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ABSTRACT 
Prediction of transcription factor (TF) activities from the gene expression of their targets (i.e.              
TF regulon) is becoming a widely-used approach to characterize the functional status of             
transcriptional regulatory circuits. Several strategies and datasets have been proposed to           
link the target genes likely regulated by a TF, each one providing a different level of                
evidence. The most established ones are: (i) manually curated repositories, (ii) interactions            
derived from ChIP-seq binding data, (iii) in silico prediction of TF binding on gene promoters,               
and (iv) reverse-engineered regulons from large gene expression datasets. However, it is            
not known how these different sources of regulons affect the TF activity estimations, and              
thereby downstream analysis and interpretation. Here we compared the accuracy and           
biases of these strategies to define human TF regulons by means of their ability to predict                
changes in TF activities in three reference benchmark datasets. We assembled a collection             
of TF-target interactions among 1,541 TFs, and evaluated how the different molecular and             
regulatory properties of the TFs, such as the DNA-binding domain, specificities or mode of              
interaction with the chromatin, affect the predictions of TF activity changes. We assessed             
their coverage and found little overlap on the regulons derived from each strategy and better               
performance by literature-curated information followed by ChIP-seq data. We provide an           
integrated resource of all TF-target interactions derived through these strategies with a            
confidence score, as a resource for enhanced prediction of TF activities.  
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INTRODUCTION 
 
Regulation of gene expression programs is fundamental for cell development, differentiation           
and tissue homeostasis. Dysregulation of such programs is responsible for most aberrant            
cell phenotypes, including cancer and other complex diseases. Due to their ability to interact              
with specific DNA regulatory regions, transcription factors (TF) are the key proteins in             
gene-specific transcriptional regulation, linking it to the signaling transduction network.          
Consequently, TFs have been proposed as downstream readouts of pathway activities and            
the assessment of their activity status has gained much attention in the last years.              
Noteworthy examples are their use in the characterization of driver somatic mutations and             
the identification of new markers of drug response in cancer1–4, or the reconstruction of the               
regulatory processes dictating cell differentiation 5–7.  
 
With high-throughput measurements of TF activities not available, a common practice is to             
estimate them computationally, from the gene expression levels of their direct targets (the             
so-called TF regulon). The assumption behind is that the level of protein activity of a TF is                 
reflected on the transcript levels of its targeted genes8. Accurate TF activity quantifications             
will, therefore, depend on the availability of high confidence sets of functional targets, where              
the TF has a direct regulatory effect on the transcription of the target gene, and the                
specificity of the TF-target interaction, so that the regulation of the target’s transcription can              
be unambiguously assigned to the TF. Moreover, if the TF activity quantification approach is              
intended to be generally applicable to any cell type, context-independent TF-target           
interactions are preferred so that the predictions are consistent and comparable across cell             
types4,9. This is key for systematic studies using heterogeneous populations of cell types,             
such as cell line panels spanning through different tumor types or differentiation stages.  
 
Several strategies and resources have been proposed to define the set of target genes              
directly regulated by a TF. These can be grouped according to the strength of evidence               
supporting a TF-target interaction. The first types are resources collecting manually curated            
interactions from peer-reviewed literature. Literature-curated resources are expected to         
contain high-quality TF-target regulatory interactions with experimental evidence. To our          
knowledge, there are around a dozen of literature-curated databases collecting interactions           
for human 8,10–20. However, these differ in their curation protocols, literature selection criteria            
or quality controls21. Consequently, there is a small overlap between resources that            
generates uncertainty on which ones should be used 20. In addition, they have a biased              
coverage towards well studied TFs, in particular those involved in diseases. Another type of              
strategies are high-throughput measurements of TF-DNA binding such as chromatin          
immunoprecipitation (ChIP)22 or DNase I hypersensitivity (DNase) assays23 coupled to DNA           
sequencing (ChIP-seq and DNase-seq). These provide high-resolution maps of in vivo           
DNA-binding regions for a given TF. Still, most binding events represent non-functional            
interactions, meaning that TF binding does not correspond with changes in the expression             
levels of the targeted gene 24,25. As for the literature-curated resources, TF-binding peaks            
derived through these in vivo methodologies are relative to the experimental conditions and             
cell types used, as well as maintain biases in biomedical research. To overcome part of the                
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limitations inherent to the mentioned experimental conditions, an alternative is to           
computationally predict TF-target interactions making use of TF binding sites (TFBSs)           
models. In silico identification of TFBSs on gene regulatory regions relies on the assumption              
that TFs have binding preferences to specific DNA sequences, referred to as a “binding              
motifs”26–28. TF binding motifs, generally modelled as position weight matrices (PWM), are            
then used to scan the regulatory sequences in a genome to identify candidate target              
genes29. Consequently, predictions are restricted to TFs for which binding motifs are known.             
Additionally, these suffer from a significant number of false positives, because the binding             
never occurs in vivo or is non-functional, or because of the uncertainty on which site is                
regulating which gene. Finally, TF-target interactions also can be reverse-engineered in           
silico from large-scale gene expression profiles derived from a condition of interest30,31. The             
assumption is that the transcript levels of a TF are informative of the expression levels of                
their targeted genes. This approach overcomes several limitations of the previous TFBSs            
prediction method such as the cell type-specificities (i.e. predictions are tailored towards the             
underlying expression profile) and the TF coverage (i.e. regulons can be inferred for any TF               
whose expression varies sufficiently in the corresponding gene expression dataset). Still, the            
approach may fail to infer TF-target interactions for TFs regulated at a molecular level other               
than transcription (such as post-translational modification and protein-protein interactions)32         
and their power to distinguish direct and indirect regulation is controversial 33–35. Taken            
together, currently there is no universal strategy to identify all bona fide targets of the full                
collection of TFs across all possible cell conditions.  
 
