
1

1

2 Precise prediction of antibiotic resistance in 

3 Escherichia coli from full genome sequences

4

5 Danesh Moradigaravand1, Martin Palm2,3, Anne Farewell2,3, Ville Mustonen4, Jonas Warringer2,3, 

6 and Leopold Parts1,5 

7

8

9 1-Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, 

10 United Kingdom

11 2- Department for Chemistry and Molecular Biology, University of Gothenburg 405 30, Sweden

12 3- Centre for Antibiotic Resistance Research at the University of Gothenburg 405 30, Sweden

13 4- Organismal and Evolutionary Biology Research Programme, Department of Computer Science, 

14 Institute of Biotechnology, University of Helsinki, Finland

15 5-Department of Computer Science, University of Tartu, J. Liivi 2, 50409, Estonia

16

17

18 Corresponding authors:

19 Danesh Moradigaravand: dm16@sanger.ac.uk

20 Leopold Parts: leopold.parts@sanger.ac.uk

21

22

23

24

25

26

27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2018. ; https://doi.org/10.1101/338194doi: bioRxiv preprint 

https://doi.org/10.1101/338194
http://creativecommons.org/licenses/by/4.0/


2

28 Abstract 

29

30 The emergence of microbial antibiotic resistance is a global health threat. In clinical settings, the 

31 key to controlling spread of resistant strains is accurate and rapid detection. As traditional 

32 culture-based methods are time consuming, genetic approaches have recently been developed 

33 for this task. The diagnosis is typically made by measuring a few known determinants previously 

34 identified from whole genome sequencing, and thus is restricted to existing information on 

35 biological mechanisms. To overcome this limitation, we employed machine learning models to 

36 predict resistance to 11 compounds across four classes of antibiotics from existing and novel 

37 whole genome sequences of 1936 E. coli strains. We considered a range of methods, and 

38 examined population structure, isolation year, gene content, and polymorphism information as 

39 predictors. Gradient boosted decision trees consistently outperformed alternative models with 

40 an average F1 score of 0.88 on held-out data (range 0.66-0.96). While the best models most 

41 frequently employed all inputs, an average F1 score of 0.73 could be obtained using population 

42 structure information alone. Single nucleotide variation data were less useful, and failed to 

43 improve prediction for ten out of 11 antibiotics. These results demonstrate that antibiotic 

44 resistance in E. coli can be accurately predicted from whole genome sequences without a priori 

45 knowledge of mechanisms, and that both genomic and epidemiological data are informative. This 

46 paves way to integrating machine learning approaches into diagnostic tools in the clinic.

47

48

49
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50 Summary

51 One of the major health threats of 21st century is emergence of antibiotic resistance. To manage 

52 its economic impact, efforts are made to develop novel diagnostic tools that rapidly detect 

53 resistant strains in clinical settings. In our study, we employed a range machine learning tools to 

54 predict antibiotic resistance from whole genome sequencing data for E. coli. We used the 

55 presence or absence of genes, population structure and isolation year of isolates as predictors, 

56 and could attain average precision of 0.93 and recall of 0.83, without prior knowledge about the 

57 causal mechanisms. These results demonstrate the potential application of machine learning 

58 methods as a diagnostic tool in healthcare settings. 

59

60

61 Introduction

62 Antibiotic resistance has turned into an acute global threat. The rise of bacterial strains resistant 

63 to multiple antibiotics is expected to dramatically limit treatment effectiveness [1], leading to 

64 potentially incurable outbreaks. In addition to new drug development efforts, there is an urgent 

65 need for preclinical tools that are capable of effective and rapid detection of resistance [2, 3], as 

66 culture-based laboratory diagnostics test are usually time consuming and costly [3]. 

67

68 To accelerate the diagnosis, genetic tests have been devised to identify known resistance genes. 

69 The increasingly affordable and available whole genome sequencing data from clinical strains has 

70 helped to robustly identify antibiotic resistance determinants, and to curate them in dedicated 

71 databases [4, 5]. Given sequence from a new strain, computational methods can then look up 

72 known causal genes in these resources [5, 6].  Whilst such rule-based models are highly accurate 

73 for some common pathogens with well-characterized resistance mechanisms (e.g. 

