








Al-Rfou et al., 2016).

3.2 circuitSNPs: Integrating genetic variant effects

Once we learn the function that connects footprint combinations with open chromatin in a specific
cell-type, the goal is to predict the effect of genetic variants on the overall output. We denote these
genetic variants as circuitSNPs. To achieve this we first consider the effect of a genetic variant on
the footprint inputs using the computational predictions generated by Moyerbrailean et al., 2016a.
In addition to the footprint annotations used in creating our training data (see Section 3.1), the
authors have also annotated 8,011,245 SNPs from the 1000 Genomes Project (1000 Genomes Project
Consortium et al., 2012). These annotations consider if the genetic variant is in a TF footprint and if
it is predicted to alter the prior odds of binding ≥ 20-fold (centiSNP). The annotation is directional,
thus predicting whether the reference allele increases or decreases TF binding at that location. Of
5,810,227 variants in footprints, 3,831,862 were predicted to significantly alter TF binding.

Using the centiSNPs annotation, we construct the core of the circuitSNPs model, by taking into
consideration the direction of predicted effect on TF binding and the model we learned in the previous
section. Specifically, we ask whether binding increases or decreases for a given transcription factor
when the reference/alternate allele for a genetic variant is present in the TF motif. With this in mind,
the circuitSNPs model generates a prediction that is obtained by calculating the log-odds difference
between a “reference prediction” and an “alternate prediction” while taking into consideration its
specific regulatory context considering all the footprints in the region when evaluating the neural
network output. More specifically, for each SNP we generate a prediction for the “reference” and
“alternate” matrix as follows: 1) Similar to how we populated our training data in Section 3.1, we
again create a matrix, X where, at each SNP’s location, we determine all motifs with an overlapping
footprint and set that matrix element Xl,m = 1. 2) For the reference prediction, we “turn off”
footprints if the reference allele significantly decreases binding. That is, elements in each row vector
equal to 1 are set to 0 (See Figure 2). 3) Similarly, for the alternate prediction, we set elements
that the alternate allele significantly decreases binding to a zero. 4) We then use our trained neural
network and classify bot the reference and alternate vector to generate an output. 5) Finally, to
generate the circuitSNPs prediction, we calculate the log-odds difference between the reference and
alternate prediction.

3.3 circuitSNPs prediction validation

We trained and validated our model on the regions of open and closed chromatin described in Lee
et al., 2015, and validated its ability to predict a variant’s effect on binding against two data sets
containing variants associated with inter-individual variation in chromatin accessibility. The first
validation set is a subset of the Degner et al., 2012a dsQTLs, as described in (Lee et al., 2015). For
our second validation, we used 8,590 dsQTLs identified using RASQUAL (Kumasaka et al., 2016) on
the data from Degner et al., 2012a. In the first test, following the procedure described in Section 3.2,
we generate predictions on the dsQTLs that are used for evaluation in Lee et al., 2015. This dataset
contains a small set of all dsQTLs (579 out of 8,902 from Degner et al., 2012a) and 27,735 additional
negative controls. Our second validation approach examined the correlation between the associated
RASQUAL effect-size scores of these data (π-score) and our circuitSNP predictions.
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Figure 2: To generate the circuitSNPs predicted effects for each genetic variant we only consider footprints
that overlap with that variant or are within very close proximity and can interact with each other. We
summarize this information as a vector VF with the same dimensions as that one used for our trained
neural network. We then modify this vector, creating two new vectors, VR and VA, such that each element
in VR that corresponds to a variant in that motif decreasing binding for a reference allele is set to 0, and
each element in VA that corresponds to a decrease in binding for the alternate allele is set to 0, leaving all
other elements unchanged. In this figure, VF = [1, 1, 1, 0, 0, 0, 0, 0], becomes Vref = [1, 1, 0, 0, 0, 0, 0, 0] and
Valt = [0, 1, 1, 0, 0, 0, 0, 0], corresponding to the predicted effects of the variant on motif A and C.