Despite their broad use, there is no systematic evaluation of the impact of the evidence               
supporting the TF-target interactions in the estimation of TF activities. This is important, as              
they can affect substantially the results and thereby downstream analysis and interpretation.            
To address this, we performed a comprehensive evaluation. First, we retrieved human            
TF-target interactions for 1,541 TFs using the most established strategies: 1)           
literature-curated resources; 2) ChIP-seq binding data; 3) TFBSs predictions on human           
promoters; and 4) reverse-engineered regulons inferred from normal tissue gene expression           
profiles from the Genotype-Tissue Expression (GTEx)36 project (hereafter inferred regulons).          
We then evaluated to what extent the evidence supporting the TF-target interactions affects             
TF activity estimations in three different benchmark datasets: two involving gene expression            
measurements after TF perturbations and one derived from cell-specific essentiality profiles           
in cancer cell lines. We also investigated the limitations and benefits of the different              
TF-target datasets and how these relate to several TF properties such as the mode of               
regulation (MoR) or regulatory effect on their targets, the mode of interaction with the              
chromatin, the DNA-binding domains and specificity, dimerization or tissue of expression.           
Finally, we provide general guidelines for the quantification of TF activities across            
heterogeneous populations of samples together with the retrieved TF regulons as a resource             
for the community.  
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MATERIALS AND METHODS 

TF census and classification 
Here we consider a TF as a protein that binds DNA in a sequence-specific manner and                
regulates the expression level of the target gene 37. We used the census of human              
Transcription Factors from TFClass database (v2014) involving 1,541 human TFs38,          
classified according their DNA-binding domain. Moreover, we annotated each TF according           
to: 1) the mode of interaction with the chromatin (Pioneers, Settlers and Migrants) using the               
results from Ehsani et al39; 2) the number of GTEx tissues36 where the gene is expressed                
(i.e. average expression > 2 fpkm); 3) the DNA-binding mode (monomer, homomer or             
heteromer) that we manually curated from UniProt40 (version November 2017) and           
complemented with the annotation provided in Lambert el at41; or 4) their DNA-binding             
specificity, also from Lambert el at41. Moreover, we used UniProt “Function CC” field to              
manually classify TF into activators, repressors, activators and repressors or unknown mode            
of regulation (MoR). TFs annotation is provided as Supplementary Table S1. 

TF-target data sources 

Literature-curated resources 
We downloaded manually curated TF-target relationships from 12 sources (Fantom4 14,          
HTRIdb 15, IntAct18, KEGG17, ORegAnno 19, NFIRegulomeDB13, PAZAR12, TFactS8, TFe 16,        
TRRD10, TRED11, TRRUST20) and a manual curation of targets from TF-centric papers42–46.            
From Fantom4, we downloaded the “edge.GoldStd_TF.tbl.txt” file. From HTRIdb (v052016),          
we excluded interactions derived from large-scale experiments such as Chip-Chip and           
ChIP-seq. From IntAct, we queried all human protein-DNA interactions involving a TF protein             
and a gene. From KEGG, we used KEGGREST R library to download all homo sapiens               
pathways and retrieve regulatory interactions classified as “GErel”. From ORegAnno, we           
separated the relationships from PAZAR and NFIRegulomeDB. The remaining relationships          
were classified as ORegAnno, keeping the interaction sign (i.e. MoR). From TFactS            
catalogue, we extracted human interactions and separated TFactS-specific interactions from          
TRRD interactions using the REF field. TRED interactions were retrieved via RegNetwork            
database. From TFe, we downloaded the manually curated targets and the interaction sign.             
From TRRUST, we extracted all human interactions. When the same TF-target interaction            
was assigned with more than one sign (Activation or Repression), we kept the interaction              
sign with more PubMed references. If the same number of references was observed, we              
prioritized the sign as follows: Activation > Repression > Unknown. Finally, we manually             
extracted the canonical targets listed in several TF-specific revision papers42–46. 

ChIP-seq interactions 
We downloaded the merged ChIP-seq binding peaks provided by ReMap 47 from ENCODE            
and other public resources. For each TF, each binding site is assigned to the closest               
transcription start site (TSSs) using bedtools closest48. We obtained human TSSs from            
Gencode version 26 49 (GRCh38). For all genes that have multiple transcripts, we chose the              
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closest binding site-transcript pair. Therefore, each binding site is assigned to one gene but              
each gene may have 0 or more binding sites for a given TF. For each binding site-gene pair,                  
we assigned a binding site-gene score between 0 and 1 based on the distance between the                
binding site and TSS, similar to Ouyang et al 50: 
 
Site_Score[g] = e -d / (md . 10) 
 
where md denotes the median distance between TSS and binding site for each TF and d is                 
the distance between each binding site and the TSS of each gene g. Therefore, the same                
score can be assigned a different distance for each TF depending on whether it tends to                
bind proximally or distally. The score for each TF-target gene assignment is the sum of the                
scores for all binding sites of that TF assigned to that gene. Finally, for each TF, all TF-target                  
scores are scaled to a value between 1 and 1000. 
 