74 Mycobacterium tuberculosis and Staphylococcus aureus), they cannot be employed to detect 

75 resistance caused by unknown mechanisms in other major pathogenic strains, and require 

76 constant curation to remain effective.   

77
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78 Prediction approaches based on machine learning have the potential to overcome these 

79 restrictions of rule-based tests. As general-purpose methods, they are agnostic to the causal 

80 mechanisms, and learn useful features directly from data [7-9]. Already, decision tree based  

81 models have proven valuable for predicting resistance and pathogen invasiveness from genomic 

82 sequences [10-14]. However, these studies were limited in both the genetic features used and 

83 the methods applied. In particular, both population structure and accessory genome content 

84 could contain predictive information, as resistance determinants may be transferred horizontally 

85 from other strains, or inherited vertically from an ancestor [2]. Further, the powerful deep 

86 learning methods that can utilize complex features interactions were not examined.  

87

88 Here, we systematically evaluate the performance of machine learning algorithms for predicting 

89 antibiotic resistance from E. coli whole genome sequence data. We present genome sequences 

90 and resistance measurements of 255 new isolates and consider them together with published 

91 data from recent large-scale studies, as well as simulated datasets. We test whether prediction 

92 accuracy improves with including temporal data, population structure, and accessory genome 

93 content, and assess how a range of population parameters, such as mutation and recombination 

94 rates, influence predictions. 
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95 Methods

96 Isolates

97 We used 1681 strains from four large-scale clinical and environmental E. coli collections, with 

98 available data on the year of isolation, drug susceptibility phenotypes, and whole genome 

99 sequence [15, 16]. Furthermore, we collected 255 strains from a range of ecological niches: 

100 hospital sewage and water treatment plant from Sweden (Carl-Fredrik Flach); human clinical 

101 isolates isolated in Pakistan, Syria, Sweden and USA (Culture Collection University of 

102 Gothenburg); a collection of strains producing extended-spectrum β-lactamases isolated in 

103 Sweden (Christina Åhrén) and environmental samples from Belgium (Jan Michiels). 

104

105 Antimicrobial susceptibility testing

106 Antimicrobials tested included beta-lactams (penicillin: ampicillin (AMP, 6µg/ml); 

107 cephalosporins: cefuroxime (CXM, 8µg/ml), cefotaxime (CTX, 4µg/ml), cephalothin (CET, 

108 20µg/ml) and ceftazidime (CTZ, 0.25µg/ml)), aminoglycosides (gentamicin (GEN, 4µg/ml) and 

109 tobramycin (TBM, 8µg/ml)), and fluoroquinolones (ciprofloxacin (CIP, 1µg/ml)). Concentrations 

110 used were determined by performing a 2-fold serial dilution, starting from twice the 

111 concentrations listed by the European Committee on Antimicrobial Susceptibility Testing 

112 (EUCAST) on 25/01/2017, until no growth was observed after 16 hours for the common lab strain 

113 BW25113 [17] used as a control in the experiments.

114
115 Sequencing data generation
116
117 We extracted DNA with the Bacterial Genomic DNA Isolation 96-Well Kit (Norgen Biotek) as 

118 detailed in the manufacturer’s instructions. Libraries were prepared with standard Illumina DNA 

119 sequencing library preparation protocols, and sequenced on Illumina HiSeq X with 150 bp paired 

120 end reads, multiplexing 384 samples per lane, and achieving average depth of coverage of 40-

121 fold. We used Kraken, which accurately assigns taxonomic labels to the short DNA reads [18], to 

122 confirm the presence of E. coli reads in the pool. The raw sequences for the sequenced data in 

123 this study have been deposited in the European Nucleotide Archive (ENA) under the accession 
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124 numbers described in Supplemental Table S1. The assembled data is available in the repository 

125 (www.github.com/DaneshMoradigaravand/PanPred ). 