3.4 Using circuitSNP predictions and the retained motifs to exam-
ine co-binding events in DNAse-sensitive QTLs

Conditioning on whether or not the variant is in a true validated dsQTL, and by filtering circuitSNP
predictions as those ≥ |3.0|, we construct four count matrices and use Fisher’s exact test at 10%
FDR to determine those motifs that are enriched for co-occurrences with other motifs.Specifically,
a motif-motif co-occurrence is described by both motifs being present in a given genomic window.
We construct a 2x2 table for each motif, describe the co-occurrences with all other motifs, with each
cell being populated using the following criteria: 1) the motif is active at a variant with a significant
circuitSNP prediction and that variant is present in the experimentally validated dsQTL, 2) the motif
is active at a variant with a non-significant circuitSNP prediction and that variant is present in the
experimentally validated dsQTL, 3) the motif is active at a variant with a significant circuitSNP
prediction and that variant is not present in the experimentally validated dsQTL, and 4) the motif is
active at a variant with a non-significant circuitSNP prediction and that variant is not present in the
experimentally validated dsQTL.

4 Results

4.1 Neural Network Model Training and Validation

The first part of the our proposed approach is to learn the regulatory models that are composed
of combinations of footprints. In this training phase, we utilize a set of 134,304 training DNase-I
hypersensitivity regions defined in (Ghandi et al., 2014; Lee et al., 2015), with 22,384 positive example
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chromatin-accessible regions of size 300bp, and an additional 111,920 GC-matched negative sequences
of the same size with a closed chromatin profile. Alternatively, for a new tissue we can similarly
construct a set of regions in a similar way as defined by the ENCODE project. To determine the
ability of our trained model to predict genomic regions of open chromatin, we examined the metrics
of the precision recall curve and area under the precision recall curve (auPRC). An example of one
training replicate is shown in Figure S1. Based on the ability of circuitSNPs to integrate the signal
of a footprint’s presence across hundreds of motifs, we note that footprinting data, alone, allows us to
predict the chromatin state in that region with an auPRC of 0.74 and 98% precision at 10% recall.
While learning open chromatin regions is part of the process of building the neural network the final
objective of our method is to predict genetic variants that affect chromatin regulation.

Figure 3: To investigate how the number of hidden layer units affects our model’s performance, we repeated
our cross-validation procedure 10 times for each of the six hidden layer parameter combinations. The left
panel shows the area under the precision recall curve (auPRC). The right panel shows the precision (or
positive predictive value) achieved at 10% recall. Error bars are calculated standard error and dashed
horizontal red lines show gkm-SVM scores for both metrics as reported by the authors.

Using the model parameters and training procedure described in (Section 3.1.1 and table S1), we
observed the effect of these parameter combinations on auPRC and precision at 10% recall on our
predictions when applied to the dsQTL data set described in Lee et al., 2015 (Ghandi et al., 2014,
2016) (See Section 3.3 and Degner et al., 2012a). In Figure 3 we show the mean values of the ten
replicates for each parameter combination, along with the associated standard error. For the six
replicates, the respective mean auPRC and standard error is (0.149, 0.003), (0.182, 0.002), (0.196,
0.004), (0.204, 0.001), (0.185, 0.004), (0.180, 0.001). The precision @ 10% recall for these replicates is
(0.379, 0.023), (0.557, 0.011), (0.657, 0.011), (0.687, 0.009), (0.639, 0.011), (0.605, 0.004), respectively.
For comparative purposes, the gkmSVM metrics for this data set is plotted as well (auPRC = 0.193,
prec. at 10% recall = 0.538) (Lee et al., 2015). We find that our model’s performance decreases as
we increase the number of hidden units in the hidden layers. For example, under a model with 200
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Figure 4: Using the replicate trainings we plot the circuitSNPs predictions correlations to the RASQUAL
effect sizes (Degner et al., 2012b; Kumasaka et al., 2016). On the left panel: for each parameter com-
binations, an error plot shows the mean Spearman’s correlation r value for 10 model replicates at that
corresponding parameterization. Each replicate consists of 150,000 circuitSNP predictions and RASQUAL
score pairs. On the right panel: Scatter plot of circuitSNPs predictions and a set of experimentally derived
effect sizes from Degner et al., 2012b; Kumasaka et al., 2016. Shown here are circuitSNP predictions and
RASQUAL score pairs, filtered for small effect size, that yield a highly significant r = 0.82 (p ≤ 4.3×10−56)