TF binding sites (TFBSs) predictions in promoters 
For each transcript, we scanned human promoter sequences (version GRCh38) for TFBSs.            
These were defined as the genomic sequence that comprises 1,000 bp upstream (5’             
direction) and 200 bp downstream (3’ direction). Mononucleotide PWMs were downloaded           
from the HOCOMOCO28 (v11) and JASPAR27 (v2018) repositories. HOCOMOCO-core         
(excluding low-quality models i.e. “D” category) comprised 402 whereas JASPAR          
(Vertebrates, non-redundant) comprised 572 PFMs. Prediction of potential TFBSs in the           
promoter sequences (on both strands) was done using the motif discovery tool FIMO, from              
the MEME suite (v4.12)51 with the default parameters. We selected FIMO predictions with             
p-value < 0.0001. Duplicated matches (exact binding sites found in different transcripts of the              
same gene) have been removed. 
 
Next, we annotated the conservation and epigenetic regulatory features of the TFBSs.            
Base-level PhastCons52 and PhyloP53 scores were extracted from CellBase database 54.          
PhyloP version “hg38.100way.phyloP100way” and PhastCons version      
“hg38.100way.phastCons” we downloaded in October 2016. PhastCons scores range         
between 0 and 1 and indicate the posterior probability that the site is in its               
most-conserved state at that base position. PhyloP score is the -log(p-value) under a             
null hypothesis of neutral evolution, where positive sign indicates greater conservation.           
In both cases, binding site-level scores were defined as the 75% percentile of the single               
base-level scores of the binding region. To call a region conserved, PhastCons and             
PhyloP scores have to be equal or larger than 0.95 or 3 (corresponding to a p-value                
threshold = 0.05), respectively. Finally, we aligned the genomic coordinates of the            
TFBSs with Ensembl regulatory55 features (GRCh38.p10) using CellBase to extract the           
feature ID and type. We considered the TFBSs aligned to “open_chromatin_region” or            
“ChIP_seq_region” to be a regulatory site. 

Regulons inferred by reverse-engineering from gene expression 
We used GTEx v6 human gene expression data 36 from control donors to infer transcriptional              
regulatory networks for healthy tissues. We downloaded gene-level raw counts for 18,737            
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samples from the ExpressionAtlas56. 144 samples with more than 30% of 0 raw counts were               
discarded. Also, we removed genes with an average log counts per million (CPM) lower than               
0. Next, we normalized the data using the TMM method implemented in edgeR R package               
(v3.14.0). Then, we used the voom function in limma package (v3.28.21)57 to obtain fitted              
log2 counts per million. To account for potential sample batch effects, we downloaded the              
annotation file GTEx_Data_V6_Annotations_SampleAttributesDS.txt from the gtexportal.org      
and extracted the isolation batch field “SMNABTCH” and corrected it using ComBat function             
from sva R package (v3.20.0)58. Samples from cell lines were discarded. Finally, replicates             
(i.e. samples from the same tissue and donor) were averaged. This data covers 9,407              
samples from 30 tissues (histological types).  
 
Next, we used the ARACNe software 31 (version v1.4) to reverse engineer tissue-specific            
networks. For each tissue with at least 15 donors, we first pre-calculated ARACNe threshold              
with a fixed seed with --calculateThreshold parameter. Secondly, we ran 100 reproducible            
bootstraps with a controlled seed and, with the --consolidate parameter, derived the            
tissue-specific network. Finally, we used the aracne2regulon function in viper R package 2            
(version 1.12.0) to infer the sign of each TF-target interaction (i.e. MoR; activation or              
inhibition).  
 
We also aggregated the data from all the tissue-specific regulons to infer four consensus              
regulons, by selecting TF-targets signed interactions appearing in at least 2, 3, 5 and 10               
tissues, respectively.  

Benchmark data 
Three different benchmark datasets (B1, B2 and B3) were used to evaluate the TF-target              
resources: B1 and B2 based on gene expression data upon TF perturbation and B3 based               
on combining basal gene expression with essentiality profiles in cancer cell lines.  

TF perturbation experiments 
Benchmark B1. We downloaded microarray expression data corresponding to 189 manually           
curated TF perturbation experiments in human cell lines from 130 GEO studies. We             
considered only experiments that fulfil two requirements: 1) provide comparable control and            
perturbed samples; 2) and have at least two replicates per condition. In each experiment,              
controls and perturbed samples were manually classified into positive (with higher expected            
activity for the perturbed TF) or negative samples (with lower expected activity).            
Overexpression and knockout-based experiments where the perturbed TF was not          
differentially expressed were excluded. A total of 94 unique TFs were covered across the              
collected experiments. When CEL files were available for experiments carried with Affymetrix            
platforms, we used the functions ReadAffy and rma from affy R package (version 1.50.0) to               
load and normalize the raw data. Otherwise, we used the expression matrix provided by the               
authors and applied a quantile normalization for non-normalized data. Finally, for each            
experiment, we performed a differential expression analysis between the positive and the            
negative samples using limma R package 57 (version 3.28.21). Each perturbation experiment           
was analyzed independently. 
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Benchmark B2. Also, we considered two additional high-throughput shRNA perturbation          
experiments knocking-down several TFs with no replicates. One in A375 cell line            
(GSE31534) and another in MCF7 breast cancer cell line (GSE31912)59. The corresponding            
microarray expression datasets were downloaded and normalized as described for the           
benchmark dataset B1. Normalized expression values were z-transformed to bring the           
expression from different genes to a common scale. To remove unsuccessful shRNA cases,             
knocked-down TFs whose expression was in the top 20th percentile (TF-wise) were            
excluded. 13 and 28 TFs from GSE31534 and GSE31912, respectively, were finally used.  
 

