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Abstract 

 

The endothelial to haematopoietic transition (EHT) is the process whereby 

haemogenic endothelium differentiates into haematopoietic stem and progenitor cells 

(HSPCs). The intermediary steps of this process are unclear, in particular the identity 

of endothelial cells that give rise to HSPCs is unknown. Using single-cell 

transcriptome analysis and antibody screening we identified CD44 as a new marker of 

EHT enabling us to isolate robustly the different stages of EHT in the aorta gonad 

mesonephros (AGM) region. This allowed us to provide a very detailed phenotypical 

and transcriptional profile for haemogenic endothelial cells, characterising them with 

high expression of genes related to Notch signalling, TGFbeta/BMP antagonists 

(Smad6, Smad7 and Bmper) and a downregulation of genes related to glycolysis and 

the TCA cycle. Moreover, we demonstrated that by inhibiting the interaction between 

CD44 and its ligand hyaluronan we could block EHT, identifying a new regulator of 

HSPC development.  
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Introduction 

 

Understanding the developmental origin of haematopoietic stem and progenitor 

cells (HSPCs) is of critical importance to efforts to produce blood and blood products 

in vitro for medical applications. Haematopoietic stem and progenitor cells (HSPCs) 

originate from endothelial cells in the aorta gonad mesonephros (AGM) of mid-

gestation embryos 1,2. This process known as the endothelial to haematopoietic 

transition (EHT) requires drastic morphological changes that have been directly 

visualised through time-lapse imaging studies both in vitro and in vivo 3-6. EHT is a 

highly conserved process that has been studied across vertebrate models from 

xenopus and zebrafish to mice 7. Importantly, the human definitive blood system also 

has an endothelial origin 8.  

The best tools so far to detect endothelial cells with haemogenic capabilities rely 

on using fluorescent reporters under the control of Runx19 or Gfi1 10 regulatory 

elements, two keys transcription factors in the process of EHT. Cells expressing these 

transcription factors already co-express blood and endothelial genes. However, we 

still do not know the nature of endothelial cells which will acquire the expression of 

these transcription factors. We still do not know if any endothelial cells in the AGM 

can initiate the haematopoietic program or if a certain type of endothelial cells is 

primed to undergo the EHT. 

Despite our lack of characterisation of the definitive precursor to HSPC 

development, haemogenic endothelium (HE), recent advances have been made in 

terms of in vitro HSPC generation via an endothelial intermediate. Through the use of 

transcription factor cocktails both human pluripotent stem cells via a HE stage and 

adult mouse endothelial cells have been successfully reprogrammed into multi-potent, 

definitive haematopoietic stem cells (HSCs) 11,12. However, the use of endothelial 

populations in the process emphasises the importance of an improved understanding 

of HE.  

The early haematopoietic hierarchy has been described as a three-step process 

based on phenotypic characteristics. Specifically, Pro-HSC, Pre-HSC type I and type 

II populations have been defined based on their expression of the cell surface markers 

CD41, CD43 and CD45, as well as the time taken mature into definitive HSCs in OP9 

co-culture 13. Recently, an in depth transcriptional investigation was performed on the 
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type I and type II Pre-HSC populations at day 11 of mouse embryonic development, 

however, the earlier stages of EHT remain largely uncharacterised 14. Indeed, gaining 

a solid understanding of HE and the initial steps that endothelial cells must take to 

become HSPCs has proved difficult in the absence of a robust marker.  

Through antibody screening and single-cell RNA sequencing (sc-RNA-seq) we 

identified CD44 as a novel marker of EHT, enabling the isolation of key cellular 

stages of blood cell formation in the embryonic vasculature. CD44 is a cell surface 

receptor principally involved in the binding of the extracellular matrix molecule 

hyaluronan 15. Its cell surface expression has been used to identify cancer stem cell 

populations and has been strongly linked to the metastatic potential of many cancers 
16-20. While previous research has revealed the importance of CD44 in HSPCs 

migration to the bone marrow, the role of the receptor in early embryonic 

haematopoiesis has not been characterised 21. Using CD44 expression in conjunction 

with VE-Cadherin (VE-Cad) and Kit we could clearly differentiate between vascular 

endothelium, HE, Pre-HSPC-I and Pre-HSPC-II more accurately than using the 

combination of VE-Cad, CD41, CD43 and CD45 markers. This has allowed us to 

perform extensive transcriptional profiling making it possible to characterise the very 

earliest changes in haematopoietic differentiation from endothelial cells. Moreover, 

by disrupting the interaction of CD44 and its ligand, we could inhibit EHT, 

demonstrating an unexpected role for CD44 in the emergence of HSPCs.  
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Results  

 

Antibody screening and single-cell RNAseq identifies CD44 as a potential 

marker of early haematopoietic fate 

It is well established that HSPCs have an endothelial origin within the embryo 
4-6,22. In order to better characterise the transition between endothelial and 

haematopoietic identity, we performed both an in vitro antibody screen and an in vivo 

single-cell RNAseq experiment to identify new markers allowing the identification of 

subpopulations within VE-Cad+ cells (Supplementary Fig. S1). Antibodies against 

176 cell surface markers 23 were tested against the VE-Cad+ population generated 

from our in vitro ESC differentiation system into blood cells which recapitulates 

faithfully the early blood development process 24. Forty-two of these markers were 

expressed on VE-Cad+ cells (Supplementary Table S1). We looked for bimodal 

expression to separate distinct endothelial populations and identified a short-list of 

sixteen candidates to test in vivo including CD41 and CD117 (also known as Kit, a 

marker of HSPCs) already known to split VE-Cad+ cells 13. Eight of these markers 

(CD44, CD51, CD55, CD61, CD93, Icam1, Madcam1 and Sca1) were found to split 

the VE-Cad+ endothelial population of the AGM in two (Fig. 1a). In parallel, VE-

Cad+ cells were isolated from the AGM region of E10.5 embryos and their 

transcriptional profiles analysed sc-RNA-seq (Fig. 1b-d). Clustering analysis 

identified a population with both haematopoietic and endothelial gene expression, 

distinct from the other endothelial population (Fig. 1d). Bioinformatics analysis 

showed that Cd44 is one of the best marker genes for this population of transitioning 

cells co-expressing endothelial and haematopoietic genes (Fig. 1c). The expression of 

Cd44 was also positively correlated with other known haematopoietic markers such as 

Runx1, Gfi1 and Adgrg1 (Gpr56) (Fig. 1d).  

Given the association of Cd44 with endothelial cells undergoing EHT at both 

the protein and mRNA level we decided to further investigate its role in embryonic 

haematopoiesis.  

