509 
between the original and flipped concordance rates based on a Fisher’s exact test (nominal p < 510 
0.05). 511 
 512 
Parallel changes in phenotype and genotype across time and space have been observed in D. 513 
melanogaster (Cogni et al. 2014; Bergland et al. 2014; Paaby et al. 2014; Cogni et al. 2015; 514 
Kapun et al. 2016; Rajpurohit et al. 2017; 2018; Kapun & Flatt 2019). To assess whether we 515 
observe similar general patterns in our data, we tested whether SNPs that are clinal and seasonal 516 
below a range of significance thresholds change in allele frequency in a parallel fashion. Parallel 517 
changes in allele frequency across time and space occur when the sign of allele frequency change 518 
between spring and fall is the same as between high- and low-latitude populations. We re-519 
identified seasonally varying SNPs using 18 of the Core20 populations to avoid a shared 520 
collection locale with the clinal set (see Supplemental Table 1). Seasonally varying SNPs were 521 
identified among these 18 populations using both the original and flipped seasonal labels. 522 
Clinally varying polymorphisms were identified using single-locus models (GLM, with allele 523 
frequency regressed against latitude) as well as models that account for population structure 524 
(BayEnv2; Günther & Coop 2013). 525 
 526 
We find that the rate of parallelism increases with increasingly stringent seasonal and clinal 527 
significance thresholds (Figure 3A) using either model of clinality (Supplemental Figure 7). 528 
Parallel changes in allele frequency between seasons and clines is similar to previously published 529 
genome-wide (Bergland et al. 2014) and locus specific results (Stalker 1976; Stalker 1980; 530 
Cogni et al. 2014; Kapun et al 2016). Parallelism rates are higher when assessing seasonal 531 
variation using the flipped model as compared to when we use the original model (Figure 3A). 532 
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This increase in parallelism rates using the flipped model can be taken as yet another strong, and 533 
orthogonal, evidence that the flipped model generates a higher confidence set of seasonal SNPs.  534 
 535 
Based on these analyses, there is clear evidence that parallel changes in allele frequency occur 536 
across time and space. Are these parallel changes driven by large scale seasonal migration? To 537 
address this question, we identified seasonal SNPs using populations that are geographically and 538 
genetically isolated from the East Coast (Campo et al. 2013; and see Figure 1A). We assessed 539 
seasonal changes in allele frequency separately for Californian (n=3) and European (n=3) 540 
populations and tested for parallelism with polymorphisms that vary along the East Coast of 541 
North America. One of the Californian populations contained a ‘flipped’ sample and so we also 542 
re-assessed seasonal changes in allele frequency for those populations using a flipped model. We 543 
found a strong signal of parallelism between seasonal and latitudinal variation in both the 544 
California and the Europe comparisons (Figure 3B,C). For the Californian populations, 545 
parallelism was greater for the flipped model than for the original model (Figure 3B).  546 
 547 
These results suggest that parallel changes in allele frequency between seasons and across the 548 
latitudinal cline is not exclusively driven by seasonal migration in the spring from neighboring 549 
southern populations. Our conclusion is consistent with patterns of enrichment of jointly 550 
seasonal and clinal polymorphisms (Supplemental Figure 8). Notably, for the flipped seasonal 551 
model, there is weak evidence of an enrichment of highly seasonal and clinal polymorphisms, a 552 
pattern otherwise expected if seasonal migration was a strong determinant of seasonal evolution. 553 
Indeed, strongly seasonal sites identified from the flipped model are enriched for moderately 554 
clinal polymorphism, and vice versa, a pattern ostensibly consistent with independent seasonal 555 
evolution among populations arrayed along a spatial gradient. In contrast, seasonal sites 556 
identified with the original seasonal model, in which seasons are defined by calendar time and 557 
not temperature, are significantly enriched for strongly clinal polymorphisms suggesting that 558 
seasonal migration may contribute to certain aspects of seasonal evolution. We note, however, 559 
that the observed enrichment of seasonal and clinal polymorphisms only represents a small 560 
fraction of all seasonal sites: for instance, using the original model at a joint quantile of 1%, we 561 
expect ~84 (95% CI based on bootstrap resampling of matched control polymorphism: 63-104) 562 
of the top 1% (n=~7500) seasonally varying SNPs to be among the top 1% of clinal sites; 563 
however, we observe ~115 to be clinal. Thus, while we observe a significant overlap of seasonal 564 
and clinal polymorphisms the vast majority of strongly seasonal polymorphisms are not strongly 565 
clinal, again suggesting that clinal and seasonal evolution in D. melanogaster are largely 566 
decoupled. Additionally, our analysis presented here assumes that patterns of clinal variation 567 
along the West Coast of North America and Europe are distinct from patterns of clinal variation 568 
along the East Coast; whether or not this assumption is valid remains to an open question (but 569 
see Oakeshott et al. 1982). 570 
 571 
The strength and genomic extent of seasonal adaptation. Our results suggest that seasonal 572 
adaptation is driven, at least in part, by changes in allele frequency at a shared set of 573 
polymorphisms spread throughout the genome. Here, we investigate the magnitude of change 574 
and the number of sites that vary seasonally.  575 
 576 
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 577 
 578 
Figure 4. The strength and magnitude of seasonal adaptation. A)  Average spring/fall allele 579 
frequency change for each of the top 1% of seasonally varying SNPs (red/blue) and non-580 
seasonal, matched control SNPs (black), as a function of the folded spring allele frequency. 581 
Lines represent a moving average across SNPs with a given spring allele frequency. BC) ABC 582 
estimates for the proportion of sites affected by seasonal selection and the associated s for the 583 
original (A) and flipped model (B), showing the sum of squared distances (SSD) between the 584 
observed and simulation RFM X2 test statistic distributions (see Materials and Methods for 585 
details), over varying strengths of selection and proportion of sites under selection. Yellow 586 
points represent the top 1% of simulated parameter value combinations, reflecting an ABC 587 
acceptance rate of 0.01). 588 
 589 
To gain basic insight into the magnitude of seasonally variable changes in allele frequency, we 590 