126
127 Pan-genome determination 
128
129 Paired-end reads for the isolates sequenced both here and previously were assembled with 

130 Velvet [19] and put through an improvement pipeline [20]. In order to reconstruct the pan-

131 genome, we used the output assemblies and annotated these with Prokka [21]. The annotated 

132 assemblies produced by Prokka were then used as input for Roary [22] to build the pan-genomes 

133 with the identity cut-off of 95%. Roary produced a matrix for the presence and absence of 

134 accessory genes. The variant sites (SNPs) in the core genome alignment were extracted with an 

135 in-house snp_sites tool (www.github.com/sanger-pathogens/snp-sites). To visualize the 

136 phylogenetic tree with the associated metadata, we used iTOL [23]. 

137
138
139 Population structure calculation

140 We mapped the short reads to the reference EC958 genome sequence [24] as detailed in [25], 

141 and calculated the pairwise SNP distance (number of differing sites) for the core genome 

142 alignment of strains with functions in the ape package [26].  We identified clusters within the 

143 population using a distance-based method in the adegenet package [27]. We clustered 

144 sequences using the sequence distance metric with the adegenet package for all possible 

145 number of clusters from 1 to number of strains. Based on these clusterings, we constructed the 

146 population structure matrix S, where sij = k if strain i belongs to cluster k in the clustering with at 

147 most j clusters.

148

149 Simulated datasets 

150 To evaluate the performance of prediction tools, we simulated pan-genomes with Scoary [28]. 

151 The simulation process begins with a single genome with 3000 core and 6000 accessory genes 

152 that undergoes duplication and gene loss/gain in every generation, and continues until a desired 

153 number of genomes is reached; we tested population sizes of 130, 260, 650 and 1300. We 

154 examined penetrances, defined as the probability of acquisition/loss of the resistance phenotype 
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155 simultaneously to the acquisition/loss of the causal resistance gene, of 0.5, 0.6, 0.7, 0.8, 0.9 and 

156 1. 

157

158 Feature calculation

159 We examined different predictors as inputs: 1) matrix of the presence-absence of accessory 

160 genomes within the pan-genome (G), where gij is 1 if gene i is present in strain j, and 0 otherwise; 

161 2) matrix of population structure inferred from core-genome (S) defined above, and one-hot 

162 encoded 3) matrix of SNP sites (SNP), where SNPij = 0 if strain j carries the ancestral allele at site 

163 i, and 1, 2, 3, 4, 5 if it contained A, T, C, G nucleotide or missing information, respectively; and 4) 

164 matrix of years of isolation (Y). We standardized each feature to have 0 mean and unit variance. 

165 Genes, strain clusters, and SNPs with identical indicator pattern were collapsed, so there are no 

166 duplicate rows in the G, S, or SNP matrices.

167

168 Resistance prediction

169 We performed prediction using various combinations of input predictor matrices using resistance 

170 indicator as the output. We used 70% of the data for training the various models, and used the 

171 F1 score (harmonic mean of precision and recall) for resistance classification to evaluate them 

172 model on the remaining 30%. Four different models were used along with a baseline: 

173 - Logistic regression with L2 regularization. We employed the “LogisticRegression” function in the 

174 Scikit-learn python package (www.scikit-learn.org) [36], with the “lbfgs” solver, and varied the 

175 regularization parameter strength from 0 to 1 with step size 0.01.

176 -  Random forest classifier. We employed the “RandomForestClassifier” function in Scikit-learn 

177 and varied the number of trees in the forest (100, 300 and 600). When searching for the best 

178 split, we used both square root and binary logarithm selection of the number of features. We 

179 used bootstrap samples for building trees, out-of-bag samples to estimate accuracy, Gini impurity 

180 as the criterion for the information gain, and trained until all leaves were pure.