 

CD44 marks transitioning cells with differing morphology 

To validate our screening results and investigate the identity of CD44+ cells, 

we performed immunofluorescence and more detailed flow cytometry analysis on the 
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AGM region of mouse embryos at embryonic day 9.5 (E9.5) and 10.5 (E10.5) (Fig. 2). 

Immunofluorescence of cross-sections of mouse AGMs revealed that CD44 marked 

cells that were part of the vascular wall and cells that were incorporated in 

haematopoietic clusters (Fig 2a). Flow cytometry revealed that CD44 expression 

significantly increased in the VE-cad+ endothelium of the AGM between E9.5 and 

E10.5 when cells are undergoing EHT (Fig. 2b-c). Furthermore, by staining with an 

antibody against Kit (a marker of intra-aortic haematopoietic clusters), we found that 

the majority of cells with lower levels of CD44 expressed little or no Kit (Fig 2d).  

By grouping the cells based on their cell surface expression of CD44 and Kit, 

we found these populations to be significantly different in terms of cell size, 

suggestive of cells undergoing a morphological transition (Fig. 2e). Altogether, our 

results indicate that CD44 marks a subset of endothelial cells and cells in the 

haematopoietic clusters of the AGM during the key window of HSPCs development 

in the mouse embryo.  

 

Single-cell q-RT-PCR analysis identifies three homogeneous CD44+ populations 

with an increasing haematopoietic profile  

Using the Biomark HD single-cell qPCR platform, we analysed the expression 

of 95 genes associated with both endothelial and haematopoietic cell types 24. We 

performed extensive transcriptional profiling on the CD44Neg, CD44LowKitNeg, 

CD44LowKitPos and CD44High populations identified (Fig. 2d) between E9.5 and E11.5 

(342 cells in total). We found that the CD44LowKitPos and CD44High populations 

expressed numerous haematopoietic genes (Fig. 3a). The CD44LowKitPos cells also 

expressed many endothelial genes as in our sc-RNA-seq analysis (Fig. 1d), however 

the CD44High cells appeared to be more advanced in the EHT process and lacked 

endothelial gene expression (Fig. 3a). Of note, the CD44LowKitPos population 

expressed specifically Gfi1 and Itgb3 (coding for CD61) as well as the heptad of 

transcription factors (Gata2, Runx1, Lyl1, Erg, Fli1, Lmo2 and Tal1) whose 

simultaneous co-expression is responsible for the dual endothelial-haematopoietic 

identity of Pre-HSPCs (Supplementary Fig. S2) 24.  

Conversely, the CD44Neg and CD44LowKitNeg populations both showed specific 

endothelial gene signatures and lacked haematopoietic gene expression (Fig. 3a). 

Despite their different CD44 expression patterns, these cell populations clustered 

together (Supplementary Fig. S2). We repeated this experiment using a new selection 
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of 96 genes based on our sc-RNA-seq experiment (Supplementary Table S2). With 

our new gene list, we were able to confirm the dual endothelial-haematopoietic and 

haematopoietic identities of the CD44LowKitPos and CD44High populations, respectively. 

Surprisingly, the CD44Neg and CD44LowKitNeg populations formed two distinct 

clusters (Fig. 3b). In addition to Cd44, we found the genes Adgrg6, Emb, Fbn1, 

Pde3a, Plcg2, Serpinf1, Smad6, Smad7, Sox6 and Stxbp2 to be up-regulated in the 

CD44LowKitNeg cells compared to CD44Neg. In contrast, Bmp4, Kit, Hmmr and Pde2a 

were more expressed in CD44Neg endothelial cells (Fig. 3c).  

Although the four groups defined by VE-Cad, CD44 and Kit were confirmed 

to be distinct transcriptionally, our clustering analysis found a fifth population (SC_3) 

composed of cells from both CD44LowKitNeg and CD44LowKitPos groups (Fig. 3a). Its 

transcriptional profile was found to be intermediary between SC_2 (CD44LowKitNeg) 

and SC_4 (CD44LowKitPos) e.g. it expressed Adgrg1, Runx1, Itgb3 and Spi1 like SC_4 

but was still expressing Adgrg6 and Pcdh12 like SC_2 (Fig. 3c).  

This suggests a developmental link between the CD44Low populations where 

CD44LowKitNeg cells would be the direct precursors of the CD44LowKitPos population 

which would then go on to generate CD44High cells. Interestingly, it is within this 

transitional SC_3 population that we saw the up regulation of Runx1, Spi1 and Gfi1, 

which are three of the four transcription factors used to reprogram adult mouse 

endothelial cells into HSCs 12.  

 

VE-Cad, CD44 and Kit could segregate the earliest stages of haematopoietic 

development more accurately than the combination of VE-cad, CD41, CD43 and 

CD45 markers 

To place our results in context of known AGM subpopulations, we performed 

transcriptional analysis of the Pro-HSC, Pre-HSC type I, and Pre-HSC type II 

populations defined according to the combination of VE-cad, CD41, CD43 and CD45 

markers (Fig. 4a) 13. Following hierarchical clustering, we found three clusters: the 

first mostly composed of Pro-HSCs, a second being a mix of Pro-HSCs and Pre-HSCs 

type I and a third one composed only of Pre-HSCs type II (Supplementary Fig. S3). 

We then performed a clustering analysis in conjunction with the populations defined 

by CD44 (Fig. 4b). This revealed that the SC_5 (CD44High) population closely 

associated with the Pre-HSC type II and the SC_4 (CD44LowKitPos) population with 

Pre-HSC type I and part of the Pro-HSCs. SC_2 (CD44LowKitNeg) clustered closely 
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with the remaining Pro-HSCs. Finally, only five cells with Pre-HSCs type I and Pro-

HSCs phenotype clustered with the SC_1 (CD44Neg).  Ninety-seven per cent of Pro-

HSCs, Pre-HSCs type I, and Pre-HSCs type II were CD44 positive (Supplementary 

Fig. S3 and Fig. 4c).  

Overall, we have demonstrated that the phenotypes based on CD44 expression 

could allow us to isolate all key populations in the process of HSCs formation more 

accurately than the phenotypes previously described.  

 

Bulk RNA-seq analysis further distinguishes CD44Neg and CD44LowKitNeg 

endothelial populations and identifies early changes in the differentiation process 

To further compare the two endothelial populations found in the AGM, we 

performed RNAseq on 25-cell bulk samples from these populations across three 

different time points (E9.5, E10 and E11). We analysed as well the more advanced 

stages in EHT: CD44LowKitPos at E9.5 and E10 and CD44High at E11. The bulk RNA-

seq approach allowed us to detect low abundant genes (such as genes encoding 

transcription factors) more efficiently than sc-RNA-seq and also to measure smaller 

changes in gene expression between populations.  