first examined the difference in allele frequencies between seasons for the most significantly 591 
seasonal polymorphisms. The top 1% most seasonally variable SNPs identified by the GLM 592 
change in frequency by a difference of 4 and 8%, on average (Figure 4A). This change is not 593 
different between the original and flipped models (Figure 4A), but is substantially smaller than 594 
estimates of ~20% reported by Bergland et al. (Bergland et al. 2014).  595 
 596 
To robustly estimate the strength and extent of seasonally varying selection, we used our semi-597 
parametric RFM test in an Approximate Bayesian Computation (ABC) analysis. This analysis 598 
allows us to estimate the fraction of the genome affected by seasonal adaptation and the average 599 
strength of seasonal selection by comparing the observed distributions of the test statistic from 600 
both the flipped and original models to simulations where a fraction of polymorphisms was 601 
randomly selected to change in frequency between seasons with a given selection coefficient (see 602 
Materials and Methods for more details). Using the sum of the square distances between the 603 
observed and simulated test statistic as our metric, we identified which parameter estimates were 604 
most likely to produce the observed genome-wide distribution of the test statistic. The model we 605 
employ for this analysis is based on one generation per season and assumes that every site in the 606 
genome changes in frequency independently and is subject to an equal strength of selection. Note 607 
that this model is appropriate here as we aim to estimate the proportion of both causal and linked 608 
SNPs that change in frequency due to seasonal selection and not to assess the number of causal 609 
sites. We note that our analysis is potentially biased because we are conditioning on 610 
polymorphisms that are present in all populations tested, including North American and 611 
European ones with different long-term dynamics and histories of colonization, expansion, and 612 
admixture (Keller 2007; Bergland et al. 2016; Kapopoulou et al. 2018). The filtering requirement 613 
that we impose may therefore bias our SNP set to those which are subject to balancing selection, 614 
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causing an upward bias in our estimates. We note, however, there are no qualitative differences 615 
found as a function of filtering for common SNPs (compare Figure 4B to Supplemental Figure 616 
9).  617 
 618 
We find a ridge of best fit parameters, with a trade-off between the proportion of sites under 619 
selection and strength of selection (Figure 4B,C). For the original model, the data are consistent 620 
with a minimum of ~1% of sites subject to an effective cumulative seasonal selection coefficient 621 
(“s”, for simplicity) of ~0.3, or a maximum of ~10% of sites at a s of ~0.05. For the flipped 622 
model, the data are consistent with a minimum of ~2.5% at an s of ~0.3 and a maximum of ~5% 623 
at an s of ~0.2. As expected, the estimated strength of selection and the fraction of the genome 624 
affected by seasonally varying selection is greater for the flipped model than the original model 625 
(Figure 4B vs. 4C). In order to assess whether and to what extent our estimates are confounded 626 
by clustering of seasonally varying polymorphisms, we performed the same analyses using 627 
datasets of subsampled polymorphisms every 1Kb and 5Kb (Supplemental Figure 10). We found 628 
no substantial shift in our parameter estimates across subsampled datasets.  629 
 630 
The distribution of seasonally variable SNPs throughout the genome. The analyses presented 631 
above suggest that seasonal adaptation affects patterns of allele frequency genome-wide. We 632 
therefore aimed to characterize several aspects of the genomic distribution and functional 633 
enrichment of seasonally varying polymorphisms. 634 
 635 
First, we examined seasonal changes in the frequency of the major, cosmopolitan inversions that 636 
segregate in wild D. melanogaster populations. We estimated inversion frequency from pooled 637 
allele frequency data by calculating the average frequency of SNPs previously identified as being 638 
closely linked to these inversions (Kapun et al. 2014). With the exception of In(2L)t, we find that 639 
most inversions are rare in the populations that we examined, segregating at less than 15% 640 
frequency in most populations (Supplemental Figure 11). Using a simple sign test, we find that 641 
no inversion consistently changes in frequency using season labels as defined in either the 642 
original or the flipped model. We note that In(2R)Ns is at a higher frequency in the fall compared 643 
to the spring in a quarter of the Core20 populations (pbinomial-test = 0.048; Bonferroni adjusted p = 644 
0.28), consistent with previously reported signals of seasonal change (Stalker 1976; Stalker 645 
1980; Kapun et al. 2016; Kapun & Flatt 2019). However, In(2R)Ns segregates at a lower 646 
frequency (<15% across populations surveyed) than many of the most strongly seasonal SNPs on 647 
chromosome 2R (over 85% of the top seasonally varying SNPs have minor allele frequency 648 
greater than 15%), and seasonal changes of In(2R)Ns are relatively mild compared to other 649 
seasonally varying polymorphisms (cf. Figure 4A Supplemental Figure 11). We conclude that 650 
inversions are not the exclusive drivers of seasonal adaptation in D. melanogaster, although we 651 
cannot rule out their role in contributing to seasonal adaptation.  652 
 653 
To determine if seasonally variable SNPs are non-randomly distributed throughout the genome, 654 
we examined the abundance of the top 1% of seasonally variable SNPs (GLM model; n=7,748) 655 
among bins of 100 consecutive SNPs. We found significant over-dispersion in the distribution of 656 
seasonal SNPs per bin compared to both the theoretical and the matched control distributions 657 
(Figure 5A; Kolmogorov-Smirnov test p=10-16), indicating that seasonal SNPs are more 658 
clustered than expected, consistent with an elevated seasonal Fst surrounding the most strongly 659 
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seasonal sites (Figure 5B). We cannot determine to what extent this clustering is due to linkage 660 
to causal SNPs or to the clustering of causal seasonal variants. The distribution of control 661 
polymorphisms was indistinguishable from the binomial expectation in our analysis 662 
(Kolmogorov-Smirnov test p=1). 663 
 664 
Although seasonally variable SNPs are non-randomly distributed throughout the genome, they 665 
are nonetheless broadly distributed. To further quantify the distribution of these sites, we 666 
calculated the probability of observing at least one of the top 1% most seasonally variable SNPs 667 
