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Abstract8

9

T cells are key effector cells in the immune system that are well-known for their ability to adapt their shape and10

behavior to environmental cues. It has been suggested that these highly diverse, context-dependent migration11

patterns reflect an optimization process – where T cells adjust motility parameters such as speed and persistence12

to aid their search for antigen. Whereas models investigating such ”search strategies” typically treat speed and13

persistence as independent variables, one aspect of cell motility was recently found to be conserved across14

a large variety of cell types: fast-moving cells turn less frequently. This raises the question whether T cells15

can tune speed and persistence independently of each other. We therefore investigated to what extent this16

universal coupling between cell speed and persistence (UCSP) shapes the behavior of migrating T cells. We17

first show that the UCSP emerges spontaneously in an in silico Cellular Potts Model (CPM) of T cell migration.18

Our model shows a link between the UCSP and cell shape dynamics, which put an upper bound on both the19

speed and the persistence a cell can reach. We then use the CPM to examine how environmental constraints20

affect motility patterns of T cells migrating in the crowded environments they also face in vivo, and show that T21

cells completely lose their speed-persistence coupling when confined in a densely packed environment such22

as the epidermis. Thus, although our model further highlights the validity of the UCSP in migrating cells, it23

also demonstrates that environmental factors may overrule this coupling. Our data show that T cell motility24

parameters are subject to both cell-intrinsic and extrinsic constraints, suggesting that ”optimal” T cell search25

strategies may not always be attainable in vivo.26
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1 Introduction28

T cells have the rare ability to migrate in nearly all tissues within the human body. Especially in tissues with a29

high risk of infection – like the lung, the gut, and the skin – T cells are continuously on the move in search of30

foreign invaders. Furthermore, migration in lymphoid organs such as the thymus and lymph nodes is crucial31

for T cell function.32

Although T cells preserve their motility in these different contexts, they do adapt their morphology and33

migratory behavior to environmental cues. It has been suggested that this remarkably flexible behavior reflects34

different ”search strategies” that allow T cells to maximize the chance of encountering antigen (Krummel et al.,35

2016). For example, naive T cells rapidly crawl along a network of stromal cells in the lymph node, alternating36

between short intervals of persistent movement and random changes in direction (Miller et al., 2002, 2003;37

Bajnoff et al., 2006; Beauchemin et al., 2007). This ”stop and go” behavior allows them to cover large areas of the38

lymph node in a short amount of time, and appears to be a good strategy for finding rare antigens without prior39

information on their location (Krummel et al., 2016; Bnichou et al., 2011; Tejedor et al., 2012; Chupeau et al.,40

2015). Developing T cells adopt a similar strategy to find their specific ligand during negative selection in the41

thymic medulla (Borgne et al., 2009; Klein, 2009). By contrast, positive selection in the thymic cortex involves42

migration at much lower speeds – which is thought to reflect the more broad distribution of positively selecting43

ligands in the thymus (Germain et al., 2012). Thus, different migration strategies may be optimal in different44

environments and contexts.45

Studies investigating these T cell search strategies typically rely on variations of random walk models46

(Krummel et al., 2016). Such models assume that T cells can tune motility parameters (such as speed and turning47

behavior) independently of each other to obtain an ”optimal” movement pattern. However, recent data suggest48

that this may not be the case, because a Universal Coupling between Speed and Persistence (UCSP) appears to49

exists in all migrating cells (Maiuri et al., 2012; Wu et al., 2014; Maiuri et al., 2015). Among cell tracks recorded50

under standardized conditions, Maiuri et al saw that all cells analyzed followed one general rule: faster cells51

moved more persistently. They proposed that this coupling arises from a positive feedback on cell polarity52

regulated by movement of the actin cytoskeleton. Because specialized clutch molecules keep actin filaments53

fixed with respect to the cell’s surroundings, these filaments move backwards in the reference frame of the54

moving cell. This ”actin retrograde flow” is linearly dependent on cell speed. Using a mathematical model,55

Maiuri et al were able to show that actin retrograde flow can also stabilize cell polarity (and thus persistence)56

if it transports polarity cues towards the cell’s rear end. Thus, higher speeds are linked to higher persistence57

because they stabilize cell polarity via the actin retrograde flow (Maiuri et al., 2015). As actin retrograde flow is58

a highly conserved feature of cell migration, the UCSP is a general migration law that holds for celltypes with59

very different migration modes.60

Maiuri et al derived the UCSP from experiments where cells moved freely in a relatively open space, without61

any of the barriers normally posed by surrounding tissue. However, T cells rarely move in open space, and in62

vivo imaging as well as in silico modelling studies have highlighted the importance of external cues for T cell63

migratory behavior (Bajnoff et al., 2006; Beltman et al., 2007). A key open question is therefore whether the64