Basal cancer cell lines data 
Benchmark B3. Additionally, we retrieved basal gene expression data from a panel of             
cancer cell lines that we combined with phenotypic data from two gene shRNA essentiality              
screens and Copy Number Alterations (CNA) to define likely active and inactive TFs.             
Specifically, we used gene expression data from our previous publication 4, that included            
basal RNA-Seq measurements from three cancer cell line panels: Genomics of Drug            
Sensitivity in Cancer (GDSC)60, Cancer Cell Lines Encyclopedia (CCLE)61 and Genentech 62.           
Data is available to download from the Expression Atlas56 under the accessions            
E-MTAB-3983, E-MTAB-2770 and E-MTAB-2706, respectively. Regarding the gene        
essentiality screens, we downloaded the DEMETER scores from Achilles dataset (v2.20.2)63           
and ATARiS scores from the project DRIVE64. A TF was considered to be essential in a cell                 
line (i.e. positive control) if the DEMETER or ATARiS z-scores were < -4 and non-essential               
(i.e. negative control) if the z-scores were > 4. TFs carrying homozygous deletions were also               
used as negative controls. CNA for the cell lines were downloaded from the GDSC portal 60.  

TF-activity scoring methods 
We estimated TF activities as a proxy of the expression levels of the targeted genes using                
the analytic Rank-based Enrichment Analysis (aREA) method from the viper R package 2, a             
statistical test based on the average ranks of the targets. For perturbation experiments in B1,               
changes in TF activities for each perturbation were derived from the differential expression             
signatures via aREA-msviper function. For GSE31534 and GSE31912 experiments in B2           
and the cancer cell lines in B3, TF activities were derived from the z-transformed expression               
values via aREA-viper function. In both cases we used the default parameters, with the              
exception of ges.filter/eset.filter that was set to FALSE to avoid limiting the expression             
signatures to the genes represented in the regulons. The Normalized Enrichment Score            
(NES) was used as a measure of relative TF activity. NES were estimated for each TF in                 
each individual regulon dataset independently (ex. TP53 regulon from IntAct, TP53 regulon            
from ReMap, etc). To avoid confounding effects, self-regulatory interactions were removed.           
Also, overrepresented targets (regulated by more than 10% of the TFs in the regulon              
dataset) were discarded. Only TF regulons with at least five targets were tested. 
 
The aREA method takes into account the sign of each TF-target interaction. Here, when the               
MoR of the TF-target interaction was not defined by the original dataset (i.e. those derived               
from TFBS predictions, ChIP-seq data and most of the curated databases), we assumed a              
positive regulatory effect of the TF on the target. However, if the TF is known to be a global                   
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repressor (data extracted from Uniprot; Supplementary Table S1), the interactions are           
assumed to have a negative regulatory effect. 

Comparing regulons performance  
To evaluate the performance of each regulon resource, we compared the estimated            
activities of the TFs in each benchmark dataset. In the context of the perturbation-based              
benchmark datasets B1 and B2, our assumption is that if the TF regulon defined by a given                 
source (e.g. TP53-IntAct) is accurate, then the experiment perturbing such TF (positive            
controls) should display lower activity than the rest of perturbations (negative controls) and             
rank at the top. In the same way, in our benchmark dataset B3 we expect that the sample                  
where a TF is essential (and therefore active; positive controls) should display the highest              
activity scores while the inactive TFs (negative controls) should take the lowest values. Thus,              
for each TF regulon under study, we rank the samples according to the TF’s NES. Next, to                 
evaluate the ranking values of the positive and negative controls we performed            
precision-recall (PR) and receiver operating characteristics (ROC) analyses by the PRROC           
R package 65 (version 1.3) and we used the areas under the curves (AUPRC and AUROC)               
as performance metrics. Since the number of positive and negative controls is unbalanced             
for the benchmark datasets B1 and B2 (in favour of the negatives), we down-sampled the               
negatives 100 times to equal the number of positives and took the average metric values.  
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RESULTS 

TF-target datasets description and overview 
First, we retrieved putative direct transcriptional targets for 1,541 human TFs, as defined by              
TFClass38 (Supplementary Table S1), using different strategies that we grouped according to            
the evidence type: 1) literature-curated collections from publicly available databases8,10–20; 2)           
ChIP-seq interactions from ReMap 47; 3) TFBS predictions on gene promoters using TF            
binding motifs from HOCOMOCO28 and JASPAR27; and 4) transcriptional regulatory          
interactions across human tissues inferred from GTEx expression data 36 using ARACNe 31           
(Figure 1A). From the literature-curated resources, we directly retrieved all the TF-target            
interactions as indicated in the corresponding databases. For ChIP-seq, we downloaded the            
binding peaks from ReMap and scored the interaction between each TF and gene according              
to the distance between the TF binding sites and the genes’ transcription start sites. We               
evaluated different filtering strategies that consisted of selecting only the top scoring 100,             
200, 500 and 1,000 target genes for each TF. For TF binding predictions on promoters, we                
used FIMO scanning tool with TF motifs from HOCOMOCO and JASPAR, identifying 16 and              
13 million binding events (p-value < 0.0001), respectively. Again, we studied different filtering             
strategies to select the top 100, 200, 500 or 1,000 unique hits and filtering these according to                 
the conservation of the promoter binding sequence or chromatin accessibility annotations           
from Ensembl. Finally, for the prediction of transcriptional interactions, we ran ARACNe and             
VIPER on each GTEx tissue independently to build tissue-specific regulatory networks. We            
also integrated interactions identified in at least 2, 3, 5 or 10 tissues to derive consensus                
inferred TF regulons. See the Methods section for more details. Collectively, our data set              
contains 1,5 million interactions between 1,399 TFs and 27,976 target genes           
(Supplementary Table S2). 
 