The samples clustered according to their marker expression, despite the 

difference in developmental time, confirming our previous experiments (Fig. 5a). We 

identified several haematopoietic genes switched on in the CD44LowKitNeg population 

including, Ctsc, Nfe2, Runx1 and Ifitm1, suggesting that these cells are subjected to 

the EHT process (Fig. 5b). The expression pattern of endothelial genes fits with our 

previous observations – more highly expressed in CD44Neg and CD44LowKitNeg, 

moderately expressed in CD44LowKitPos and absent in CD44High (Fig 5b). Moreover, 

we used this dataset to check the expression of genes corresponding to proteins we 

found in our antibody screen (Fig. 1a). Cd93 and Madcam1 showed an endothelial 

expression pattern and could be used to separate endothelial from blood cells in the 

AGM. In contrast, Itgb3 marks specifically the CD44LowKitPos population while Ly6e 

marks both CD44LowKitPos and CD44High populations as shown previously in 

Supplementary Fig. S2 and Fig. 3. 

Interestingly, this transcriptome analysis showed strong differences between 

the two endothelial populations of the AGM. We found 1605 genes differentially 

expressed between these two populations (p-value < 0.01, Wald test). Among them, 

several genes from the Notch pathway (Hey2, Jag1, Dll4, Hey1 and Notch1) were 
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significantly more expressed in the CD44LowKitNeg population compared to CD44Neg. 

Similarly, antagonists of the TGFbeta/BMP pathway, including Smad6, Smad7 and 

Bmper, were up-regulated in CD44LowKitNeg cells compared to CD44Neg ones. In 

contrast, target genes of the Wnt pathway (Lef1, Ccnd1 and Myc) were more highly 

expressed in CD44Neg compared to CD44LowKitNeg. From this analysis we could also 

identify specific markers for each of the endothelial populations (Fig. 5c). Nr2f2, 

Pde2a, Aplnr and Kcne3 marked specifically CD44Neg cells while Adgrg6, Hey2, 

Akr1c14, Fas and Ltbp1 strongly marked the CD44LowKitNeg population. Sc-RNA-seq 

done by another group investigated the different stages of EHT in the AGM 14, but 

they did not identify the CD44LowKitNeg population. However, the gene expression 

pattern they obtained for the three other populations was very similar to the one we 

found with our bulk RNA analysis (Supplementary Fig. S4).  

Our data supports the hypothesis that the CD44Neg cells and the CD44LowKitNeg 

cells belong to two distinct endothelial populations. The CD44Neg population 

expresses venous (Aplnr, Nr2f2 and Nrp2) and arterial (Sox17, Bmx and Efnb2) 

markers while the CD44LowKitNeg has a clear arterial signature with stronger 

expression of Bmx, Jag1 and Hey2. Moreover, there are distinct transcriptional links 

between the two CD44Low populations and the initiation of several blood markers 

already at the CD44LowKitNeg stage suggests that this population is in fact the 

endothelial precursor of CD44LowKitPos and CD44High cells, and hence of 

haematopoietic development.  

 

The CD44Neg and CD44LowKitNeg endothelial populations feature distinct 

metabolism and autophagy signatures 

Remarkably, a large number of the differentially expressed genes between the 

two endothelial populations belonged to metabolic processes (395 out of 1605 genes; 

1.32-fold enrichment, p-value <0.05, Fisher’s exact test). We therefore identified 

specific metabolic pathways distinguishing the two populations (Fig. 6a and 

Supplementary Table S3). Notably, the CD44LowKitNeg population showed a 

pronounced down regulation of genes coding for enzymes involved in glycolysis, 

TCA cycle and respiration, suggesting reduced ATP generation. Furthermore, amino 

acid and nucleotide biosynthesis genes were also down regulated. Altogether it 

suggests that the CD44LowKitNeg is a non-proliferative, metabolically rather quiescent 

state which is in line with the smaller size of this population compared to the CD44Neg 
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(Fig. 2e). Given that endothelial cells are known to obtain most of their energy from 

glycolysis 25, this change in metabolic status supports a loss of endothelial identity. 

These cells also show a marked increase in the expression of pathways leading to 

lipids with regulatory function: glycerolipids, glycerophospholipids, 

phosphatidylinositol and sphingolipids (Fig. 6a). 

Interestingly, we observe that several genes involved in autophagy, a process 

known to be regulated by phosphatidylinositol and sphingolipids 26-29, are also highly 

upregulated in the CD44LowKitNeg population (Fig. 6b). Concordantly, two key 

processes accompanying autophagy, ubiquitylation and proteolysis, are also 

upregulated. As autophagy has been shown to play a key role in embryonic 

development and haematopoiesis 30-32
, this provides further support to the 

CD44LowKitNeg cells being in transit from endothelial to haematopoietic cells. 

 

Runx1 is not required for the formation of CD44LowKitNeg endothelial cells  

CD44 has allowed us for the first time to clearly define the key VE-Cad+ 

populations in the AGM. The transcription factor RUNX1 is a key driver of HSPC 

development and is known to down-regulate endothelial identity through its target 

genes GFI1 and GFI1B 10,33. Next, we decided to evaluate the impact of Runx1 loss of 

function on the different CD44+ cells. Using a Runx1 knockout mouse model 34, we 

stained for VE-Cad, CD44 and Kit expression and performed transcriptional profiling 

on the sorted cells (Fig. 7). We found that in the absence of Runx1 there is a loss of 

CD44High and CD44LowKitPos cells and we observed a concomitant increase in the 

frequency of the CD44LowKitNeg population (Fig. 7a and 7b). Interestingly, we found 

no obvious transcriptional differences between the CD44LowKitNeg populations 

derived from Runx1+/+ versus Runx1-/- embryos indicating that Runx1 is not necessary 

for the formation of these endothelial cells but for the promotion of the transition into 

CD44LowKitHigh cells (Supplementary Fig. S5).  

 

All CD44+ populations display haematopoietic potential 

To understand the haematopoietic potential of the different populations 

defined by VE-Cad, CD44 and Kit expression, we performed ex vivo assays using an 

OP9 co-culture system. No colonies were formed at the single-cell level from either 

the CD44LowKitNeg or the CD44Neg populations. However, by plating cells at a density 
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of 300 cells per well, we could observe round cell colony formation from the 

CD44LowKitNeg population but not from the CD44Neg (Fig. 8a).  