UCSP remains the major determinant of speed and persistence for T cells migrating in such complex, crowded65

environments – making the UCSP a truly universal law of T cell migration in vivo.66

Here, we examine to what extent the UCSP can impact T cell migration patterns, using an existing Cellular67

Potts Model (CPM) of T cell migration that reproduces realistic cell shapes and migratory behavior in silico68

(Niculescu et al., 2015). We first show that this model not only reproduces the UCSP, but also explains how cell69

shape dynamics put a natural upper bound on both the speed and persistence of migrating cells. We then apply70

the CPM to the extreme case of T cell migration in a densely packed epidermis, and show that environmental71

constraints overrule the UCSP in this setting. Thus, our data confirm the universality of the UCSP across a72

range of different cell shapes and migration modes, but also predict that this cell-intrinsic coupling may be73

obscured in at least some of the environments T cells face in vivo – where cell-extrinsic factors place more74

stringent constraints on motility parameters.75
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Figure 1: In silico simulation of shape-driven T cell migration within complex environments. (A) A CPM models a tissue as a
collection of pixels on a grid that each belong to a specific cell (or to surroundings). Pixels randomly try to copy their cell
identity into pixels belonging to neighbor cells, with a success probability Pcopy that depends on the effect the change would
have on physical properties of the involved cells (cell-cell adhesion, and deviation from target volume/perimeter, dashed
lines). The weighted sum of these energetic effects (∆H) is negative when a copy attempt is energetically favourable. (B) In
a CPM with only adhesion, volume, and perimeter constraints, cells only exhibit Brownian motion. Plot shows an example
cell track. (C) In the Act model (Niculescu et al., 2015), each pixel has an ”activity” that represents the time since its most
recent protrusive activity. Copy attempts from active to less active pixels are stimulated (negative ∆Hact), whereas copy
attempts from inactive to more active pixels are punished (positive ∆Hact). (D) Act cells alternate between persistent motion
and ”stops” in which they change direction. Plot shows example tracks of 5 Act cells with overlaying starting point (black dot,
t = 0). (E) Displacement plot of CPM cells simulated with and without the Act extension. Brownian motion (without the Act
model, gray line) results in a linear curve. Act cell movement appears as brownian motion on large time scales (linear part of
red line), but is persistent on smaller time scales (non-linear start of red line).

2 Results76

2.1 An extended Cellular Potts Model reproduces features of T cell migration77

To investigate how external cues affect the cell-intrinsic coupling between speed and persistence in migrating T78

cells, we need a model that not only reproduces this coupling, but can also simulate realistic cell migration79

within the complex environments relevant to T cell biology. Such a model must provide a spatial description80

of the cell’s shape and interaction with its surroundings – both of which are crucial for T cell behavior in vivo81

(Beltman et al., 2007; Ariotti et al., 2012). We therefore turned to a Cellular Potts Model (CPM). CPMs represent82

cells as collections of pixels that move by randomly trying to add or remove pixels at their borders (”copy83

attempts”). While doing so, cells try to minimize the energetic cost ∆H associated with maintaining their shape84

and contacts with neighbor cells (Figure 1A). This allows CPMs to reproduce realistic, dynamic cell shapes and85

-behavior using only a few simple rules and parameters. Their spatially explicit yet simple nature makes CPMs86

powerful tools for modelling the interactions of individual cells with complex, multicellular environments in a87

controlled setting. However, the energy that basic CPM cells try to minimize is based solely on adhesion and88

cell shape. As there is no energetic benefit for consistent movement in any given direction, these cells undergo89

brownian motion rather than migrating actively (Figure 1B).90

We therefore use an extension of the CPM that does allow for active migration (Niculescu et al., 2015). In91

this ”Act-model”, pixels newly added to a cell temporarily remember their recent protrusive activity. Copy92

attempts from active into less active pixels are rewarded via a negative contribution ∆Hact to the cost ∆H,93

inducing a positive feedback loop wherein recently added pixels become more likely to protrude again (Figure94