units in the first layer, and 40 units in layer #2, we find an auPRC and precision at 10% recall of
∼ 0.15 and 0.375, respectively, whereas the same metrics under the “5|3” model are ∼ 0.2 and 0.7,
respectively.

Next, we examined how our circuitSNP predictions correlated with RASQUAL π statistics for
519,387 sites identified as dsQTLs. Using an FDR of 10% for π, we retained 8590 variants to analyze.
Using the ten replicate models for each of the six hidden unit parameter combinations, we calculated
the correlation coefficient (r) means and standard error (Figure 4 left). From the greatest to least
complex parameterization, the mean r and SE are (0.2409, 0.0034), (0.2736, 0.0016), (0.2866, 0.0035),
(0.2937, 0.0013), (0.2857, 0.0014), (0.2836, 0.0003), respectively. Again, we note that the “5|3” model
shows the greatest mean r value of the model replicates tested. Using the best model parameterization,
we examined how well our large-effect predictions (≥ |3.0|) agreed with the RASQUAL allelic effect
direction (94.8% agreement) and show a stronger correlation (r = 0.81, p≤ 4.3 × 10−56), (Figure 4
right) for those events where the model predicts a stronger effect.

We also examined the effect of increasing the spatial signal of neighboring footprint signals when
creating the “reference” and “alternate” vectors prior to making a circuitSNPs prediction (See Sec-
tion 3.2). We used the “5|3” model and tested four window sizes around the variant where a footprint
must be present in order to be included in the model input: 300bp, 100bp, 10bp, and 0bp (meaning
the footprint must overlap the focal variant). Interestingly, we show that the best results are obtained
by using a model where we condition only on those motifs whose footprints overlap the variant. In
Figure S4 we show the means and standard error of the auPRC and precision at 10% recall for the
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Figure 5: The circuitSNPs prediction, which integrates footprints and sequence information from all mo-
tifs at the variant’s location, better captures the directional variant effects than using individual motif
predictions, alone. The green dots in the scatterplot show the plotted ratios of circuitSNP sign direction
to RASQUAL sign direction, vs. individual motif prediction direction to RASQUAL sign direction. Points
falling below the zero-one line represent cases where the circuitSNP prediction performs better than the
motif alone.

four windows investigated.

4.2 Generalizability of the model

The circuitSNPs model presented here is trained on chromatin footprints from derived from multi-
ple tissues. In this sense, our model is very generalized in training, but may be applied to tissue-
specific tasks. We demonstrate this specifically in Section 4.1, where we validate our model against
lymphoblastoid cell line data. In some instances, it may be advantageous to train and utilize the
circuitSNP model in a single tissue, or in a selected set of tissues chosen a priori. However, in the
case we observe here, where the data are dsQTLs and task is predicting the genetic variant effects
in LCLs, we note that training across many tissues and multiple experiments generates better overall
performance. Table S2 demonstrates the performance difference between three implementations of
the circuitSNPs model when employed to predict variants in LCLs: 1) a model trained and applied
using only data from 18 LCL tissues 2) a model trained using all 153 tissues, but applied as inputs
populated by 18 LCL tissues, and 3) a model trained and applied using 153 tissues. This results show
that we can leverage more footprint information by combining the entire compendium of footprints
as it will have less false negatives and that the neural network approach effectively can learn which
are relevant specifically for LCLs.