181 - Gradient boosted decision trees. We used the “GradientBoostingClassifier” implementation in 

182 Scikit-learn, with learning rate 0.1, and 100, 300 and 600 boosting stages. We used the same 

183 methods as for the random forests for choosing the number of features when selecting for the 
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184 best split, and employed the deviance loss function. We limited the maximum depth of trees to 

185 3, and the minimum number of samples required to split an internal or leaf node to 2 and 1, 

186 respectively. In order to assess the robustness of feature importance analysis, we repeated the 

187 optimization with 50 random seeds. As a measure for feature importance, we counted the 

188 number of times a feature used in optimization, as well as the average feature rank and 

189 importance across multiple replica. 

190 - Deep neural networks. We employed the keras library in python (www.keras.io) to build fully 

191 connected deep neural networks. We tested two and four layer networks, with two output nodes 

192 corresponding to resistant and susceptible states, and 200, 300 and 400 nodes in each internal 

193 layer. We used Adam to train for 20 epochs, with batch size of 128, learning rate of 0.1, drop-out 

194 of 0, 0.1 or 0.3, and stopping when the validation set performance decreased. Due to the small 

195 training dataset size compared to the number of features, for ~50% of runs the loss in the 

196 validation did not decrease by the end of training the network. We randomly partitioned the data 

197 into training (56%), validation (14%) and test (30%) sets, and trained models with different 

198 parameters on the training set, evaluated quality on the validation set, and final performance on 

199 the test set.

200 - Rule-based baseline. We compared our results with a rule-based method based on the 

201 detection of known resistance genes. To this end, we employed srst2 [29] and mapped short 

202 reads to the ResFinder database of known resistance genes in the srst2 package, using the cut-

203 off of 60% for the length coverage. 

204

205
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206 Results

207 Our data comprise 1936 samples that have been full genome sequenced, and phenotyped for 

208 resistance of 11 antibiotics. Resistance was distributed both within specific clades as well as 

209 emerging sporadically on divergent lineages (Figure S1), with an average frequency of 0.35 per 

210 drug (range: 0.15-0.63). This pattern is suggestive of both vertical and horizontal spread of 

211 resistance determinants. Genome sequences were processed to give gene and polymorphism 

212 presence information (1,390 core genes present in >99% of lineages, 90,261 genes present in one 

213 than one lineage, 1,432,145 variable sites in core genes), and 1,071 population structure 

214 features. 

215

216 We used these predictors to test the ability of four machine learning models - logistic regression, 

217 random forests, gradient boosted decision trees, and deep neural networks - to predict antibiotic 

218 resistance. We varied model hyperparameters, as well as input data types, to establish the best-

219 in-class predictors according to the F1 score for resistance (Methods). Gradient boosted decision 

220 trees performed best for predicting resistance of 11/11, and susceptibility of 10/11 drugs (Figure 

221 1), with average precision of 0.93 and recall of 0.83 (Figure S2). Perhaps surprisingly, deep 

222 learning models that account for complex non-linear relations amongst features did not provide 

223 substantial improvement over the simpler logistic regression models, or random forests (Figure 

224 1). 

225

226 Knowledge of what features that aid prediction will help prioritize data collection and diagnostic 

227 efforts. The gene presence and absence predictor (G) was used in all the best predictive models 

228 for each of the considered methods (Figure 1; lower panel). This is not surprising, given multiple 

229 known resistance mechanisms driven by accessory gene content, e.g. for beta-lactams and 

230 aminoglycosides. Population structure information (S) and year of isolation data (Y) were also 

231 frequently beneficial (used in 26 and 34 out of 44 best models, respectively). Adding gene 

232 presence to population structure features improved F1 score by 0.12 on average (Figure S3). In 

233 contrast, once gene presence had been accounted for, there was limited performance gain when 

234 including population structure features (Figure S3). This suggests that accessory gene content 
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235 already contains information about population structure, which reflects the pattern of 

236 polymorphisms in the core genome. Indeed, core genome distance and accessory gene difference 

237 matrices are not independent (p < 0.01, Mantel test), which is likely explained by accessory genes 

238 acquired by clade ancestors, followed by limited turnover.  