1C). Consequently, local groups of active pixels form stable protrusions that drag the cell forward in persistent95

motion before disappearing again, at which point the cell stops until a new protrusion forms. Thus, cells96

alternate between intervals of persistent movement and ”stops”, in which they can switch direction (Figure97
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Figure 2: The Act model reproduces the UCSP observed in experimental data. (A) Set-up and example Act cells for
simulations of 1D, 2D, and 3D migration. Color gradients indicate the active protrusion. Simulated microchannels (”1D”
migration) consist of two parallel walls, leaving 10 pixels in between. 2D and 3D simulations were performed in an empty
grid of the indicated sizes, with no external constraints on the cell shape. (B) Speed-persistence coupling arises in the Act
model on an exponential scale. Plots show data from 1D, 2D, and 3D simulations, respectively (ρ = spearman correlation
coefficient). See Materials and Methods for a list of parameters used. (C) Speed-persistence coupling is stronger for cells
stratified by maxact. Plot shows mean ± SD of persistence time plotted against speed for Act cells migrating in microchannels
(1D), grouped by value of maxact; numbers in the plot indicate the corresponding value of λact. Shaded gray areas in the
background indicate regions where the persistence time is lower than the time it takes for the cell to move 10% of its length.

1D). At larger time scales, movement still resembles brownian motion (new protrusions can form in random98

directions). Persistence is only evident at the smaller time scales during which the cell has a stable protrusion99

and maintains its direction of movement (Figure 1E).100

This behavior qualitatively resembles the characteristic ”stop-and-go” motility of T cells searching for antigen101

in the lymph node (Miller et al., 2002; Beauchemin et al., 2007). Because the Act model can also simulate cell102

migration within tissues (Niculescu et al., 2015), this makes it a suitable tool for modelling the effect of tissue103

context on T cell migration dynamics in silico.104

2.2 The Act model reproduces the UCSP observed in migrating cells105

After showing that the Act model can reproduce several relevant features of T cell migration, we first tested106

whether it could also reproduce the UCSP observed in experimental data. Most of these experiments involved107

the migration of cells moving along adhesive tracks or within microchannels (Maiuri et al., 2012, 2015). To108

mimic this ”one-dimensional” experimental set-up in silico, we constrained Act cells between two parallel walls,109

leaving a space of 10 pixels within the channel (Figure 2A). This set-up resulted in cell elongation comparable to110

that observed for cells moving on 1D adhesive tracks (compare Figure 2A to Figure 1B in (Maiuri et al., 2015)).111

Act cells moving in these microchannels display ”stop-and-go” behavior, migrating persistently in one direction112
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until they lose their active protrusion – at which point they wait (”stop”) for a new protrusion to form and can113

switch direction (Figure S1A in Supplementary Material).114

In addition, Maiuri et al also observed the UCSP for cells migrating on surfaces (”2D”) or within 3D115

environments (Maiuri et al., 2015). We mimicked these experiments by simulating Act cell migration on large116

2D and 3D grids without microchannel walls (Figure 2A). In contrast to the uniform, elongated shape observed117

in channels, Act cells moving in 2D and 3D form protrusions of different shapes (Niculescu et al., 2015) (Figure118

2A and see below).119

We then used these different set-ups to simulate cells with different migratory behavior. Two parameters120

control migration in the Act model. The first, λact, tunes the contribution of the positive feedback ∆Hact relative121

to the other energetic constraints (adhesion, volume, perimeter), and can be interpreted as the force exerted on122

the cell membrane by actin polymerization in the cell’s leading edge. When λact is large, this force can easily123

push the membrane forward to form a stable protrusion, but when it is small, the actin cytoskeleton has a hard124

time overcoming other, opposing forces (such as membrane tension). Higher λact values therefore yield larger125

protrusions (Figure S1B in Supplementary Material). The second parameter, maxact, determines how long pixels126

remember their activity (measured in MCS, the time unit of the CPM). It thereby puts an upper bound on the127

protrusion size, and can be interpreted as the lifetime of polymerized actin. Higher maxact values therefore128

have a stabilizing effect on the protrusions – yielding larger protrusions even at small forces λact (Figure S1B in129

Supplementary Material).130

To simulate cells with variable migratory behavior, we generated cell tracks for Act cells with different λact131

and maxact values. Analysis of speed and persistence time (computed from the speed autocorrelation function,132

see Materials and Methods) revealed a weak exponential coupling between speed and persistence in all three133

settings (Figure 2B). Although the correlation was weak in these heterogeneous datasets of Act cells with highly134

different λact and maxact parameters, it became much stronger when we stratified cells by maxact value (Figure135