In contrast, using single-cell sorting, we found that the CD44LowKitPos 

population was the most potent with an average of 43% of single cells forming round 

cell colonies after three days of growth. Similarly, the CD44High population produced 

haematopoietic colonies but with a lesser frequency, on average 11% of single cells 

showed the ability to form haematopoietic colony on OP9 (Fig. 8b-c). To uncover the 

differentiation potential of the cells generated by CD44LowKitPos and CD44High, we 

performed CFU assays following the OP9 co-culture. Both populations readily 

generated both erythroid and myeloid colonies with the CD44LowKitPos population 

demonstrating a significantly higher capacity than the CD44High population (Fig. 8d-e). 

However, the four-fold increase in the number of CD44LowKitPos colonies on OP9 did 

not correspond to a four-fold increase in CFU colonies suggesting a higher replating 

efficiency of the CD44High cells compared to CD44LowKitPos (Fig 8f). We further 

tested the lymphoid potential of the CD44High population by growing cells for 21 days 

on either OP9 or OP9-DL1 with lymphoid promoting cytokines. We demonstrated 

that this population could give rise to both B and T cells ex vivo (Fig. 8h).  

Overall, we found that all populations expressing CD44 displayed 

haematopoietic differentiation capacity including CD44LowKitNeg reinforcing the 

differentiation link between them as suggested by the transcriptome analyses 

described previously. 

 

Interrupting hyaluronan binding to the CD44 receptor inhibits the endothelial to 

haematopoietic transition ex vivo and in vitro  

So far, we demonstrated that CD44 was a very useful marker to distinguish the 

different stages of EHT. Although the CD44 knock-out mice do not have a severe 

haematopoietic phenotype 35, compensatory mechanisms through other Hyaluronan 

receptors (e.g. Hmmr 36 expressed by some CD44LowKitPos and CD44High cells in Fig. 

3a) may be at play to diminish the consequences of CD44 loss of function. In order to 

explore the functional role of CD44 in EHT we employed a pharmacological 

approach. By treating CD44High sorted cells with a CD44 blocking antibody, we found 

that round cell colony formation could be inhibited in a dose dependent manner (Fig. 

9a-b). The blocking antibody inhibited not only the number of colonies deriving from 

the ex vivo sorted cells but also the size of the colonies generated (Fig 9c).  
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To further investigate the role of CD44 in EHT we used an ESC in vitro 

differentiation system that mimics embryonic haematopoiesis. We performed a 

haemangioblast culture and analysed CD44 expression at day 1, 2 and 3. Endothelial 

cells expressed CD44 at all tested time points (Supplementary Fig. S6). We therefore 

applied the blocking antibody from the beginning of the culture and found that 

treatment with the antibody halved the number of HSPCs (VE-Cad- CD41+) produced 

and significantly increased the percentage of endothelial cells in the culture (Fig. 8d-

e). Given that the inhibitory antibody is known to bind close to the hyaluronan 

binding site on the extracellular domain of CD44 29, we next attempted to manipulate 

the amount of hyaluronan in the culture. When 300 μg/mL of hyaluronidase was 

applied to the haemangioblast culture, we again observed a block in EHT 

characterised by a significant decrease in blood cell formation and an increase in the 

percentage of Pre-HSPCs (VE-Cad+ CD41+) (Fig. 8f). Using the 4MU inhibitor which 

blocks the synthesis of hyaluronan, we also observed the reduction of CD41+ cell 

number. Combining 4MU with hyaluronidase had a much more potent effect with a 

clear block in EHT at the Pre-HSPC stage.  

In conclusion, these results for the first time demonstrate a regulatory role for 

hyaluronan and its receptor CD44 in the formation of HSPCs.   
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Discussion  

 

Using antibody screening and sc-RNA-seq to dissect the endothelial 

populations in the AGM, we discovered that CD44 was a robust marker to distinguish 

all the main populations in the EHT process. Combining CD44 with Kit and VE-Cad 

allowed us to discriminate the different stages of EHT more accurately that the 

method based on VE-Cad, CD41, CD43 and CD45 cell surface markers 13. In addition, 

we showed that CD44 had an unexpected regulatory function in the EHT process. 

Our work has been instrumental in distinguishing the different types of 

endothelial cells in the AGM region. The CD44LowKitNeg has a gene expression 

signature strongly compatible with arterial identity (e.g. expression of Efbn2 and 

Sox17 and upregulation of Notch pathway target Hey2) while the CD44Neg cells co-

expressed genes related to the venous (e.g. Nr2f2 and Aplnr) and arterial cell fates (e.g. 

Efnb2 and Sox17) (Fig. 5d). This co-expression of venous and arterial genes supports 

previous work indicating that the dorsal aorta can contribute to the formation of the 

cardinal vein 37.  

Another interesting finding was the striking metabolic state difference 

between the two endothelial populations. The CD44Neg cells appeared much more 

metabolically active than the CD44LowKitNeg suggesting that the latter population is 

becoming quiescent. It is surprising since the acquisition of a quiescent phenotype in 

endothelial cells occurs normally after birth following the completion of angiogenesis. 

FOXO1 has been described as an important transcription factor to induce quiescence 

in endothelial cells through suppression of Myc 38. While we observe specific down-

regulation of Myc in CD44LowKitNeg cells, Foxo1 has a similar level of expression in 

the two endothelial populations. Recently, a study comparing lung endothelial cells 

between infant to adult mice showed that SMAD6 and SMAD7 higher expression in 

adult endothelial cells was linked with the induction of endothelial cell quiescence in 

adulthood 39. Interestingly, all the CD44LowKitNeg cells co-expressed Smad6 and 

Smad7 at the single-cell level suggesting that the quiescence phenotype we observed 

could also be linked to the co-expression of the two inhibitory Smads. 

The acquisition of quiescence in this context could be the first indication of 

the divergence from an endothelial phenotype. The metabolic distinction of the 

CD44LowKitNeg population was coupled with an increase in genes involved in 
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autophagy. This is in line with the known role of autophagy in embryogenesis, 

haematopoiesis and stem cell maintenance 30-32,40,41, such as protein and organelle 

turnover and protection from reactive oxygen species. Our data thus suggest that these 

cells mark the resetting of metabolic and regulatory states to initiate the EHT process.  

We consequently propose that the CD44LowKitNeg population is the source of 

HSPCs in the AGM, hence the haemogenic endothelium (Fig. 10). Although it was 

suggested that HE cells in the human pluripotent stem cells differentiation model do 

not display arterial identity 42, our results clearly support the arterial source of HSPCs 

in the AGM. Another characteristic for the initiation of the EHT is the inhibition of 

the BMP and TGFbeta pathways as suggested by the increased expression of Smad6, 

Smad7 and Bmper in the HE population. Expression of RUNX1 in endothelial cells 

would then trigger the haematopoietic cell fate. The dynamic interaction between the 

heptad of transcription factors GATA2, RUNX1, LYL1, ERG, FLI1, LMO2 and 

TAL1 co-expressed at the Pre-HSPC-I stage would eventually lead to the loss of 

endothelial gene expression 24 and give rise to the Pre-HSPC-II stage, cells expressing 

only haematopoietic genes.  