We then compared the TFs covered per evidence type (Figure 1B). For 101 TFs (6.7%) we                
retrieved no targets using the mentioned strategies; 638 TFs (42.4%) were covered by a              
single strategy, being most of these reported by transcriptionally inferred regulons alone            
(578 TFs; 38.4%). On the opposite side, for 462 TFs (30.7%) we were able to identify targets                 
via three or more lines of evidence. Enrichment analysis revealed that the TFs covered by at                
least three strategies were expressed across the majority of human tissues (>90% GTEx             
tissues; Fisher Test, FDR=1.77x10 -6) and enriched in Cancer Pathways (KEGG; Fisher Test,            
FDR=2.41x10 -18 Figure S1). Moreover, these were enriched in Basic Helix-Loop-Helix          
(bHLH), Basic Leucine Zipper (bZIP), Nuclear Receptors with C4 Zinc Fingers and            
Tryptophan Cluster factors (Fisher Test; FDR<0.05) while C2H2 Zinc Finger factors are            
underrepresented (Figure 1C). This last TF class is only covered by transcriptional            
predictions (Fisher Test; FDR=1.91x10 -12).  
  
 

10 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted June 3, 2018. ; https://doi.org/10.1101/337915doi: bioRxiv preprint 

https://paperpile.com/c/BpJ3Vl/4p21
https://paperpile.com/c/BpJ3Vl/yX4xE+031Tq+cFg3Y+uiR9v+c4yTD+32CBJ+59CN0+UTuPw+9BCRN+CuhIx+0S9ey+2jsNi
https://paperpile.com/c/BpJ3Vl/sJjLX
https://paperpile.com/c/BpJ3Vl/xYbaV
https://paperpile.com/c/BpJ3Vl/YzRSB
https://paperpile.com/c/BpJ3Vl/Cxu5q
https://paperpile.com/c/BpJ3Vl/bLtWJ
https://doi.org/10.1101/337915
http://creativecommons.org/licenses/by/4.0/


 
 

Figure 1. A) Summary of the resources and strategies used to derive human TF-target interactions, classified                
according to the evidence level: manually curated resources (yellow), ChIP-seq binding experimental data             
(orange), prediction of TF binding motifs on gene promoter sequences (green) or inferred from GTEx data (blue).                 
B) TF coverage from each evidence class. C) TF classes (from TFClass) enriched in the TFs covered by more                   
than two lines of evidence. Dots indicate the log odds ratio while error bars indicate the confidence interval.                  
Colors indicate the FDR. D) TF-targets coverage from each evidence class. Note that for regulons inferred from                 
GTEx, only TF-targets > 2 tissues are shown. For TFBSs and ChIP-seq, only top 500 unique hits are shown,                   
p<0.0001.  
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We subsequently compared the TF-targets covered across the different strategies (Figure           
1D). Notably, the majority of TF-target interactions (96.3%) were supported by a single line              
of evidence (51.7% where the evidence was a computational prediction). 37,220 (3.4%) are             
supported by 2, 1,933 (0.2%) by three and only 56 by all four lines of evidence.  

TF-target datasets’ benchmark 
Next, we attempted to evaluate the strategies to define TF-target regulons according to their              
ability to predict changes in TF activities. We reasoned that if the set of targets retrieved for                 
a TF is reliable (i.e. their expression is directly regulated by the TF), the collective expression                
level of the regulon should be informative of the transcriptional activity of the TF. To               
determine whether a TF-target dataset provides accurate TF regulons for activity inference,            
we evaluated the changes in TF activities in three benchmark datasets. First, we manually              
curated gene expression experiments from GEO including TF knockouts, TF overexpression           
or TF modulation using a targeted compound. We argued that these experiments are             
expected to lead to the perturbation of TF activities and, therefore, could be used as               
benchmark datasets. In total, we collected 189 low-throughput (benchmark dataset B1) and            
two high-throughput (benchmark dataset B2) perturbation experiments (Figure 2A). Since          
perturbation experiments are likely to be biased toward well-studied TFs, which may have             
been thoroughly evaluated in the curated resources, we decided to include a third             
benchmark dataset (that we called B3) where the positive controls are defined in a              
data-driven way from a genome-wide analysis. Specifically, for B3 we used two recently             
published high-throughput gene essentiality screen in cancer cell lines63,64 (for which basal            
gene expression data is available) to identify putatively active TFs. Benchmarks B1, B2 and              
B3 covered 94, 33 and 135 unique TFs, respectively.  
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Figure 2. A) Description of the three benchmark datasets. B) Benchmark analysis scheme. C-D) Performance               
comparison of the regulons datasets (isolated or in combination, respectively), in terms of TF activity prediction,                
against the three benchmark datasets. Confidence vs coverage plots where X-axis represents the AUPRC from               
the activity rank’s position of the perturbed/essential TF with respect to the negative controls; and Y-axis                
represents the number of TF (with ≥ 5 targets) in the benchmark covered by each regulon dataset. Dot colors                   
indicate the evidence type (C, single datasets/evidence) and the nature of the combination (D, combined               
evidence). For the combined evidence, we considered only TF-target supported by an agreement of two (or                
three) of any of the four mentioned strategies.  
 