among 1000 randomly selected genomic windows ranging in size from 100bp to 100Kb. We find 668 
that seasonally variable SNPs are distributed across all autosomes but are enriched on 669 
chromosome 2L (Figure 5C,D). Across the window sizes tested, the probability of observing at 670 
least one top seasonal SNP in any given window is less than expected by chance given a Poisson 671 
distribution, consistent with clustering at both large and small genomic scales (Figure 5C). 672 
Despite significant clustering, seasonally variable SNPs show broad genomic distribution, as 673 
evidenced by a >75% chance of identifying a seasonally variable SNP in any randomly selected 674 
50Kb window (Figure 5C). The general signal of over-dispersion is similar for both the flipped 675 
and original models (Figure 5A,C). The broad genomic distribution and large number of 676 
seasonally variable SNPs suggests that seasonal adaptation is highly polygenic. A polygenic 677 
model is consistent with the view that many of the traits underlying seasonal adaptation (Schmidt 678 
& Conde 2006; Behrman et al. 2015; Betini et al. 2017; Rajpurohit et al. 2017; Noh et al. 2017; 679 
Behrman et al. 2018; Rajpurohit et al. 2018), and adaptation to temperate environments in 680 
general (Rand et al. 2010; Levine et al. 2011; Chen et al. 2012; Rajpurohit et al. 2013; Cockerell 681 
et al. 2014; Svetec et al. 2015; Chakraborty & Fry 2016; Juneja et al. 2016; Bozicevic et al. 682 
2016; Svetec et al. 2016), are themselves quantitative traits (Mackay & Huang 2018).  683 
 684 
Next, we tested whether the seasonally varying polymorphisms that we identify here using either 685 
the original or flipped model are enriched among different functional annotation classes 686 
(Supplemental Figure 12). The top 1% most seasonally varying polymorphisms are not 687 
significantly enriched for any functional class that we tested. The top 5% of seasonally varying 688 
polymorphisms are weakly enriched for non-synonymous sites as compared to matched control 689 
polymorphisms (enrichment = 8%, 95% CI = 2-14%, nominal p=0.01). The ratio of non-690 
synonymous to synonymous polymorphisms among the top 5% of seasonal SNPs is also 691 
marginally higher than that for matched controls (enrichment = 7%, 95% CI = 1 − 15%, p=0.03). 692 
We found no significant enrichment or under-enrichment for intergenic regions, introns, UTR's, 693 
or coding regions.  694 
 695 
Figure 5. 696 
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 697 
 698 
Figure 5. Genomic distribution of seasonal SNPs. A) Distribution of seasonal sites (quantile: 699 
0.01) per 100 SNP window. The observed distribution (red and blue) is over-disbursed compared 700 
to both the theoretical distribution (dark grey) and that of matched controls (light grey). Error 701 
bars are 2 standard deviations. B) Spring/fall genetic differentiation (Fst) at highly seasonal SNPs 702 
(distance = 0) and for SNPs with increasing distance from a seasonal SNP. Also plotted is the 703 
mean (black) and 96% confidence interval (grey area) of 100 matched controls. C) Proportion of 704 
windows with at least one seasonal SNP, with increasing window size (Kb). The observed 705 
proportions (solid lines) and expected theoretical proportion (dashed line) is plotted for each 706 
chromosome arm. D) Sliding window analysis of regions with high densities of seasonal SNPs. 707 
Open circles denote regions of the genome with an excess of seasonally variable SNPs following 708 
multiple testing correction. Red lines, above the x-axis, represent the strength of enrichment of 709 
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strongly seasonal sites as identified by the original model. Blue lines, below the x-axis, represent 710 
the enrichment of strongly seasonal sites identified in the flipped model. 711 
 712 
We performed a sliding-window analysis to identify regions of the genome with an excess of 713 
seasonally varying polymorphisms. We found 25 regions of the genome with a significant excess 714 
of seasonally varying polymorphisms for either model. The locations of these regions change 715 
substantially between the ‘original’ and ‘flipped’ models (Figure 5D). For simplicity, we focus 716 
the remainder of our analysis here on the regions identified using the ‘flipped’ model, however 717 
the coordinates of all identified regions of both the ‘original’ and ‘flipped’ are reported in 718 
Supplemental Table 4. Regions of the genome enriched for seasonally variable SNPs are found 719 
on both arms of chromosome 2 and deficient along chromosome 3 (χ2 = 22.9, p = 4e-5). 720 
Intriguingly, one of 40 most seasonally variable regions identified with the ‘flipped model’ 721 
contains the genes Tep2 and Tep3, which we have previously associated with seasonal variation 722 
in immune function in flies (Behrman et al. 2018). The Tep2/3 region contains 11 of the top 723 
seasonally variable SNPs, ranking this region among the top 0.1% genomic windows. The 724 
genomic window surrounding couch-potato (cpo), a seasonally varying gene (Cogni et al. 2014) 725 
found to be associated with reproductive dormancy (Schmidt et al. 2008), has seven of the top 726 
seasonally variable SNPs ranking it among the top 1% of windows genome-wide. Note that the 727 
enrichment of seasonal SNPs surrounding cpo is not significant after conservative, multiple 728 
testing correction (padjusted = 1) which would be appropriate for de novo discovery of such 729 
regions. If we treat cpo as the true seasonal locus, this result implies that we currently lack power 730 
to discover many causal genes involved in seasonal adaptation. There was no excess of seasonal 731 
SNPs surrounding the insulin-like receptor gene (InR), wherein seasonally variable indels and 732 
SNPs have been previously reported and linked to variation in life-history traits (Paaby et al. 733 
2014).  734 
 735 
Gene-ontology analysis (Huang et al. 2009a; b) of the 198 genes within the 25 regions we 736 
identified show significant enrichment for different biological processes, cellular components, 737 
and molecular function following multiple testing correction (Supplemental Table 5). For 738 
instance, we find that genes associated with several molecular function categories including 739 
inositol metabolism and phosphorylation are enriched following multiple testing correction 740 
(padjusted < 0.013). This result is prima facie consistent with a role of inositol related compounds 741 
in drosophilid overwintering and cold-tolerance (Vesala et al. 2012). However, extreme caution 742 
should be taken when interpreting this result, as in any GO analysis (Pavlidis et al. 2012), as it is 743 
driven by a set of three, closely linked genes (CG17026, CG17028, CG17029). 744 
 745 