4.3 Variant Directionality

When developing circuitSNPs, we hypothesized that the ability to integrate the combinatorial effects
from a large number of motifs bound in a genomic window is a better model to analyze variant
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effects, versus looking at predictions generated from individual motif models. To test this hypothesis,
we use the analysis in Section 3.3 and examine the agreement in the direction of the allelic effect
between the circuitSNPs predictions and the RASQUAL scores, compared to the individual motifs-
derived predictions and RASQUAL scores. We obtain first the number of circuitSNP predictions that
agree with RASQUAL scores at each variant predicted, as a fraction of all circuitSNP/RASQUAL
predictions. Then, for each motif represented in our model, we similarly calculate the fraction of a
motifs predicted effect that agrees with the RASQUAL score, versus the total number of times that a
motif/RASQUAL prediction appears in our data. Using this metric, we find that circuitSNPs ability
to incorporate and utilize the sequence and footprint information from all motifs provided for greater
agreement versus the individual motifs, alone. This is particularly evident for variants in footprints
for c-Ets-1(p54), Ehf, Elf4, Elk3, ERG, Etv1, MAFA, and PDEF (represented by points falling below
the (0,1) line in Figure 5).

4.4 Motif Co-binding Enrichment

A B C

Figure 6: Heat map of co-occurring motif enrichment, colored by the log10 fold change (A) Co-occurring
motifs in the dsQTL data. Of the possible 1,881,012 co-occurrence events between motifs present in the
dsQTL data, we found 37 such events where a motif is either significantly enriched or depleted for their
respective binding partner. (B) Co-occurring motifs based on our new circuitSNPs predictions recapitulate
the enrichments observed on the empirical dsQTL data in panel A. (C) Co-currence of motifs with predicted
effects based on CentiSNPs not taking into consideration combinations of motifs in the prediction model
fails to recapitulate the enrichments observed in the empirical data observed in A

One of the goals of our model is that we retain the causal motifs at each variant and prediction
to facilitate downstream analysis and a better understanding of which motif combinations may be
more impacted by genetic variation. Using the data set presented by Lee et al., 2015, we sought to
identify significantly enriched co-binding partnerships between motifs associated with allelic effects
observed in dsQTLs. Using the criteria specified in Section 3.4, we tabulated 7,529,536 co-occurrence
counts (4 cells ×13722 motif co-occurrences) to compare the co-occurrences of motifs in our circuitSNP
predictions to the co-occurrences observed in the experimentally derived dsQTL dataset. We deter-
mined significant motif pairings in the dsQTL set using Fishers exact test at 10% FDR (Benjamini
Hochberg). We found that 37 motifs pairings, representing 21 unique motifs, were either depleted
or enriched for their respective co-occurring partners (14 unique motifs), see Figure 6A. We then
tabulated matrices of co-occurrences as described in Section 3.4 for both our significant and non-
significant circuitSNP predictions and calculated the log10 odds ratios to see if our neural network
can also capture these enrichments when we predict the impact of genetic variation. We found that
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our circuitSNPs predictions agreed with the validated dsQTL enrichments in 21 of the 37 (56.75%)
co-occurrences Figure 6B. We note, however, that of the 15 pairs that are not in agreement between
the dsQTLs and our predictions, 12 of these 15 (80%) occur in a single motif, MA0028.1. Excluding
this motif, our circuitSNPs predictions are in agreement with 17 of the 20 remaining co-occurrence
events (85%). In contrast, examining dsQTL co-binding against CentiSNP predictions that do not
model footprint combined effects we find agreement in only 4 of the 37 (10.8%) pairings Figure 6C.

5 Discussion and conclusion

Allelic variation can have profound effects on gene regulation, gene expression and ultimately lead
to disease relevant phenotypic consequences(Degner et al., 2012a; Neph et al., 2012; Lee et al., 2015;
Alipanahi et al., 2015; Moyerbrailean et al., 2016a). In an effort to determine SNPs causal in regulatory
variation, we have developed a hybrid method that predicts the effect of genetic variants in regulatory
regions. As many transcription factors may bind in a localized, non-coding region, developing methods
that look to exploit and decode this regulatory grammar is increasingly important.