With the data in hand, the first step in our benchmark strategy (Figure 2B) consisted of                
estimating TF regulon activities from the gene expression signatures (i.e. expression-level           
statistic). These gene expression signatures are derived differently across the benchmark           
datasets due to their differences in the experimental design. For the B1 dataset, since it               
contains replicates for control and perturbed samples (knockout, overexpression, etc), we           
defined the gene expression signature of the perturbation as the differential expression            
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between the positive (with expected higher TF activity) and the negative samples (with             
expected lower TF activity). In contrast, B2 dataset does not contain perturbation replicates.             
Here, we normalized the gene expression profiles using z-score transformation to derive the             
expression-level statistic, which quantifies whether a gene in a sample is more or less              
expressed in the context of the B2 population distribution. B3 does not contain perturbation              
data, only basal gene expression from unperturbed samples. Here, the gene expression            
signatures are derived as for B2. With the gene expression signatures in hand, our second               
step applied the analytic Rank-based Enrichment Analysis (aREA) method to infer the TF             
regulon normalized enrichment scores (NES) that we used as estimates of TF activities.             
Finally, NES values were used to rank, for each TF regulon, the experiments or samples               
within each benchmark dataset. The estimated TF activities were then evaluated against our             
benchmarks using a Precision-Recall analysis (see Methods), we compared the ranked TF            
activities estimated for our positive samples (i.e. the perturbed TF-sample pairs in B1 and B2               
and the essential TF-sample pairs in B3) against the negative samples (i.e. samples with a               
different perturbed TF in B1 and B2 and the inactive TF-sample pairs in B3) and quantified                
the AUPRC and AUROC for each TF-target dataset. 
 
The predicted TF activities derived from most of the resources performed better than random              
(AUPRC > 0.5, Figure 2C, S2 and AUROC > 0.5 Figure S3). TF regulons manually reviewed                
by experts, such as those listed in TF-centric review papers or in the TFe resource, reached                
the highest accuracy levels. In contrast, TF regulons determined in silico from TF binding              
motifs or inferred from data reached higher TFs coverage but lower accuracy. ChIP-seq             
derived regulons display intermediate performances and coverage. Overall, there is an           
inverse relationship between the coverage and the accuracy across regulon datasets. 
 
We also explored how the performance of the ChIP-seq and in silico methods depend on               
different filters or parameters which alter the resulted regulons (Figure S2 and S3 for AUPRC               
and AUROC, respectively), observing differences across the three different benchmark          
datasets. We reasoned that these divergences may likely be due to, on the one hand, the                
different conditions and cell models used and, on the other hand, the differences in number               
and type of TFs covered in each experiment. Still, we observed a global tendency when               
comparing some filtering features. For example, we evaluated different regulon size cutoffs            
(top 100, 200, 500 and 1,000 targets) for the ChIP-seq and TF binding predictions on               
promoters (Figure S2A-B and S3A-B) observing that intermediate cutoffs reach higher AUC            
values overall. The use of chromatin accessibility information to further filter TF binding hits              
on promoters decreased their performance while the inclusion of sequence-based          
conservation reached similar or better performances (Figure S2C and S3C). TF binding            
motifs from HOCOMOCO performed generally better than the ones from JASPAR,           
considering only TFs covered by both resources (Figure S2B-C and and S3B-C), likely             
because the former is based on experiments only from human while the latter also from               
other Vertebrates. Lastly, for the overlapping TF regulons inferred from GTEx, we observed             
that tissue-specific interactions (i.e. interactions detected in the GTEx tissue matching the            
tissue lineage of the samples in the perturbations) performed similar to consensus regulons             
(i.e. interactions detected in more than one GTEx tissue), where consensus TF-target            
interactions observed in more tissues performing better (Figure S2D and S3D). 
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We also asked whether the inclusion of the mode of regulation (MoR) provided for some               
TF-target interactions in some literature-curated databases had an impact on the prediction            
of the TF activities. Comparison of signed and unsigned version of the same regulons              
revealed similar performances, with the exception of TRRUST database (Figure S2E and            
S3E). The signed version of TRRUST regulons improved significantly the TF activity            
predictions (Wilcoxon-test; p<0.05) for all three benchmark datasets. 
 
Finally, we selected the TF-target interactions supported by more than one line of evidence              
and recomputed the activities for the resulting TF regulons across the benchmark datasets             
(Figure 2D). Globally, regulons containing TF-targets supported by at least two           
literature-curated resources displayed the best performances across the three benchmark          
datasets. In contrast, regulons built by intersecting in silico predictions perform poorly, with             
no improvement compared to the use of regulons uniquely derived from each single strategy              
alone. Interactions supported by at least one literature-curated resource and ChIP-seq, or            
supported by any three lines of evidence showed an intermediate performance.  