Discussion 746 
In this study we identify genomic signatures of seasonal adaptation in D. melanogaster. Our 747 
approach relies on the detection of parallel changes in allele frequency from spring to fall across 748 
20 populations. We use coarse definitions of spring and fall, with spring as the time of year close 749 
to when D. melanogaster first becomes locally abundant and fall as the time close to the end of 750 
the growing season but before populations become too scarce to sample (Ives 1970; Behrman et 751 
al. 2015). We sampled populations across a wide geographic range, such that the length of 752 
growing season as well as other environmental conditions vary substantially. Despite this 753 
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environmental heterogeneity and the coarseness of the definitions of spring and fall, we detect a 754 
clear signal of parallel seasonal allele frequency shifts across these populations.  755 
 756 
Our analysis revealing pervasive seasonal adaptation would not be possible without accurate 757 
allele frequency estimates (Zhu et al. 2012), genome-wide, from paired spring-fall samples 758 
collected across D. melanogaster’s range. Our approach used less expensive pooled sample 759 
sequencing which were collected by the DrosRTEC consortium, to facilitate seasonal sampling 760 
across broad spatial scales, which is mirrored in Europe by the DrosEU consortium (Kapun et al. 761 
2018).  762 
 763 
By detecting consistent seasonal changes in allele frequencies among multiple populations in 764 
North America and Europe, we demonstrate that seasonal adaptation is a general phenomenon of 765 
temperate D. melanogaster populations, and not restricted to a single orchard (Linvilla Orchard, 766 
Media, Pennsylvania; Schmidt & Conde 2006; Cogni et al. 2014; Bergland et al. 2014; Behrman 767 
et al 2015), biogeographic region (East Coast of North America; Behrman et al 2018), or even a 768 
continent. Furthermore, the parallel frequency shifts across multiple populations that we describe 769 
here suggests that seasonal adaptation across the whole range is at least partly driven by a 770 
consistent set of loci. Note that we generally lack power to detect alleles that cycle in a small 771 
subset of populations or are private to a single population. Therefore, we focus only on 772 
polymorphisms that segregate in all populations – and which therefore have an overall high 773 
population frequency - and only look at the signal of parallel cycling. Moreover, we did not 774 
attempt to investigate cycling of structural variants such as indels and transposable elements that 775 
are known to generate adaptive mutations at an appreciable rate (reviewed in Barrón et al. 2014). 776 
Thus, our conclusions are limited to the shared genetic basis of seasonal adaptation as revealed 777 
by the cycling of common SNPs.  778 
 779 
Our ability to detect a shared genetic basis of seasonal adaptation across these populations 780 
implies that our admittedly crude definitions of spring and fall nonetheless carry biological 781 
meaning. It also implies that there are generic features in the environment that exert consistent 782 
selective pressures despite the environmental heterogeneity across sampling times and locations. 783 
It is possible that such generic selective pressures relate to temperature, humidity, population 784 
density, resource availability, or other biotic and abiotic factors. However, what these selective 785 
pressures are specifically and how they act across seasons remains to be determined. Note, 786 
however, that our results here (Figure 2) and elsewhere (Bergland et al. 2014) suggest that 787 
temperature extremes may be a strong proximate or ultimate selective agent.  788 
 789 
Although we identified consistent patterns of evolution between spring and fall, not all 790 
populations fit the general pattern, with some showing strong signals of reversed allele frequency 791 
change (Figure 2C). These ‘flipped’ populations are geographically dispersed (California, 792 
Kansas, Michigan, and Massachusetts) with samples collected over two non-consecutive years 793 
(2012, 2014). We demonstrated that this flipping is associated with particularly warm springs 794 
and particularly cool falls prior to sampling. Indeed, the ecological model we built using 795 
information about local temperature extremes allowed us to predict the sign and magnitude of 796 
allele frequency changes genome-wide for additional populations not used to build the model 797 
(Figure 2F, Supplemental Figure 6). We thus hypothesize that, at the time of sampling, some of 798 
our spring samples had already experienced sufficiently strong selection in the generically 799 
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summer way and that the fall samples had experienced selective pressures in the generically 800 
winter way. This would result in seasonal alleles in the spring already showing fall-like patterns 801 
and the ones in the fall showing spring-like patterns. More generally, it is likely that natural 802 
selection does not push populations in the same consistent direction across the growing season 803 
and that there are phases within the growing season with distinct ecological and selection 804 
pressures. In the future, more dense temporal sampling across the growing season might help 805 
map the action of natural selection to more specific environmental factors. Taken at face value 806 
the implication is that metazoan populations are capable of adaptive tracking on extremely short 807 
temporal scales on the order of less than 10 generations. These data thus further argue that 808 
evolution and ecology do often operate on similar timescales (Hendry 2009) and evolutionary 809 
adaptation cannot be generally ignored a priori in demographic or ecological investigations 810 
(Rudman et al. 2017).  811 
 812 
Our analysis allowed us to estimate the proportion of the genome affected by seasonal cycling 813 
and the magnitude of seasonal fluctuations. Our best guess is that the frequency of ~4% of 814 
common polymorphisms are affected by seasonally variable selection coefficients, cumulatively 815 
on the order of ~20% per season selection. However, there is a large range of plausible values 816 
that tradeoff the number of sites (1-10% of all sites) with the strength of selection (10-30% per 817 
season). Note that we do not claim that these 1-10% of common polymorphisms are causal nor 818 
that they cycle independently. In fact, we speculate that the vast majority of the seasonal sites are 819 
only linked to causal loci and many cycle together by fluctuating linked selection. Indeed, the 820 
number of seasonal loci is implausibly large for all of them to be individually causal (Bergland et 821 
al. 2014) under any of these scenarios. The lack of strong enrichment for specifically functional 822 
sites such as non-synonymous compared to synonymous loci (Supplemental Figure 12) is also 823 
consistent with the vast majority not being causal. At the same time, our model of unlinked loci 824 
captures the breadth and magnitude of such linked selection and demonstrates that seasonal 825 
adaptation is affecting, either directly or indirectly, a large number of variants across a range of 826 
populations. Given that we can only detect consistent pattern of seasonal cycling we are likely to 827 
underestimate the impact of linked seasonal selection. Seasonal adaptation therefore constitutes a 828 
profound stochastic evolutionary force acting on linked variation that is likely to rival in strength 829 
genetic draft due to selective sweeps and should be much stronger over seasonal timescales than 830 
random genetic drift in populations as large as D. melanogaster (Karasov et al. 2010).  831 
 832 
While we cannot determine the precise number and location of causal sites in the present study, 833 
the the broad distribution of the seasonal SNPs across the genome implies that seasonal 834 
adaptation is highly polygenic. Indeed, there is greater than a 75% chance that a random 50Kb 835 
region of the genome will have at least one strongly seasonal site, reminiscent of the data on the 836 
density of GWAS hits in human populations (Boyle et al. 2017). Therefore, the cycling we 837 
observe cannot be due to a single causal region such as an inversion or a region of particularly 838 
low recombination. At the same time, seasonal SNPs are significantly clustered, suggesting that 839 
some genomic regions are more likely to contain one or more causal sites. We conducted a 840 
screen for regions of the genome with an excess of highly seasonal SNPs (Figure 5D). We found 841 
some outlier regions contain genes previously linked to seasonally variable phenotypes ( 842 
immunity and Tep2/Tep3 - Behrman et al. 2018;  reproductive dormancy - cpo (Cogni et al. 843 
2014; Schmidt et al. 2008). Additional sampling may reduce the false positive rate and should 844 
help us map individual seasonally causal loci.  845 
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 846 
Our observation that seasonal adaptation is polygenic and rapid suggests that there exists a 847 
substantial number of common polymorphisms that are subject to strong fluctuating selection 848 
and which are nonetheless maintained across the range of D. melanogaster. The most 849 
straightforward explanation of these results is that these polymorphisms are subject to some form 850 
of balancing selection (Levene 1953; Wittmann et al. 2017; Bertram & Masel 2019). Pervasive 851 
balancing selection is consistent with the recent realization that simple models of mutation-852 
selection balance are inconsistent with the extent of quantitative genetic variation in a variety of 853 
fitness related traits (Charlesworth 2015). A full understanding of the genomic consequences of 854 
balancing selection caused by strong fluctuating selection will require the identification of 855 
individual causal loci. Doing so will require substantial additional sampling across seasons as 856 
well as from closely and broadly distributed locales throughout the whole geographic range of D. 857 
melanogaster in combination with the genetic mapping of seasonally fluctuating phenotypes 858 
(Schmidt & Conde 2006; Behrman et al. 2015; Rajpurohit et al. 2017; Behrman et al. 2018; 859 
Rajpurohit et al. 2018). Finally, such efforts can be strongly augmented by manipulative field 860 
experiments and functional work to investigate the molecular effects of putatively causal genetic 861 
variants. All of this work will need to be done in the context of other processes that underlie 862 
persistence of populations in the face of environmental heterogeneity such as phenotypic 863 
plasticity and bet hedging (Via & Lande 1985; David et al. 1997; Ayrinhac et al. 2004; Bergland 864 
et al. 2008; MacMillan et al. 2015; Overgaard et al. 2015; Kain et al. 2015) as it is becoming 865 
clear that all of these processes are occurring contemporaneously with seasonal adaptation.  866 
 867 