We have demonstrated that by integrating the individual effect a SNP has on TF binding for all
motifs present at a genomic location, our method outperforms single-motif based predictions for at
least ten motifs active in regions where a variant is shown to affect chromatin state. Our results
confirm a more complex binding relationship amongst transcription factors in regulatory regions, and,
by modeling that complexity, circuitSNPs may provide more accurate predictions that better capture
biologically relevant information.

Predicting the effect of a genetic variant in a regulatory region is still a difficult task in genetics.
However, using the circuitSNPs model presented in this study, we have demonstrated that our compu-
tationally derived predictions that model not only the underlying effects of many motifs at once, but
also simultaneously incorporate their chromatin profile, can outperform contemporary methods that
are limited to sequence-based modeling. By using individual genetic effects for each motif as inputs
into our neural network, we demonstrate that we can directly retain the motif identities without re-
lying on alternative and complex methods to infer causal motifs. As a result, we have shown that for
factors that interact with each other, the effect of genetic variants in their motif sequences, are more
readily detectable in our new framework, versus predicting those effects at the level of the individual
motif. Finally, we show that unique and complex,co-occurrence events between motif pairs are found
in dsQTLs, and that this signal can be accurately predicted and detected using the circuitSNPs model.
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Supplementary information

Model
Layer 1 Layer 2 Layer 1 Layer 2 Output Layer

Total Parameters
Hidden Units Hidden Units Parameters Parameters Parameters

1 200 40 274,600 8040 41 282,681
2 50 10 68,650 510 11 69,171
3 10 5 13,730 55 6 13,791
4 5 3 6865 18 4 6887
5 1 0 1373 0 2 1375
6 0 0 0 0 1 1373

Table S1: circuitSNPs Training Parameterization. (See Section 3.1.1).

Input footprints Area Under Precision @ Recall @
(Train / Predict) Precision Recall Curve 10 % Recall 50 % Precision

LCL / LCL 0.139 0.356 0.048
All Tissues / LCL 0.199 0.561 0.142

All Tissues / All Tissues 0.241 0.628 0.175

Table S2: Using specific tissues to train and test circuitSNPs. “Train” refers to the origin of the
fooptrints used for learning the neural network, and “Predict” to the set of fooptrints and CentiSNPs
annotation used to generate the predictions
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Figure S1: Training the circuitSNP model on footprinting information, alone, allows for accurate prediction
of DNAse sensitivity in a genomic window. In one replicate of the training phase, we show an auPRC of
0.74 and a precision of 0.98 at 10% recall.

Figure S2: circuitSNPs window model. Here we relax the requirement that a footprint must overlap
the focal SNP, as in Figure 2 and section 3.2. We now track all motifs with footprints in the window, the
distinction between this approach and the model described in Figure 2 and section 3.2, is that all motifs
present in the window are used to create the “Footprint vector”, however, only those that positionally
overlap the SNP are manipulated to create the Vref and Valt vectors (the same as the non-windowed model).
In this figure, Vfoot = [1, 1, 1, 0, 1, 1, 0, 1], becomes Vref = [1, 1, 0, 0, 1, 1, 0, 1] and Valt = [0, 1, 1, 0, 1, 1, 0, 1],
corresponding to the predicted effects of the variant on motif A and C.
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Figure S3: Precision Recall curves comparing circuitSNPs predictions and gkmSVM scores on the dsQTL
dataset (Ghandi et al., 2014). We plot the precision recall curve for both the circuitSNPs and gkmSVM
models.
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Figure S4: Using the model parameterization that we demonstrated to preform best (Figure 3 and sec-
tion 3.1.1), we investigated the effect of increased flanking regions around the focal SNP when determining
the footprints present. We show that there is a performance relationship associated with the size of the
genomic window, with larger window sizes correlated with decreasing performance. Panel “A”: area under
the precision recall curve (auPRC), Panel “B”: precision at 10% recall. Error bars are calculated standard
error and dashed horizontal red lines show gkm-SVM scores for both metrics.
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