TF properties affecting inference of regulon activities 
Not all the TFs function in the same way or are regulated by the same mechanisms. TFs                 
may differ in their MoR, the way in which they interact with the chromatin, the conditions                
upon which they are expressed or the regulation by post-translational modification or the             
interaction with cofactors. In order to characterize if any of these properties could affect the               
power to infer accurate TF activities, we annotated, when possible, our list of human TFs               
according to their global regulatory effect on the targets (i.e. activators, repressors or dual) in               
Uniprot40, if these operate as complexes (i.e. heteromers or homomers) according to            
Uniprot40 or Lamber et al41, the DNA-binding specificity41, the mode of interaction with the              
chromatin (Pioneers, Settlers and Migrants)39 and their classification based on their           
DNA-binding domains from TFClass (Figure 3A). Additionally, we classified the TFs as            
tissue-specific or widely expressed if their transcripts were detected in less than 10% or              
more than 90% of the tissues in GTEx (Supplementary Table S1; see methods section for               
details).  
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Figure 3. TF properties biasing the inference of TF activities across the TF regulon datasets. A) Overview of the                   
TF properties annotated for the 1,541 human TFs under study. B) TF properties enriched (FDR<0.01) in the                 
benchmark results B1, B2 and B3. Bar length in proportional to the Enrichment Score (ES) while color represents                  
the significance strength (p-value). Properties enriched in more than one dataset are labeled with an asterisk. 
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GSEA analysis66 of the benchmark results revealed that indeed certain TF properties            
associate with better and worse TF activity predictions in the context of certain benchmarks              
and TF regulon datasets (Figure 3B). For example, when evaluating the DNA-binding            
specificity of the TFs, those classified as low specificity are worse predicted than those with               
higher DNA-binding specificity, using ChIP-seq and expression-inferred regulons. Focusing         
on the MoR of their targets, TFs that are expected to act only as activators or repressors are                  
better predicted than TFs with dual MoR, using regulons from ChIP-seq, TFBS and             
literature-curated sources. This is probably caused by the incomplete knowledge on the MoR             
of TF-target interactions in these datasets. In contrast, TFs with a dual MoR are better               
predicted using consensus regulons inferred from GTEx, likely due to the inference of the              
TF-target interaction sign from the gene expression patterns. Also, we observed that the             
properties related to the regulation of the TF function strongly impact the performance of the               
predictions. For example, TFs binding the DNA as heteromers were poorly predicted using             
regulons inferred from expression data, likely due to the fact that the inference approach              
does not consider interactions between TFs in their model. Similarly, when studying the             
impact of DNA accessibility, our results showed that ‘settler TFs’, which bind to all the               
accessible DNA sites matching their DNA-binding motifs, display better predictions across all            
regulon types except for those inferred from gene expression. In contrast, TFs with more              
complex interactions with the chromatin and cofactors, called ‘migrant TFs’ (binding only to             
part of the accessible DNA sites matching their DNA-binding motifs), are worse predicted             
using ChIP-seq and literature-curated regulons. Finally, we also observed that TFs           
ubiquitously expressed across GTEx tissues, likely involved in a wider range of processes             
and intricate regulatory mechanisms37, are worse predicted than TFs with tissue-specific           
expression (1 or two GTEx tissues). Taking together, these results indicate that activity             
predictions are less accurate for TFs under complex molecular control. 

An integrated resource of scored TF-target interactions 
With the aim of providing a comprehensive resource of regulatory TF-target interactions, we             
have integrated all the collected interactions from the four lines of evidence and assigned a               
confidence score to each one based on the benchmark results. This resource incorporates:             
1) all the interactions derived from the literature-curated resources; 2) the top 500 scoring              
interactions per TF identified from the collection of ChIP-seq experiments from ReMap; 3)             
the top 500 interactions per TF identified by scanning the human gene promoters with              
JASPAR and HOCOMOCO motifs (p < 0.001); and 4) the regulons inferred by ARACNe in at                
least three GTEx tissues. This resource, available in OmniPath (www.omnipathdb.org)67,          
comprises 1,077,121 TF-target candidate regulatory interactions between 1,403 TFs and          
26,984 targets. 
 
Here, for each TF-target interaction we assigned a confidence score based on the             
observations from our benchmark. The score comprises five categories, ranging from A            
(highest confidence) to E (lowest confidence). The scoring criteria is described in Figure 4A.              
Briefly, interactions that are supported by all the four lines of evidence, manually curated by               
experts in specific reviews or supported both in at least two curated resource are considered               
to be highly reliable and were assigned an A score. Scores B-D are reserved for curated                
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and/or ChIP-seq interactions with different levels of additional evidence. Finally, E score is             
used for interactions that are uniquely supported by computational predictions. Figure 4B            
describes the TFs and interactions coverage per scoring category.  
 
Finally, we used the scored regulons to characterize the TF activities our benchmark             
datasets. As expected, TF activities derived from A-B scored target regulons perform notably             
better than activities estimated using E-scored targets in the three benchmark datasets.  
  

Figure 4. Scoring TF-target interactions from different evidence. A) Scoring scheme. B) TF and TF-target               
interaction coverage per score cutoff. C) Performance of scored regulons in B1, B2 and B3 benchmark datasets. 
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DISCUSSION 
Inference of TF activities from the expression levels of their putative targets is becoming a               
widespread tool to extract functional insight from transcriptomic data 2–7,68. Although several           
strategies exist to define the TF’ targets (i.e. TF regulon), their potential to predict changes in                
TF activities has not yet been systematically compared. To employ these data conveniently,             
a critical evaluation of their reliability (i.e. quality), coverage (i.e. quantity) and            
complementarities is needed. Here we evaluated the impact of the four major types of              
evidence supporting the human TF-target interactions in the estimation of TF activities:            
literature-curated repositories, ChIP-seq binding data, in silico predictions of TFBSs on gene            
promoters and inference by reverse-engineering from large gene expression datasets.  
 
Overall, we observed that for almost half of the TFs, only one of the four strategies report                 
targets. More remarkably, there is low overlap at the TF-target interactions-level, were the             
great majority are supported by a single line of evidence. Therefore, it seems that to have a                 
complete picture of the human TF-target regulatory map, integration of different strategies is             
essential.  
 