Our detailed transcriptomics analysis of hemogenic and non-hemogenic 

endothelial cell populations in the AGM revealed for the first time the prerequisites 

needed by endothelial cells to generate HSPCs. Thus, our study may help to design 

new protocols for the generation of HSCs ex vivo without the use of transcription 

factors, which still represents a considerable health risk. The manipulation of the 

interaction between CD44 and hyaluronan could offer a new strategy for 

reprogramming endothelial cells into HSPCs. 

In addition, our work could shed new light on CD44 function in other cellular 

transitions such as the epithelial-mesenchymal transition occurring during metastasis 
23. Given the role of CD44 in the metastatic process, it is possible that there is an 

overlap in its function for these transformations. Therefore, understanding the down-

stream targets of the CD44-hyaluronan interaction could also have implications also 

for cancer biology. 
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Methods 

 

Timed mating and embryo dissection  

For timed pregnancies, C57BL/6 wild-type mice or Runx1+/- mice were mated 

overnight. Embryos were collected in PBS supplemented with 10% FBS (PAA 

Laboratories). The yolk sac of embryos derived from Runx1+/- mice were genotyped 

using the Kappa Mouse Genotyping Kit (KAPA Biosystems) according to the 

manufacturer’s instructions. E9.5 to E11.5 embryos were staged based on somite 

counts. After removing the yolk sac, the AGM region was dissected by removing the 

head and tail above and below the limb buds then removing the limb buds, organs and 

somites by cutting ventrally and dorsally either side of the AGM.  

All experiments were performed following the guidelines and regulations 

defined by the European and Italian legislations (Directive 2010/63/EU and DLGS 

26/2014, respectively). They apply to foetal forms of mammals as from the last third 

of their normal development (from day 14 of gestation in the mouse). They do not 

cover experiments done with day 12 mouse embryos and at earlier stages. Therefore, 

no experimental protocol or license was necessary for the performed experiments. 

Mice were bred and maintained at the EMBL Rome Animal Facility in accordance 

with European and Italian legislations (EU Directive 634/2010 and DLGS 26/2014, 

respectively). 

 

C1 Fluidigm chip and single-cell RNA sequencing 

AGM from E10 embryos were isolated and stained with anti-VE-Cadherin and 

anti-CD41 antibodies. VE-Cad+ cells from E10 embryos were isolated using FACS 

and mixed with Fluidigm suspension reagent (Fluidigm) in a 3:2 ratio. A primed 

Fluidigm C1 chip and 5ul of cell suspension was loaded onto a C1 instrument. Cell 

capture was then assessed with a 40x bright field microscope and wells scored as 

single-cell, doublet or debris. Lysis, reverse transcription and PCR reagents (Clontech 

Takara) along with ERCC spike-ins at 1 in 4000 dilution (Ambion) were added and 

mRNA-Seq RT & Amp script were performed overnight. The cDNA was then 

harvested and diluted in Fluidigm C1 DNA dilution buffer.  
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Single-cell RNA sequencing data analysis  

The paired 2 x 101bp Illumina reads from the libraries were quantified using 

Salmon 43 with the setting -l IU to indicate library topology, and the optional flags --

posBias and --gcBias to account for coverage and amplification biases present in sc-

RNA-seq protocols. As an index the cDNA annotation of Ensembl release 85 for 

GRCm38.p4 was used, together with ERCC spike-in sequences. The TPM values 

were rescaled to not include ERCC expression and only consider endogenous gene 

expression. 

Technical features of the data were compared with manual annotation of 

samples in C1 chambers through microscopy. Samples with less than 500,000 mapped 

reads and more than 30% mitochondrial content were discarded from analysis. This 

left 78 single cells in the in vivo experiment. 

To identify cells as endothelial or haematopoietic, expression levels of 10 

known markers were analysed (Cdh5, Kdr, Pecam1, Pcdh12, Sox7, Gfi1, Gfi1b, Myb, 

Runx1, Spi1). Cells were clustered using Principal Component Analysis and a 

Gaussian Mixture Model with two components on these markers (Fig. 1b). A cluster 

of 10 cells considered haematopoietic was identified (and annotated based on high 

Runx1 expression). Analysis was performed using the decomposition.PCA and 

mixture.GaussianMixture classes in the scikit-learn package. PCA was performed on 

the log transformed TPM values of the markers, and the first two principal 

components were used for Gaussian Mixture.  

Novel markers for hematopoietic cells were identified using a likelihood ratio 

test, where the alternative model included a binary term for whether the cell was 

haematopoietic, and the null model just assumed a common mean for all the cells. 

The P-values from the likelihood ratio test were corrected for multiple testing by the 

Bonferroni procedure. The top differentially expressed genes were investigated to find 

markers which could be used in follow-up experiments, and Cd44 was considered a 

good candidate (Fig. 1c). 

 

In vitro ES cell differentiation system  

The A2lox Empty Embryonic Stem (ES) cell line was maintained and 

differentiated as previously described 24. Briefly, the ES cells were maintained on 

mouse embryonic fibroblasts in DMEM knockout medium (Gibco) supplemented 

with 1% Pen/Strep (Gibco), 1% L-glutamine (Gibco), 1% NEAA, 15% FBS (Gibco), 
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LIF (EMBL Protein expression and purification core facility) and 2-Mercaptoethanol 

(Gibco).  

For differentiation the cells were plated on 0.1% gelatin for 24 hours in 

DMEM-ES cell medium and for 24 hours with IMDM instead on DMEM-knockout 

and in the absence of NEAA. To generate embryoid bodies (EBs) ES cells were 

transferred to petri dishes at a density of 0.3x106 cells per 10cm2 dish and plated in 

IMDM (Lonza) medium supplemented with 1% Pen/Strep, 1% L-glutamine (Gibco), 

15% FBS, transferrin (Roche), MTG (Sigma) and 50mg/μL of ascorbic acid (Sigma). 

After 3 days in culture Flk1+ progenitor cells were isolated through magnetic 

activated cell sorting (MACS) using an anti-Flk1 APC conjugated antibody 

(eBiosciences) and anti-APC microbeads (Miltenyi Biotec).  