239

240 Next, we asked which individual features are most frequently utilized. We measured feature 

241 importance as the number of times it was used for gradient boosted decision trees, the best 

242 performing method, across 50 random fitting replicates on fixed training date (Figure S4). Overall, 

243 only an average 3% of input features (653 of 17198) were used at all in prediction across different 

244 drugs. In general, known resistance genes were identified as the most important, and were most 

245 frequently used features for predicting resistance to beta-lactams and aminoglycosides, e.g. 

246 blaOXA-2, blaTEM-1, blaCTX-M-15, and extra copies of ampC and phnP efflux pump genes 

247 (Supplemental Table S2). For example, the known beta-lactamase bla-CTX-M gene ranked first in 

248 all models for predicting resistance to beta-lactam ceftazidime, which followed by some genes 

249 with unknown function and ampC (Figure S4A). Perhaps surprisingly, we found that while the 

250 year of isolation was a dispensable feature for nearly all drugs, it was deemed important for 

251 ampicillin resistance prediction (Figure S4B). This was explained by the temporal distribution of 

252 the data, where all the strains collected in 2015 were resistant. These findings demonstrate that 

253 although known resistance genes were most predictive, other features, i.e. population structure 

254 and year of isolation, may be reproducibly used for prediction as well (Figure S4B). Nevertheless, 

255 it is clear that the inclusion of some features, such as collection year, reflects bias in the training 

256 data rather than biological importance.

257

258 Population structure information was often selected for use in the best performing models, and 

259 therefore useful for prediction (Figure 1). Indeed, training only on population structure produced 

260 an average F1 score of 0.73 (range: 0.23-0.92), and this performance could not be achieved with 

261 randomized phenotypes (Figure S5). Population structure features capture both recently 

262 diverged and deep clades (Figure 2A), and features included in the models were not limited to a 

263 single lineage or common depth (for example Figure 2B). As an example, the CL136 feature, which 
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264 is the most important identified feature, distinguishes clusters by positing a maximum pairwise 

265 sequence distance between isolates of 136 nucleotides. Cluster membership at this level of 

266 similarity informs of resistance, as 85% of clusters with at least two strains contained either only 

267 resistant or only susceptible strains (Figure 2C). In these cases, resistance status of an ancestral 

268 strain of the clades was likely retained in descendants and  did not change due to horizontal gene 

269 transfer, mutation, or sporadic gene loss. Altogether, the results show that predictive models can 

270 utilize genetic relatedness and population structure for predicting resistance, as has been 

271 observed in traditional eukaryotic genetics [8].

272

273 While the major mechanism for evolving antibiotic resistance is gene acquisition, mutations on 

274 chromosomes may also play a role, and therefore aid prediction. We thus next included single 

275 nucleotide polymorphism (SNP) data for gradient boosted decision trees, re-fitted 

276 hyperparameters, and evaluated on held out data. Predictive performance improved for four of 

277 the 11 antibiotics (Figure S3B). As anticipated, the largest improvement of 7.6% occurred for 

278 ciprofloxacin, resistance against which is known to involve chromosomal mutations [30, 31].  

279 Accordingly, the three most important identified features were variants in chromosomal 

280 quinolone-resistance-determining regions of the genes encoding DNA gyrase (gyrA), and 

281 topoisomerase IV parC. For other antibiotics, the addition of SNP data either did not greatly 

282 improve or worsened prediction performance (Figure S3B, Discussion).   

283

284 A possible limitation for applying machine learning methods to detect antibiotic resistance is the 

285 unavoidably small number of samples (1,936 in this study) compared to the number of features 

286 (~18,270 in this study after collapsing the fully correlated features). To better understand how 

287 this imbalance impacts performance, we simulated data from different sample sizes using a range 

288 of penetrances for a single resistance determinant. As anticipated, the performance of gradient 

289 boosted decision trees dropped when the penetrance of the resistance determinant decreased 

290 (Figure S6). However, there was no reduction in F1 score upon decreasing the population size, 

291 even when using only 130 strains. Overall, these findings suggest that the large number of 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 4, 2018. ; https://doi.org/10.1101/338194doi: bioRxiv preprint 

https://doi.org/10.1101/338194
http://creativecommons.org/licenses/by/4.0/


12

292 features relative to sample size does not impact model performance for high frequency causal 

293 genes.