Materials and methods 868 

Population sampling and sequence data. We assembled 72 samples of D. melanogaster, 60 869 
representing newly collected and sequenced samples and 26 representing previously published 870 
samples (Bergland et al. 2014; Kapun et al. 2016). Locations, collection dates, number of 871 
individuals sampled, and depth of sequencing for all samples are listed in Supplemental Table 1. 872 
For each sample, members of the Drosophila Real-Time Evolution Consortium collected an 873 
average of 75 male flies using direct aspiration from substrate, netting, or trapping at orchards 874 
and residential areas. Flies were confirmed to be D. melanogaster by examination of the male 875 
genital arch. We extracted DNA by first pooling all individuals from a sample, grinding the 876 
tissue together in extraction buffer, and using a lithium chloride – potassium acetate extraction 877 
protocol (see Bergland et al. 2014 for details on buffers and solutions). We prepared sequencing 878 
libraries using a modified Illumina protocol (Bergland et al. 2014) and Illumina TrueSeq 879 
adapters. Paired-end 125bp libraries were sequenced to an average of 94x coverage either at the 880 
Stanford Sequencing Service Center on an Illumina HiSeq 2000, or at the Stanford Functional 881 
Genomics facility on an Illumina HiSeq 4000.  882 
 883 
The following sequence data processing was performed on both the new and the previously 884 
published data. We trimmed low-quality 3’ and 5’ read ends (sequence quality < 20) using the 885 
program cutadapt v1.8.1 (Martin 2011). We mapped the raw reads to the D. melanogaster 886 
genome v5.5 (and for D. simulans genome v2.01, flybase.org) using bwa v0.7.12 mem 887 
algorithms, with default parameters (Li & Durbin 2009), and used the program SAMtools v1.2 888 
for bam file manipulation (functions index, sort, and mpileup) (Li et al. 2009). We used the 889 
program picard v2.0.1 to remove PCR duplicates (http://picard.sourceforge.net) and the program 890 
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GATK v3.2-2 for indel realignment (McKenna et al. 2010). We called SNPs and indels using the 891 
program VarScan v2.3.8 using a p-value of 0.05, minimum variant frequency of 0.005, minimum 892 
average quality of 20, and minimum coverage of 10 (Koboldt et al. 2012). We filtered out SNPs 893 
within 10bp of an indel (they are more likely to be spurious), variants in repetitive regions 894 
(identified by RepeatMasker and downloaded from the UCSC Genome browser), SNPs with a 895 
median frequency of less than 1% across populations, regions with low recombination rates (~0 896 
cM/Mb; Comeron et al. 2012), and nucleotides with more than two alleles. Because we 897 
sequenced only male individuals, the X chromosome had lower coverage and was not used in our 898 
analysis. After filtering, we had a total of 1,763,522 autosomal SNPs. This set was further 899 
filtered to include only SNPs found polymorphic in all samples (“common polymorphisms”), 900 
resulting in 774,651 SNPs that represent the core set used in our analyses. 901 
 902 
Due to the phenotypic similarity of the species D. melanogaster and D. simulans, we tested for 903 
D. simulans contamination by competitively mapping reads to both genomes. We omitted any of 904 
our pooled samples with greater than 5% of reads mapping preferentially to D. simulans 905 
(Charlottesville, VA 2012, fall; Media, PA 2013 fall). For the remaining samples reads that 906 
mapped better to the D. simulans were removed from the analysis. For the populations used in 907 
this analysis, the average proportion of reads mapping preferentially to D. simulans was less than 908 
1% (see Supplemental Table 1), and there was no significant difference in the level of D. 909 
simulans contamination between spring and fall samples (t-test p=0.90).  910 
 911 
In silico simulation analysis shows that competitive mapping accurately estimates the fraction of 912 
D. simulans contamination. To conduct these simulations, we used a single D. simulans genome 913 
from an inbred line derived from an individual caught California (Signor et al. 2017) and a single 914 
D. melanogaster genome from a DGRP line (Mackay et al. 2012). We used wgsim to generate 915 
simulated short-reads from each genome and mixed these short reads together in various 916 
proportions. We then mapped the short reads back to the composite genome for competitive 917 
mapping, as described above. We calculated contamination rate as the number of total reads 918 
mapping to the D. simulans reference genome divided by the number of reads mapping to both 919 
D. simulans and D. melanogaster. We also calculated the locus specific residual cross mapping 920 
rate by calculating the number of D. simulans reads still mapping to the D. melanogaster genome 921 
even after competitive mapping. These simulations demonstrate that the estimation of the cross- 922 
species mapping is precise (Pearson’s r = 0.9999, p = 1.6 x 10-24, Supplemental Figure 13A), but 923 
underestimates the true contamination rate by ~2%. The level of residual D. simulans 924 
contamination does not correlate with contamination rate and is roughly 9% (Supplemental 925 
Figure 13B). Additionally, the proportion of seasonal sites (top 1%) is not correlated with the 926 
rate of residual mapping of D. simulans reads to the D. melanogaster genome as inferred through 927 
our simulation (r = -0.0026, p=0.93). 928 
 929 
To assess seasonal variation we analyzed population genomic sequence data from 20 spring and 930 
20 fall samples (‘Core20’). These samples represent a subset of the sequenced samples. We used 931 
samples that had both a spring and a fall samples taken from the same locality in the same year. 932 
We also used a maximum of two years of samples for a given locality to prevent the analysis 933 
from being dominated by characteristics of a single population. When there was more than two 934 
years of samples for a given population, we chose to use the two years with the earliest spring 935 
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collection time. This decision was made on the assumption that the earlier spring collection 936 
would better represent allele frequencies following overwintering selection. This left 20 paired 937 
spring/fall samples, taken from 12 North American localities spread across 6 years and 3 938 
European localities across 2 years (Supplemental Table 1). The localities and years of sampling 939 
are as follows: Esparto, California 2012 and 2013; Tuolumne, California 2013; Lancaster, 940 
Massachusetts 2012 and 2014; Media, Pennsylvania 2010 and 2011; Ithaca, New York 2012; 941 
Cross Plains, Wisconsin 2012 and 2014; Athens, Georgia 2014; Charlottesville, Virginia 2014 942 
and 2015, State College, Pennsylvania 2014; Topeka, Kansas 2014; Sudbury, Ontario, Canada 943 
2015; Benton Harbor, Michigan 2014, Barcelona, Spain 2012; Gross-Enzersdorf, Vienna 2012; 944 
Odesa, Ukraine 2013. The four sets of paired spring/fall samples that were not included in the 945 
Core20 set were used for cross-validation (‘ValidationSet’: Media, Pennsylvania 2009, 2012, 946 
2014, Cross Plains, Wisconsin 2013). For comparison of seasonal with latitudinal variation, we 947 
used sequence data from four spring samples along the east coast of the United States 948 
(Homestead, Florida 2010; Hahia, Georgia 2008; Eutawville, South Carolina 2010, Linvilla, 949 
Pennsylvania 2009). We performed a principal components analysis of allele frequency per SNP 950 
per sample using the prcomp function in R (frequency data scaled by SNP). 951 
 952 
GLM identification of seasonal sites. We identified seasonal sites using two separate methods, a 953 
general linear regression model (GLM) and a rank Fisher’s method (RFM). All statistical 954 
analyses were performed in R (R Core Team 2014). To perform the GLM we used the glm 955 
function with binomial error, weighted by the “effective coverage” (Nc)- a measure of the 956 
number of chromosomes sampled, adjusted by the read depth: 957 
 958 