For the haemangioblast differentiation, Flk1+ cells were cultured on gelatin for 

24 to 72 hours in IMDM medium supplemented with 1% Pen/Strep, 1% L-glutamine 

(Gibco), 15% FBS (Gibco), transferrin (Roche), MTG (Sigma) and 50mg/μL of 

ascorbic acid (Sigma), 15% D4T, 10μg/mL VEGF (R&D), 10μg/mL IL6 (R&D). The 

cells could then be harvested with TrypLE express and cell populations analysed by 

flow cytometry using anti-VE-Cad, anti-CD41 and anti-Kit antibodies (supplementary 

table 1). For in vitro CD44-hyaluronan interaction experiments Flk1+ cells were 

plated on gelatin, as per the haemangioblast differentiation protocol, and incubated 

with either 10μg/mL anti-CD44 antibody [KM201], 300μg/mL of hyaluronidase 

(Sigma H4272), 500μM of 4MU (sigma). Generation of haematopoietic and 

endothelial populations was assessed by flow cytometry after 48hrs in culture.  

 

Antibody screen, Flow cytometry and cell sorting  

The antibody screen was performed using the Mouse Cell Surface Marker 

Screening Panel (BD Bioscience, see table below) according to the manufacturer’s 

instructions. Cells from haemangioblast culture were harvested with TrypLE (Gibco) 

at 37 degrees for 5 minutes and deactivated with PBS supplemented with 10% FBS. 

Dissected AGMs were dissociated with collagenase (Sigma) at 37 degrees for 30 

minutes and the collagenase deactivated with PBS supplemented with 10% FBS 

(Gibco). Following the generation of single cell suspension, cells were stained with 

different combination of antibodies (see list below). Cells were washed, filtered and 

analysed using FACS Aria III (Becton Dickinson) and FACS Diva software. Data was 

later analysed using FlowJo v10.1r5 (Tree Star Inc.). For single-cell qPCR analysis 
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cells were sorted using an 85μm nozzle directly into reaction buffer (Cells Direct 

qRT-PCR Kit, Invitrogen) and snap frozen. For OP9 co-culturing assays cells were 

sorted using 100μm nozzle directly into a 96 well culture dish (Costar).  

 

Antibody  Reference  Experiment 

Anti-Flk1-APC eBiosciences 17-5821-81 Antibody screen 

Haemangioblast assay 

Mouse Cell Surface 

Marker Screening Panel 

(176 antibodies) 

BD Biosciences 562208 Antibody screening 

anti-VE-Cadherin-

eFluor660 

eBiosciences 50-1441-82 Antibody screen 

Haemangioblast assay 

AGM FACS sort for sc-

RNA-seq, sc-q-RT-PCR 

and bulk RNA-seq. 

AGM FACS analysis 

anti-CD41-PE eBiosciences 12-0411-82 Antibody screen 

Haemangioblast assay 

AGM FACS sort for sc-

RNA-seq 

anti-CD44-PE BD Biosciences 553134 Antibody screen 

Haemangioblast assay 

AGM FACS sort for sc-

RNA-seq and bulk RNA-

seq 

anti-Kit-BV421 BD Biosciences 562609 AGM FACS sort for sc-

RNA-seq, sc-q-RT-PCR 

and bulk RNA-seq. 

AGM FACS analysis 

anti-CD45-FITC BD Biosciences 553079 AGM FACS sort for sc-q-

RT-PCR. 

AGM FACS analysis 

anti-CD43 PerCP-Cy5-5 BD Biosciences 562865 AGM FACS sort for sc-q-
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RT-PCR. 

AGM FACS analysis 

anti-CD19 PE eBiosciences 12-0191-81 OP9 B-lymphoid culture 

anti-CD45 BV605 BD Biosciences 563053 OP9 B-lymphoid culture 

anti-CD11b APC eBiosciences 17-0112-81 OP9 B-lymphoid culture 

anti-CD8a FITC BD Biosciences 557688 OP9-Dl1 T-lymphoid 

culture 

anti-CD4 PE-Cy7 BD Biosciences 561099 OP9-Dl1 T-lymphoid 

culture 

anti-VE-Cadherin 

unconjugated 

eBiosciences 14-1441-81 Immunofluorescence  

anti-CD44 unconjugated Abcam ab157107 Immunofluorescence  

anti-CD44 unconjugated Abcam ab25340 Inhibition of CD44 and 

hyaluronan interaction 

 

Immunofluorescence and confocal microscopy  

Mid-gestation embryos were dissected and fixed in 4% paraformaldehyde for 

15 minutes at room temperature then incubated in 15% sucrose solution for 1 hour 

before freezing in OCT (Tissue-Tek). 10μm transverse cryo-sections of the AGM 

region were then placed on superfrost plus slides (Thermoscientific). Sections were 

washed in PBS, incubated in 1M glycine solution and permeabilised with 0.3% Triton 

X-100 (Sigma). Blocking solution consisting of 5% donkey serum, 5% chicken serum 

and 0.1% Tween-20 (Sigma) in TBS buffer was applied to sections for 2 hours at 

room temperature. Sections were incubated in primary antibodies overnight at 4°C 

and then washed. Secondary antibodies were applied for 1 hour at room temperature 

and washed before DAPI nuclear stain (Invitrogen) was applied for 15 minutes. Slides 

were washed before being mounted with Prolong gold (Life Technologies) and 

imaged on a Leica SP5 confocal microscope.  

 

Single-cell q-RT-PCR  

Single cells were sorted directly into lysis buffer and snap frozen. Samples 

were reverse transcribed with superscript III reverse transcriptase from the Cells 

Direct one-step qRT-PCR Kit (Invitrogen) for 15 minutes at 50°C. The cDNA was 
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then pre-amplified for twenty cycles with 25nM final concentration of each outer-

primer for a set of 96 target genes (Supplementary Table S2). The cDNA was then 

diluted with loading reagent (Fluidigm) and SoFastTM EvaGreen supermix (Biorad) 

and loaded onto a chip with (50μM) of inner primer mix. Amplification of the target 

genes was measured with the Fluidigm Biomark HD system with the Biomark Data 

Collection software and the GE96 x 96 + Meltv2.pcl program. 

 

Single-cell qPCR data analysis 

Analysis of single-cell qPCR data was performed as previously described 24. 

Briefly, initial analysis was performed using the Fluidigm Real Time PCR analysis 

software. Hierarchical clustering and principal component analysis was performed 

using the SINGuLAR analysis toolkit (Fluidigm version 3.5) in R software (version 

3.2.1).  

 

Bulk RNA sequencing  

Bulk RNA sequencing was performed as described by the SmartSeq2 protocol 
44. Briefly, 25 cells from each group (see table below) were FACS sorted directly into 

lysis buffer containing 0.2% Triton X-100, oligo-dT primers and dNTP mix, and then 

snap frozen. Reverse transcription was then performed, followed by pre-amplification 

for 14 cycles. Nextera libraries were then prepared and sequenced on the Illumina 

Next Seq sequencer. 