294

295 The current clinical standards employ rule-based models to predict resistance from a small 

296 number of known determinants. We used srst2 [29] to identify known resistance genes for 

297 cephalosporins, penicillins, aminoglycosides and trimethoprim (Table 2), and used this 

298 information to better understand prediction errors. The best model's false positive resistance 

299 calls for different antibiotics contained 2 or 33 isolates that carried known resistance genes (beta-

300 lactams, aminoglycoside modifying enzymes and dfr genes), but were annotated as susceptible. 

301 Manual inspection confirmed that all of these genes were fully covered by sequence data, and 

302 almost identical to the known resistance genes. Moreover, for different antibiotics, one to nine 

303 false negative resistance calls (36 total) did not contain a known causal determinant. Similarly, 

304 two to nine resistant strains (51 total) were correctly marked as resistant by our model, but 

305 contained no known resistance gene (Table 2). These discrepancies may be explained by either 

306 resistance testing error, genomic sequence quality, or unknown mechanisms for resistance. As 

307 neither approach was perfect, predictive models in combination with rule-based methods may 

308 help identify cases that necessitate further analysis or repeating the susceptibility tests, 

309 ultimately leading to improved diagnostics and novel mechanisms.

310

311
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312 Discussion

313 We examined the ability of four different machine learning methods to predict antibiotic 

314 resistance from genomic information in E.coli, without making assumptions about the underlying 

315 genetic mechanisms. Our tests revealed that accessory genome data is needed for high accuracy 

316 in general, but that population structure information can also aid prediction. 

317

318 Our input dataset was diverse. The collection comprised seven sequence types and strains from 

319 15 consecutive years across a range of geographical locations. The majority of isolates (1509 of 

320 1936 samples) were from a nationwide study across hospitals in the United Kingdom and Ireland 

321 [15], and associated with bacteremia. This geographical bias is not expected to affect the 

322 performance of the model on a new clinical dataset, since E. coli sequence types (e.g. ST131 clone 

323 [32]) are circulated across hospitals worldwide. However, as isolates from potential reservoirs, 

324 including hospital sewage and wastewater treatment plants, were underrepresented in training 

325 data (99 of 1936 samples), we cannot conclusively assess how well the trained models detect 

326 resistance in samples from these sources. More data are needed to develop robust models across 

327 the entire species range, especially if resistance mechanisms differ in the various niches. 

328

329 The phenotype data was binary - each isolate was deemed either resistant or not to a compound. 

330 It is clear that this is an oversimplification of reality, as substantial variation hides within both 

331 categories. As the resistance phenotype is directly exposed to selection, it will influence how 

332 quickly it spreads within and between patients, as well as in bacterial populations at large. To 

333 predict treatment outcomes, correctly design interventions and allocate societal resources, it will 

334 therefore be important to be able to accurately predict resistance quantitatively as well. This 

335 requires non-binary resistance data, acquired at high accuracy and throughput.

336

337 Our findings confirm the utility of ensemble methods, and in particular boosting models, for 

338 predicting antibiotic resistance. While deep learning models are able to capture higher order 

339 interactions between features, and therefore often outperform simpler alternatives [37], they 

340 did not provide additional advantage here. Tree-based methods are often used as an 
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341 intermediate between simple models that treat features independently, like logistic regression, 

342 and more complex, but poorly interpretable models. Indeed, random forest readouts can be 

343 analysed for feature importance as we have done here, and even detecting genetic interactions 

344 (e.g. [33, 34]). However, as for association methods [28, 35], the true impact of genetic features 

345 is confounded by their phylogenetic distribution and population structure. Therefore, 

346 approaches to distinguish causal resistance genes from all correlated markers require additional 

347 experimental study. 