Comparing the quality of TF-target interaction datasets is complex due to their relatively low              
coverage and overlap. More importantly, these need to be benchmarked against a reliable             
and comprehensive reference set. Up to our knowledge, there is no systematic experiment             
measuring directly the protein-level activities of hundreds of human TFs in several            
conditions. Under these limitations, in order to compare the different TF-target resources and             
detection strategies, we collected three alternative benchmark datasets where changes in           
TF activities are assumed indirectly. In general, although there is a tendency (curated             
regulons are better than ChIP-seq, which in turn are better than predicted ones), we noticed               
differences in the performance of each TF-target strategy across the benchmark datasets.            
This can be due to various technical and biological factors. Among the technical factors, we               
note the low coverage and overlap of the TFs included in each benchmark experiment, as               
well as the different experimental conditions and assumptions used to derive these control             
datasets. In fact, in the perturbation-based benchmark datasets B1 and B2, some TFs in the               
negative controls (i.e. not directly perturbed TFs) can be indirectly affected and, therefore,             
not represent true negatives. These could involve, for instance, TFs co-regulated by the             
perturbed TFs. Moreover, some of the TFs in the positive set (i.e. perturbed TFs) may not be                 
effectively modulated by the perturbation strategy used (overexpression or knock-out). For           
example, the experiments overexpressing a TF gene may not translate into an efficient             
activation of the coded protein if the regulatory elements (e.g. post-translational           
modifications) or external stimulus (e.g. viral infection) needed for such activation are not             
present. In fact, when comparing TFs with different regulatory properties, performances are            
generally challenged when predicting activities for TFs with dual MoR (that can act as              
activators or repressors of their targets) or under complex molecular control, such as those              
working as heterodimers, interacting with cofactors or other chromatin regulators. In these            
cases, the combination of complementary strategies to define TF-targets can enhance the            
TF activity predictions. Additionally, other biological factors influence the performance of the            
benchmark such as the modulation of TFs other than the perturbed ones due to              
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cooperativity, feedback regulation or redundancy mechanisms in the regulation of          
transcriptional programs, which used to buffer loss-of-function perturbations or result          
inappropriate activation of specific TFs. Taking all together, we hypothesize that the            
limitations of the benchmark datasets are masking and underestimating the potential of all             
these TF-target resources.  
 
Still, our results highlight the importance of the literature-curated regulons to infer accurate             
TF activities, with the highest precision achieved for interactions supported by more than one              
resource or expert’s review. However, their systematic use is limited by the low coverage,              
what requires the integration of multiple resources. Among literature-curated resources,          
noteworthy is to mention the TRRUST database, which displays the best balance between             
regulon performance and coverage, the latter likely boosted by the systematic           
sentence-based text mining search of regulatory interactions prior to manual curation and            
the incorporation of the MoR. Focusing on high-throughput strategies, ChIP-seq binding           
regulons displayed the highest performance with a coverage comparable to that of TF             
binding motifs on gene promoters. In general, in silico predictions based on TFBSs on gene               
promoters or inferred from GTEx’ displayed the lowest performance among all strategies.            
This is likely due to the higher ratio of false positives intrinsic to the technical biases of each                  
strategy69,70. Interestingly, tissue-specific regulons inferred from GTEx data perform worse          
than inferred consensus regulons (i.e. selecting TF-target interactions detected in several           
tissues). A reason may be the inherent differences between the gene expression regulatory             
programs in the samples used to infer the regulatory networks (normal tissues from GTEx)              
and in the samples in the benchmark (cell lines, mostly cancer-derived).  
 
When combining TF-target interactions supported by both curated databases and ChIP-seq           
or any three lines of evidence, the performance increases with respect to the use of               
interactions only reported by literature-curated resources, suggesting that these can be           
further refined integrating other lines of evidence. In contrast, regulons detected by the two              
in silico prediction methods did not improve the performance with respect to the use of these                
alone.  
 
With these observations in mind, we have integrated 1,077,121 TF-target interactions           
derived from the mentioned strategies that we have accompanied with a confidence score.             
Up to our knowledge, this is the largest collection of human TF-targets interactions from              
heterogeneous sources and strategies. This integrated resource can be of broad applicability            
for approaches requiring the inference of the regulatory activity of TFs, where researchers             
can decide the level of confidence and coverage they want to use in their studies.  
 
The use of regulons to estimate TF activities has many applications, and can be particularly               
powerful to extract signal robustly from noisy or low coverage expression data such as in the                
case of single-cell RNA data 9. In addition TF activities can be linked to upstream signaling               
pathways. Pathway activities are often inferred by the transcription levels of their members,             
ignoring the hard-to-measure post-transcriptional and post-translational regulation. However,        
considering gene expression as a downstream effect of pathway activity instead leads to             
more accurate estimations71,72. Further on, TF activities can be used to infer the activity of               
upstream proteins using knowledge on pathways and how they impinge on TFs73. The             

20 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted June 3, 2018. ; https://doi.org/10.1101/337915doi: bioRxiv preprint 

https://paperpile.com/c/BpJ3Vl/gniI7+tkXUM
https://paperpile.com/c/BpJ3Vl/iJkU+yh5k
https://paperpile.com/c/BpJ3Vl/jmSNf+zFIsA
https://paperpile.com/c/BpJ3Vl/xWX5s
https://doi.org/10.1101/337915
http://creativecommons.org/licenses/by/4.0/


resources and confidence estimates we propose will support the development of such            
methods. More in general, we expect the presented comparative assessment of the TF             
regulon resources to contribute to the establishment of guidelines for the quantification of             
human TF activities. 
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