 

 E9.5 E10 E11 

VE-CadPos CD44Neg 

(CD44Neg) 

4 x 25-cells 3 x 25-cells 3 x 25-cells 

VE-CadPos CD44Low KitNeg 

(CD44Low KitNeg) 

1 x 25-cells 2 x 25-cells 3 x 25-cells 

VE-CadPos CD44Low KitNeg 

(CD44Low KitNeg) 

1 x 25-cells 2 x 25-cells Not done 

VE-CadNeg CD44High 

(CD44High) 

Not done Not done 3 x 25-cells 
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Bulk RNA-seq data analysis 

Sequencing data was analysed with the aid of the EMBL Galaxy tools 

(galaxy.embl.de) 45 - specifically, FASTX for adaptor clipping, RNA STAR 

for mapping and htseq-count for obtaining raw gene expression counts. The R 

software (version 3.2.1, http://www.R-project.org) was then used to generate 

heatmaps and tSNE plots using the DESeq2, Scater, Biobase and pHeatmap packages. 

 

OP9 co-culturing assays  

OP9 cells were maintained in MEM alpha medium (Gibco) with 20% FBS 

(ATCC 30-2020). For limiting dilution co-cultures cells were sorted directly onto a 

confluent OP9 stromal layer and incubated in medium conducive to haematopoietic 

development, IMDM (Lonza) treated with 5% penicillin-streptomycin (Gibco) and 

supplemented with 10% FBS (PAA Laboratories), L-glutamine, transferrin, MTG, 

ascorbic acid, LIF, 50ng/ml SCF, 25ng/ml IL3, 5ng/ml IL11, 10ng/ml IL6, 10ng/ml 

Oncostatin M, 1ng/ml bFGF. Round cell colonies were quantified after three to six 

days in culture. For ex vivo CD44 blocking antibody experiments 20 VE-

Cad+CD44High cells were sorted, as per OP9 co-culturing assays, into a medium 

containing either no antibody, 5μg/mL or 10μg/mL of anti-CD44 antibody [KM201] 

(Abcam). The number of colonies were assessed after 3 days in culture. 

 

Haematopoietic colony forming assay  

One hundred cells were initially sorted onto a confluent OP9 stromal layer as 

per OP9 co-culturing assay. After three days in culture cells were harvested with 

TrypLE express (Gibco) and colony-forming unit-culture (CFU-C) assays were 

initiated using Methocult complete medium (Stem Cell Technologies). Cells were 

grown in 35mm culture dishes and colonies quantified after 7 days.  

 

Lymphocyte progenitor assay  

Fifty cells were sorted onto confluent OP9 or OP9-DL1 stromal layers in 

MEM-alpha medium (Gibco) and supplemented with growth factors conducive to 

lymphocyte development, 20% FBS (PAA Laboratories), 50ng/ml SCF, 5ng/ml Flt-

3L and 1ng/ml IL7. Medium was changed every 4-5 days and cells were split as 

necessary. Cells were cultured for 21 days before harvesting with TrypLE express for 

flow cytometry analysis.  
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Figure Legends 

 

Figure 1: Search for a new marker to dissect the endothelial to hematopoietic 

transition 

(a) FACS plot of cells isolated from AGM region at E11, stained with VE-Cad and 

indicated cell surface markers selected from the antibody screen. (b) Principal 

Component Analysis of the single-cell RNA-seq data. Cells expressing hematopoietic 

genes are marked in red while the other cells are marked in green. (c) Volcano plot 

showing a selection of marker genes specific of the groups of cells expressing 

haematopoietic genes. The Cd44 gene is highlighted with a red circle. (d) Heatmap 

displaying the expression of a selection of genes in endothelial and haematopoietic 

clusters. Cd44 is highlighted in red. See also Supplementary Figure S1 and File S1. 

 

Figure 2: CD44 splits the AGM VE-Cadherin+ cells in different populations with 

various morphologies  

(a) Immunofluorescence of VE-Cad (magenta) and CD44 (green) expression in a 

cross section of the AGM region of a wild-type embryo at E10 (32 somite 

pairs).  Images 1 and 2 show higher magnification of the areas highlighted in the main 

image, showing CD44 marking endothelial cells in the vascular wall and cells making 

up a haematopoietic cluster. (b) FACS plots indicating percentage of cells expressing 

high levels of VE-Cad from dissected AGMs of wild-type embryos. The histograms 

indicate the percentage of VE-CadHigh cells positive for CD44 at both E9.5 (28 somite 

pairs) and E10.5 (35 somite pairs). (c) Percentage of CD44+ cells within the VE-

CadHigh fraction, each data point represents an independent experiment, E9.5 n = 4 

and E10.5 n = 5. Significance was determined by two-tailed, independent t-test. (d) 

FACS plots of VE-Cad and CD44 expression in the AGM region of wild-type 

embryos at E10 (30-34 somite pairs). Expression of Kit cell surface marker is 

highlighted for the CD44Low population. (e) Mean FSC-A as an indication of cell size 

is plotted for each population (CD44Neg, CD44LowKitNeg, CD44LowKitPos, CD44High) 

for five independent experiments on a litter of E10 wild-type embryos. Significance 

was determined by two-tailed, paired t-tests. 
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Figure 3: The VE-Cad+ subpopulations defined by CD44 are transcriptionally 

distinct 

(a) Single cells from each VE-Cad+ populations were isolated and tested for the 

expression of 96 genes by single-cell q-RT-PCR. The heatmap shows the result of the 

hierarchical clustering analysis (cells were clustered by Euclidian distance). A 

selection of genes has been highlighted: endothelial genes group, blood genes groups 

I, II and III. (b) tSNE plot from single-cell q-RT-PCR data shown in (a). Five groups 

are indicated. (c) Heatmap showing average expression of endothelial (blue), 

haematopoietic (red) and various (black) genes in the indicated groups (genes are 

clustered using Pearson correlation). The number of cells for each cluster is indicated 

at the bottom of the panel. See also Supplementary Fig. S2 and File S3. 

 

Figure 4: Comparison of the CD44 populations to Pro-HSC, Pre-HSC type I and 

type II. 

(a) FACS plots of VE-Cad, CD45, CD43 and CD41 expression in the AGM region at 

E10 (31-32 somite pairs). Single cells from Pro-HSCs (VE-Cad+ CD41+ CD45- CD43-

), Pre-HSCs type I (VE-Cad+ CD41+ CD45- CD43+), Pre-HSCs type II (VE-Cad+ 

CD45+) populations were isolated. (b) tSNE plot from single-cell q-RT-PCR data 

shown in (a).  (c) Heatmap showing average expression of endothelial (blue), 

haematopoietic (red) and various (black) genes in the indicated groups (genes are 

clustered using Pearson correlation). The number of cells for each cluster is indicated 

at the bottom of the panel. See also Supplementary Fig. S3 and File S4. 