348

349 Recent reports have confirmed the strength of tree-based methods for predicting clinical 

350 attributes. For example, Wheeler et al. used random forests to predict invasiveness of Salmonella 

351 enterica lineages [14].  In another study, a tree ensemble was trained with boosting to predict 

352 the minimum inhibitory concentration from DNA k-mers for a large-scale Klebsiella pneumoniae 

353 panel [10], but the value of using core genome compared to accessory genes was not 

354 investigated. In general, including variant data or k-mers in the model greatly increases the 

355 number of features. However, adding the ~1 million additional single nucleotide features to 

356 ~20,000 others did not improve the results for most drugs in our dataset. This suggests that only 

357 pan-genome data could be used in early screenings for resistance, and including nucleotide-level 

358 information will be more beneficial in a limited form, once causality is established for a broader 

359 range of SNPs.  

360

361 Many factors can affect the performance of a predictive model. For instance, we noted that 

362 amongst the antibiotics, the results were worst for amoxicillin-clavulanate. This might be due to 

363 a beta-lactamase inhibitor, which dominates the impact of a resistance gene, causing 

364 susceptibility, and resulting in a wrong prediction. The genome-based prediction also cannot 

365 account for non-genomic resistance mechanisms, such as high expression level of resistance 

366 genes. Consequently, future models should assess the value of even broader data for accurate 

367 prediction, ranging from transcriptome and proteome to other clinical and epidemiological data, 

368 such as cross-resistance and history of antibiotic therapy. Integrating these information sources 
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369 from large isolate panels into a single predictive framework will lead to a rational basis for 

370 decision-making in public health to reduce cost of diagnoses and treatments.
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529 Figures

530

531

532 Figure 1. Prediction performance of the best tuned models. F1 score (harmonic mean of 

533 precision and recall; y-axis) for resistant (top panel) and susceptible (middle panel) phenotypes 

534 for four predictive models (red: gradient boosted decision trees; green: logistic regression; teal: 

535 random forests; purple: deep learning) across eleven antibiotics (x-axis). The best model of each 

536 class for every drug (x-axis) was identified based on the F1 score for resistance and employed a 

537 number of possible combinations of gene presence, population structure, and year of isolation 

538 (lower panel; black: feature used; white: feature not used). 

539

540

541

542

543

544

545

546

547

548 Figure 2 Population structure and phenotypic distribution of the input data. A) Phylogenetic 

549 distribution of clusters identified in the population for SNP distance cut-off values of 2, 143, 5054 

550 and 14489 (outer circles) relative to the phylogenetic tree. B) Phylogenetic distribution of correct 

551 calls (true positives, true negatives) and errors (false positives, false negatives) when predicting 

552 cephalothin (CET) resistance with the best performing gradient boosted model. The F1 score for 

553 resistance was 0.81. C) Phylogenetic distribution of the most important identified population 

554 structure feature, clustering with SNP cut-off of 136 (outer ring), compared with the phylogenetic 

555 distribution of resistance phenotype (inner ring; blue: susceptible; red: resistant). 
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556 Table 1. Prediction metrics on held out data for the best performing gradient boosted decision 

557 trees model.  TN: true negatives, FN: false negatives, FP: false positives, TP: true positives, PRC: 

558 precision, RCL: recall, S: susceptibility, R: resistance. 

559

560

561
562 Table 2. Comparison of prediction results with a rule-based model, srst2. True positives (TP), false 

563 positives (FP) and false negatives (FN) from Table 1. Resistant genes were identified by srst2 using 

564 the Resfinder database. Since ciprofloxacin resistance is caused by chromosomal mutations, we 

565 have not included this antibiotic in the table.  
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566
567 Supplemental Tables

568 Supplemental Table S1: list of isolates with associated metadata and accession numbers in the 

569 European Nucleotide Archive (ENA).

570 Supplemental Table S2: List of important accessory genes and their functions for feature 

571 importance analysis with the best performing gradient boosted decision trees models shown 

572 in Figure S4. The importance metrics include the number of runs (total 50 runs), in which the 

573 feature was used during model optimization and the average ranking and importance for the 

574 feature in these runs.
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