Nc = (1/N + 1/R)-1 959 
 960 
where N is the number of chromosomes in the pool and R is the read depth at that site 961 
(Kolaczkowski et al. 2011; Feder et al. 2012; Bergland et al. 2014; Machado et al. 2016). This 962 
adjusts for the additional error introduced by sampling of the pool at the time of sequencing. The 963 
seasonal GLM is a regression of allele frequency by season (e.g., spring versus fall): 964 
 965 

yi = season + population + ei 966 
 967 
where yi is the allele frequency at the ith SNP, and ei is the binomial error at the ith SNP. 968 
Although the GLM is a powerful test, the corrected binomial sampling variance (Nc) is likely an 969 
anti-conservative estimate of the true sampling variance associated with pooled sequencing 970 
(Machado et al. 2016; Spitzer et al 2019). Therefore, we use the results of this test as a seasonal 971 
outlier test, rather than an absolute measure of the deviation from genome-wide null expectation 972 
of no allele frequency change between seasons.  973 
 974 
RFM identification of seasonal sites. 975 
As a secondary measure of enrichment of seasonally varying sites above neutrality, as well as to 976 
estimate the proportion and average selection coefficient of seasonally varying sites, we used a 977 
method in which calculated combined p-values based on class-based, ranked p-values from a 978 
Fisher’s exact test estimated for each population. In this “rank Fisher’s method” (RFM), we 979 
calculated a per-SNP p-value for a single spring/fall population comparison using a Fisher’s 980 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2019. ; https://doi.org/10.1101/337543doi: bioRxiv preprint 

https://doi.org/10.1101/337543
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

exact test. Then, p-values for either a spring to fall increase in allele frequency or spring to fall 981 
decrease in allele frequency (i.e., each tail tested separately) were ranked among all other SNPs 982 
with the same total number of reads and same total number of alternate reads. The class-based 983 
rank of each SNP becomes its new p-value, providing uniform sets of p-values across the 984 
genome. These rank p-value calculations were made for each of the 20 CoreSet populations, 985 
separately. As the power (minimum p-value) is relative to the number of SNPs being ranked per 986 
bin, and as the bin sizes are equivalent across populations, each population has equivalent power. 987 
We then combine ranked p-values using Fisher’s method for each SNP, taking two times the 988 
negative sum of logged p-values across the 20 spring/fall comparisons (each tail tested 989 
separately). The null distribution for this statistic (X2) is a Chi-squared distribution with degrees 990 
of freedom equal to 40 (two times the number of comparisons). We used the distribution of these 991 
per-SNP X2 test statistics to 1) test for a seasonal signal above noise and 2) perform an ABC 992 
estimation of selection parameters (see below, The strength …). 993 
 994 
Matched controls. With the assumption that the majority of the genome is not seasonal, we can 995 
use matched genomic controls as a null distribution to test for enrichment of different features of 996 
seasonal polymorphisms. The use of matched control SNP sets was employed for tests of 997 
enrichment of clinal polymorphism, enrichment with seasonal SNPs identified by Bergland et al. 998 
(Bergland et al. 2014), and in tests of genomic clustering. We matched each SNP identified as 999 
significantly seasonal (at a range p-values) to another SNP, matched for chromosome, effective 1000 
coverage, median spring allele frequency, inversion status either within or outside of the major 1001 
inversions In(2L)t, In(2R)NS, In(3L)P, In(3R)K, In(3R)Mo, and In(3R)P, and recombination rate. 1002 
We used the same D. melanogaster inversion breakpoints used in Corbett-Detig & Hartl (2012) 1003 
and the recombination rates from Comeron et al. (2012). We randomly sampled 100 of the 1004 
possible matches per SNP (excluding the focal SNP) to produce 100 matched control sets. Any 1005 
SNPs with fewer than 10 possible matches were discarded from the matched control analyses. 1006 
We defined 95% confidence intervals from the matched controls as the 3rd and 98th ranked values 1007 
for the quantity being tested (e.g., percent concordance or proportion of genic classes). 1008 
 1009 

Leave-one-out analysis. To test the general predictability of seasonal change in our dataset, we 1010 
performed a leave-one-out analysis. In this analysis, we performed seasonal regressions for 1011 
subsets of the data, dropping one paired sample and comparing it to a seasonal test of the 1012 
remaining 19. We then measured the percent concordance of spring/fall allele frequency change, 1013 
defined as the proportion of SNPs that agree in the direction of allele frequency change and sign 1014 
of regression coefficient. This was performed 20 times, once for each paired sample.  1015 

 1016 
To estimate genome-wide (or chromosome specific) predictability scores, we calculated the rate 1017 
of change of the concordance score as a function of quantile threshold. To estimate this rate, we 1018 
used the generalized linear model with binomial error, 1019 

concordancei = quantilei + e, 1020 
where ‘concordance’ is the fraction of SNPs falling below the ith quantile threshold of both the 1021 
target (19 population) and test (1 population) models that changed in frequency in a concordance 1022 
fashion and e is the binomial error with weights corresponding to the total number of SNPs 1023 
falling below that threshold. Thus, the genome-wide (or chromosome specific) predictability 1024 
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score is heavily influenced by concordance rates of higher quantiles because that is where the 1025 
bulk of SNPs reside. 1026 
 1027 
The thermal limit model. To test whether heterogeneity in genome-wide predictability scores can 1028 
be explained by aspects of weather, we obtained climate data (daily minimum and maximum 1029 
temperatures) from the Global Historical Climatology Network-Daily Database (Menne et al 1030 
2012). We matched each locality to a weather station based on geographic distance. For the 1031 
Core20 set of populations, three of the collections did not have precise collection dates for one or 1032 
both seasonal collections (Athens, Georgia 2014; Media, Pennsylvania 2010, 2011), or were not 1033 
associated with any climate data from the GHCND database (Odesa, Ukraine); for the 1034 
ValidationSet populations, one of the populations did not have precise collection dates for one of 1035 
both seasonal collections (Media, Pennsylvania 2009). These populations were removed from 1036 
our weather model analysis. 1037 
 1038 
To fit the thermal limit model for the Core20 and ValidationSet populations, we regressed the 1039 
observed predictability score on the number of days above and below the thermal limits using a 1040 
simple linear regression of the form, 1041 
 1042 