 

Figure 5: Bulk RNA sequencing further distinguishes CD44Neg and 

CD44LowKitNeg endothelial populations and identifies early changes in the 

differentiation process 

(a) tSNE plot from 25-cell bulk RNA sequencing generated from E9.5, E10 and E11 

AGM. Four groups are indicated. (b) Heatmap of gene expression highlighting a 

selection of genes. (c) Heatmap of gene expression highlighting the most 

differentially expressed genes between CD44Neg and CD44LowKitNeg endothelial 

populations (p-value < 0.01). (d) Heatmap of gene expression highlighting arterial 

(Efbn2, Gja5, Sox17, Bmx and Hey2) and venous (Aplnr, Nr2f2, Nrp2 and Ephb4) 
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coding genes in CD44LowKitNeg and CD44Neg populations. See also Supplementary 

File S5 and Fig. S4. 

 

Figure 6: CD44LowKitNeg endothelial cells feature altered expression of genes 

involved in metabolism and autophagy 

(a) Overview of key metabolic nodes and pathways enriched in differentially 

expressed genes when comparing the CD44LowKitNeg and CD44Neg endothelial 

populations. These were selected based on reporter metabolite analysis. Pathway 

boxes summarize multiple genes / reporter metabolites (Supplementary Table S3). 

The mentioned upregulated and downregulated genes refer to the expression in the 

CD44LowKitNeg population compared to CD44Neg. (b) Schematic representation of the 

autophagy process marking differentially expressed genes. Included are genes coding 

for structural as well as regulatory aspects of autophagy. The colour code is the same 

as in (a).  

 

Figure 7: Runx1 is required for the generation of CD44LowKitPos and CD44High 

cells but not for the formation of the CD44LowKitNeg population 

(a) FACS plots of VE-Cad and CD44 expression in the AGM region at E10.5 from 

Runx1+/+ (left) and Runx1-/- (right) embryos. (b) tSNE plots from single-cell q-RT-

PCR data shown in (a). See also Supplementary Fig. S5. 

 

Figure 8: All CD44+ populations have haematopoietic potential  

(a) Images of OP9 co-cultures after 4 and 6 days of incubation. Haematopoietic 

potential was observed from CD44LowKitNeg cells with colonies of round cells 

resulting from 300 cells sorted per well. No round cell colonies were observed with 

CD44Neg cells. (b) Images of OP9 co-culture after 3 days of culture are shown. A 

single CD44High or CD44LowKitPos cell was FACS sorted onto a confluent OP9 stromal 

layer and incubated in HE medium. (c) The percentage of single cells giving rise to 

colonies was quantified across four independent experiment. The graph compares the 

frequency of growth from single CD44High cells with CD44LowKitPos cells. Statistical 

significance was determined by a two-tailed, paired t-test. (d) Colony forming unit 

assays were performed following three days OP9 culture of CD44LowKitPos and 

CD44High cells (100 cells per well). Cells were kept for a further 7 days in methocult 

medium before quantification. Images show representative CFU-E and CFU-GEMM 
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colonies. (e) The bar graphs show the number of CFUs generated per 100 initial 

FACS sorted cells. Error bars indicate standard deviation (n=4). Significance was 

determined by two-tailed, paired t-tests. (f) The bar graph indicates the total number 

of colony forming units formed per initial colony grown on the OP9 stromal layer. 

Although the CD44LowKitPos population gives rise to approximately 6 times more 

round cell colonies on OP9 then the CD44High population, only approximately 2.5 

times more CFUs are generated. (g) B and T cell lymphoid assays were performed 

following 21 days of OP9 (B-Cells) and OP9-DL1 (T-cells) culture of 50 FACS 

sorted CD44High cells. Percentages of CD19+ (B-cells) and CD4+CD8a+ (immature T-

cells) are shown. 

  

Figure 9: Blocking the interaction between CD44 and its ligand hyaluronan 

inhibits the endothelial-haematopoietic transition. 

(a) Images of round cell colonies generated from CD44High cells after 4 days of OP9 

co-culture with different concentrations of KM201 anti-CD44 blocking antibody. 

Dotted line indicates approximate size of colonies. Scale bar corresponds to 100 μm. 

(b) Dot plot comparing number of round cells colonies formed as a function of the 

concentration of anti-CD44 blocking antibody applied. (c) Dot plot indicating the 

number of cells per colony as a function of the concentration of anti-CD44 blocking 

antibody applied. (b-c) Significance was determined by two-tailed, independent t-test 

where * indicates p-value < 0.05, ** indicates p-value < 0.01 and *** indicates p-

value < 0.001, n = 3. (d) Representative FACS plots of VE-Cad and CD41 expression 

after two days of haemangioblast differentiation. Cells were either untreated (control) 

or treated with anti-CD44 blocking antibody, hyaluronidase enzyme, 4MU 

hyaluronan synthase inhibitor or a combination (e) Dot plot showing the population 

percentage for vascular smooth muscle (VSM)(VE-Cad-CD41-), endothelial cells 

(VE-Cad+CD41-), Pre-HSPCs (VE-Cad+CD41+) and HSPCs (VE-Cad-CD41+) after 

two days of haemangioblast differentiation, summarising the results of FACS analysis 

shown in (d) (n ≥ 4). Significance was determined by two-tailed, independent t-tests 

where * indicates p-value < 0.05, ** indicates p-value < 0.01 and *** indicates p-

value < 0.001.  See also Supplementary Fig. S6. 
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Figure 10: New model for the progression of EHT. 

Scheme summarising the findings of the present study. We identified two different 

sets of endothelial cell populations in the AGM with very distinct properties in term 

of signalling pathways and metabolic states. Expression of Runx1 in the haemogenic 

endothelium population triggers the upregulation of haematopoietic genes and the 

formation of the Pre-HSPC-I which co-expresses endothelial and haematopoietic 

genes. Continuous expression of haematopoietic genes and interaction between CD44 

and hyaluronan eventually lead to the loss of endothelial genes and the formation of 

Pre-HSPC-II expressing only haematopoietic genes. 
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Figure 3: The VE-Cad+ subpopulations defined by CD44 are transcriptionally distinct 
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Figure 4: Comparison of the CD44 populations to Pro-HSCs, Pre-HSCs type I and type II   
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Figure 6: RNA sequencing analysis revealed different metabolic signatures between 
CD44Neg and CD44LowKitNeg endothelial populations
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Figure 7: Runx1 is required for the generation of CD44LowKitPos and CD44High cells but 
not for the formation of the CD44LowKitNeg population
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Figure 10: New model for the progression of EHT
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