PredictabilityScore = CriticalDaysSpring + CriticalDaysFall 1043 
 1044 

and recorded model fit (R2). We calculated the null distribution of R2 values by permuting the 1045 
genome-wide predictability scores across among populations (n=10,000). For each permutation, 1046 
we recorded the maximum R2 across the full range of thermal limits and used the distribution of 1047 
R2 values as a null distribution. Using this null distribution, we then identified which thermal 1048 
limits are more strongly correlated with genome-wide predictability scores than expected by 1049 
chance (pperm). 1050 
 1051 
Predicted predictability scores were calculated using the best fit thermal limit models (pperm < 1052 
0.05). We calculated the median predicted score across the range of models. Confidence intervals 1053 
were calculated using one standard deviation across the range of best fit models. 1054 
 1055 
Latitudinal cline concordance. To identify SNPs that changed consistently in allele frequency 1056 
with latitude (clinal), we first identified SNPs that varied in allele frequency along a 14.4° 1057 
latitudinal transect up the east coast of the United States. We used one spring sample from each 1058 
of the following populations (identified as “Region_City_Year”): PA_li_2011 (39.9°N), 1059 
SC_eu_2010 (33.4°N), GA_ha_2008 (30.1°N), and FL_ho_2010 (25.5°N).  1060 
 1061 

First, we regressed allele frequency with population latitude in a general linear model (glm: R 1062 
v3.1.0), using a binomial error model and weights proportional to the effective coverage (Nc): 1063 
 1064 

yi = latitude + ei 1065 
 1066 
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where yi is the allele frequency at the ith SNP, and ei is the binomial error given the ith at the SNP. 1067 
To confirm the robustness of the clinal GLM results, clinality also was assessed using a second, 1068 
more complex model, that accounts for existing covariance in the dataset (bayenv2: Coop et al. 1069 
2010; Günther & Coop 2013). Results of the seasonal and clinal concordance analysis using the 1070 
bayenv2 model were comparable to that of the GLM model (Supplementary Figure 11) and are 1071 
not presented in the main text. 1072 
 1073 
We then tested the concordance in allele frequency change by season with the allele frequency 1074 
change by latitude. We performed three separate seasonal regressions (see above) for comparison 1075 
with the latitudinal regression: spring verses fall for the 18 non-Pennsylvania paired samples, 1076 
spring versus fall for the three California paired samples, and spring versus fall for the three 1077 
Europe paired samples. With the removal of the Pennsylvania samples, none of these three 1078 
seasonal regressions contained samples from any of the four populations used for the latitudinal 1079 
regression. Taking sets of increasingly clinal and increasingly seasonal SNPs, we assessed the 1080 
proportion of sites that both increase in frequency from spring to fall and increase in frequency 1081 
from north to south or that decrease in frequency from spring to fall and decrease in frequency 1082 
from north to south. We compared this concordance with the concordance of 100 sets of matched 1083 
controls.  1084 
 1085 
The strength and genomic extent of seasonal adaptation. We estimated the proportion of sites 1086 
under selection and the selection strength using the RFM in an ABC analysis (R package abc; 1087 
Csillery et al. 2012) using simulated datasets of neutral and selected sites. To simulate neutral 1088 
SNPs we used the observed spring allele frequency for a given SNP in a given paired sample as 1089 
the “true” allele frequency and performed a binomial draw of the size equal to the spring and of 1090 
the fall samples. This was done across all SNPs for each paired sample, producing a simulated, 1091 
null dataset the same size as the observed dataset, with the same allele frequency distributions as 1092 
the observed data. This simulated dataset will not necessarily reflect the same sampling (i.e., 1093 
drift) process as observed in nature from spring to fall, and as neither the local census nor 1094 
variance effective population size are known, such processes cannot be accurately modeled. 1095 
However, as our rank p-value Fisher’s method relies only on the rank within a paired sample, 1096 
and the consistency of the rank across paired samples, there is not likely to be an artificially 1097 
inflated seasonal signal due to incorrectly estimated sampling error (as there can be for a 1098 
regression p-value; Supplemental Figure 2). 1099 
 1100 
Selected sites were drawn from the same spring allele frequencies and read depths as the neutral 1101 
sites, with the exception that the fall allele frequency was drawn from a new allele frequency, 1102 
following a specified shift from the observed spring frequency by a factor of s: 1103 
 1104 

AFfall = AFspring + AFspring * (1-AFspring) * s 1105 
 1106 

where AF is the allele frequency and s is the cumulative “seasonal selection coefficient” from the 1107 
spring to the fall sample. We use this cumulative s since the true number of generations between 1108 
the spring and fall samples is not known. We simulated datasets with seasonal selection 1109 
coefficients ranging from 0 to 0.5 (in 0.01 increments), and proportions of sites under selection 1110 
ranging from 0 to 0.1 (in 0.001 increments). Each simulated dataset was then analyzed in the 1111 
same manner as the observed data, producing per-dataset distributions of X2 test statistics. For 1112 
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each X2 bin of each dataset, we calculated the proportion of sites greater than expected. To avoid 1113 
double counting, we excluded the bottom half of the distribution (X2<20), which consists of 1114 
negative observed minus expected values and is largely symmetric with the top half. We 1115 
calculated the square difference between the simulation and the observed proportion of sites per 1116 
bin, resulting in 28 summary statistics. We also calculated the sum of squared differences across 1117 
bins, which we refer to as the SSD. ABC parameter estimates were robust to using either all 28 1118 
per-bin summary statistics or the SSD, therefore we reduced our analysis to the single SSD 1119 
summary statistic. We used the rejection method in the abc function, choosing the tolerance level 1120 
of 0.01 based on lowest error in a cross-validation (cv4abc function; Supplemental Figure 14). 1121 
 1122 
Seasonal changes in inversion frequencies. To test whether large cosmopolitan inversions 1123 
change in frequency between spring and fall we calculated the average frequency of SNPs that 1124 
are closely linked to inversion karyotype (Kapun et al. 2014).  1125 
 1126 
Genomic characteristics of seasonal SNPs. We assessed the uniformity of the genomic 1127 
distribution of highly seasonal SNPs by comparing the observed dataset to that of matched 1128 
controls and theoretical null distributions. For this analysis we examined the genomic 1129 
distribution of the top 1% of seasonally varying polymorphisms (n=7,748). We first measured 1130 
the number of seasonal SNPs per bin 100 SNP bin (average of 1 SNP per bin) and compared this 1131 
distribution to that of the mean of 100 sets of matched controls to the expectation from a 1132 
binomial distribution. A distribution that is more strongly peaked around 1 than expected is an 1133 
under-dispersed genomic distribution of seasonal SNPs (more evenly distributed than expected) 1134 
whereas a distribution less strongly peaked around 1 is over-dispersed and indicates clustering of 1135 
seasonal SNPs. We assessed the similarity of the observed and expected distributions using a 1136 
Kolmogorov-Smirnov test. We also assessed this distribution across genomic length scales. We 1137 
calculated the probability of observing at least one highly seasonal SNP among 1000 randomly 1138 
selected genomic windows ranging in size from 100bp to 100Kb. We compared this to the 1139 
expected probability given a Poisson distribution.  1140 
 1141 
We calculated a “seasonal Fst” for each SNP by taking the median of the spring/fall Fst (Weir & 1142 
Cockerham 1984, equations 1:4) values across paired samples. 1143 
 1144 
Data availability. All raw sequence data have been deposited to SRA (BioProject Accession 1145 
#PRJNA308584; individual accession numbers for each sample can be found in Supplemental 1146 
Table 1), a VCF file with allele frequencies from all populations, scripts to conduct analyses 1147 
presented here, and genome-wide SNP statistics for seasonality and clinality are available on 1148 
DataDryad (doi:10.5061/dryad.4r7b826). 1149 
 1150 
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Supplemental Figures 1476 
 1477 

 1478 
 1479 
Supplemental Figure 1. Sampling localities in A) North America and B) Europe for all samples 1480 
collected, regardless of use in the present analysis. Sizes of circles reflect number of samples per 1481 
locality. 1482 
 1483 
 1484 
 1485 
 1486 
 1487 
 1488 
 1489 
 1490 
 1491 
 1492 
 1493 
 1494 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2019. ; https://doi.org/10.1101/337543doi: bioRxiv preprint 

https://doi.org/10.1101/337543
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 

 1495 
Supplemental Figure 2. The effect of artificial increases of sample size on the Core20 seasonal 1496 
analysis using A,C) the rank Fisher’s method and B,D) the GLM analyses. Top row: sample size 1497 
inflated by a fixed amount. Bottom row: sample size inflated by a Poisson sampled amount. 1498 
Shown is the proportion of SNPs in each bin (solid lines) compared with the null expectation 1499 
(dashed line). Black: original dataset. Dark grey: 10 reads added to each sample (same allele 1500 
frequencies). Light grey: 100 reads added to each sample (same allele frequencies).  1501 
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 1508 
Supplemental Figure 3. The enrichment of shared seasonal sites from the leave-one-out 1509 
analysis of the Core20 populations. Each line represents one population, colored by the inferred 1510 
genome-wide predictability score. (A) Enrichment scores for all populations; (B) Enrichment 1511 
scores for populations with significant enrichment (nominal p < 0.05) at a joint significance 1512 
threshold less than 1% (-2). 1513 
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 1518 
Supplemental Figure 4. Predictability of seasonal adaptation, by chromosome. The fraction of 1519 
concordant allele frequency changes from the leave-one-out cross validation analysis of the 1520 
Core20 populations. Each line represents one population, colored by the inferred genome-wide 1521 
predictability score. 1522 
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 1524 
 1525 
Supplemental Figure 5. Correlation between genome-wide predictability scores and per-1526 
chromosome predictability scores.  1527 
  1528 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2019. ; https://doi.org/10.1101/337543doi: bioRxiv preprint 

https://doi.org/10.1101/337543
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 
 

 1529 
 1530 
 1531 

 1532 
 1533 
Supplemental Figure 6. Additional plots related to the predictability analysis. A) Pearson’s 1534 
correlation coefficient between the ValidationSet’s observed genome-wide concordance score 1535 
and their predicted scores for the best-fit permuted models (null) versus observed scores 1536 
generated from the original Core20 model versus the flipped Core20 model. B) Genome-wide 1537 
concordance scores from the ValidationSet of populations in relation to the flipped Core20 1538 
model. C) The best thermal limit models from the Core20 analysis predict genome-wide 1539 
concordance scores of the ValidationSet (diamonds). 1540 
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 1542 

 1543 
Supplemental Figure 7. Comparison of the general linear model (GLM: main text) and the 1544 
bayenv model for assessing clinal and seasonal concordance. The joint quantile is the quantile 1545 
threshold for both the seasonal and the clinal analysis (plot is cumulative). 1546 
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 1557 
Supplemental Figure 8. The enrichment of SNPs found to be both seasonal and latitudinal, 1558 
regardless of concordance, as a function of p-value quantile thresholds. Darker hues indicate a 1559 
greater proportion of concordant SNPs. The percent enrichment is calculated as the percent 1560 
increase in SNPs at a joint quantile threshold over matched controls. A,C) Original dataset. B,D) 1561 
Flipped dataset. A,B) All values, regardless of a significant enrichment. C,D) Only values greater 1562 
than 95% of controls (otherwise, colored white). 1563 
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 1574 

 1575 
Supplemental Figure 9. ABC estimates for the proportion of sites affected by seasonal selection 1576 
and the associated s for the original model without filtering sites found to be monomorphic in 1577 
one or more populations. Plotted is the sum of squared distances (SSD) between the observed 1578 
and simulation RFM X2 test statistic distributions, for varying strengths of selection and 1579 
proportion of sites under selection. 1580 
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 1583 
 1584 

 1585 
 1586 
Supplemental Figure 10. Effect of subsampling on ABC parameter estimates. Top row: original 1587 
dataset. Bottom row: flipped dataset. A,D) No subsampling. B,E) Sampling one SNP per 1Kb. 1588 
C,F) Sampling one SNP per 5Kb.  1589 
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 1601 
Supplemental Figure 11. Inversion frequencies. Each datapoint is a separate population. 1602 
Numbers are the fraction of populations where spring is greater than fall. A) Original dataset. B) 1603 
Flipped dataset. 1604 
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 1606 

 1607 
 1608 
Supplemental Figure 12. Enrichment of genic classes for A) the top 1% and B) top 5% of 1609 
seasonal sites for the original analysis, and C) the top 1% and D) top 5% for the flipped analysis. 1610 
Points represent means and error bars represent 95% CI across100 bootstrapped sets of matched 1611 
control SNPs. 1612 
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 1617 
 1618 
Supplemental Figure 13. Competitive mapping effectively reduces cross species mapping 1619 
between D. simulans and D. melanogaster. (A) The estimated rate of D. simulans contamination 1620 
can be precisely estimated by calculating the number of reads mapping preferentially to the D. 1621 
simulans genome. Estimated contamination rates are ~2% lower than the expected rate. (B) The 1622 
residual cross species mapping rate, i.e. the fraction of D. simulans reads mapping to the D. 1623 
melanogaster genome is roughly consistent at ~9%. 1624 
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 1626 

 1627 
Supplemental Figure 14. Distribution of the summary statistic SSD used in the ABC parameter 1628 
estimation. Red dashed line indicates the cutoff for the top 1% of simulations (corresponds to the 1629 
ABC tolerance level). A) Original dataset. B) Flipped dataset. 1630 
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