2C). Analysis of speed and persistence in these tracks yielded the same exponential correlation between speed136

and persistence that was also observed in experimental data (Maiuri et al., 2015). This finding was independent137

of the choice of maxact, as we found similar curves for different values of maxact (Figure 2C). These results138

demonstrate the existence of a speed-persistence coupling in the Act model.139

2.3 Speed-persistence coupling in the Act model spans a range of migration modes140

We then harnessed the spatial nature of the Act model to examine the UCSP in more detail. We focused on141

the 2D and 3D settings (which are less artifical than the microchannel environment and allow cells to take on142

their preferred shapes), and investigated how the cell’s migration mode changed when speed and persistence143

increased (Figure 3).144

An important feature of the Act model is that it reproduces different cell shapes and migration modes145

(Niculescu et al., 2015). Low values of λact and maxact promote the formation of small and narrow protrusions146

that form and decay dynamically, giving rise to an amoeboid (”stop-and-go”) migration mode (Figure 3A, left).147

By contrast, large values of λact and/or maxact favor the formation of broad, stable protrusions, yielding a more148

persistent ”keratocyte-like” migration mode (Figure 3A, right).149

Like with the microchannel data (Figure 2C), we again found a strong exponential correlation between speed150

and persistence when we stratified cells by maxact value (Figure 3B, Figure S2A in Supplementary Material).151

This time, however, the exponential increase in persistence was also accompanied by a transition from amoeboid152

to keratocyte-like cell shapes (insets in Figure 3B).153

This transition between different migration modes is also visible in the distributions of the instantaneous154

speeds from our simulated cell tracks (Figure 3C, Figure S2B in Supplementary Material). The bimodal shape of155

this distribution – which is especially evident at low values of maxact – reflects the ”stop-and-go” behavior of156

migrating Act cells: when the cell is in a ”stop”, it has a very low instantaneous speed of almost 0 pixels/MCS,157

whereas the ”go” intervals of movement are responsible for the peak at a higher speed. Higher λact values not158

only increase migration speed (reflected by an upward shift of this second peak), but also reduce the amount159
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Figure 3: Speed-persistence coupling spans a range of migration modes. (A) Migration modes in the Act-model (see
also (Niculescu et al., 2015)). Amoeboid cells are characterized by small, narrow protrusions that decay quickly and
produce stop-and-go motion. Keratocyte-like cells are characterized by more stable, broad protrusions that do not decay
easily. (B) Exponential speed-persistence coupling in 2D and 3D spans a transition form amoeboid to keratocyte-like
motion. Plot shows mean ± SD of persistence time plotted against speed for different combinations of λact and maxact.
Insets show representative cell shapes for the indicated parameters; shaded gray background indicates regions where the
persistence time is lower than the time it takes for a cell to move 10% of its length. See also Figure S2A in Supplementary
Material. (C) Distributions of the instantaneous speeds of 2D and 3D Act cells reveal a transition through different migration
regimes. Cells go from not moving (single peak at speed ∼0 pixels/MCS), via ”stop-and-go” motility (bimodal distributions),
to near-continuous movement (single peak at high speed). See also Figure S2B in Supplementary Material.

of time a cell spends in ”stops” (reflected by a decrease in the size of the first peak). As stops provide an160

opportunity for the cell to change its direction (Figure 3A), the reduced ”stopping time” at high λact values161

explains why Act cells with high λact values migrate not only faster, but also more persistently.162

Together, these results demonstrate that the exponential speed-persistence coupling holds across different163

”regimes” of migration. At very low λact, the cell barely moves at all – as indicated by a single peak at164

instantaneous speeds of almost zero (Figure 3C). This corresponds to a cell without protrusions, spending most165

of its time in ”stops”. As λact increases, the cell enters a ”stop-and-go”, amoeboid migration regime (bimodal166

distributions), until finally it takes on a keratocite-like shape and almost never stops moving at the highest λact167

values.168
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Figure 4: Cell shape dynamics limit both the speed and persistence of migrating cells. Mean ± SD of speed and persistence
time of (A) 2D and (B) 3D Act cells, plotted against λact for different values of maxact. Open circles indicate points where the
persistence time is lower than the time it takes the cell to move 10% of its length (corresponding to the points in the gray
background in Figure 3B). Insets show cell shapes at the indicated parameter values.

2.4 Both Act cell speed and persistence saturate in a cell shape-dependent manner169

Interestingly, our data also show the saturation of the persistence at higher cell speeds that was also reported in170

the experimental data (compare the 2D figures in Figure 3B to the data in (Maiuri et al., 2015)). In fact, this171

saturation was not limited to persistence. Whereas speed initially increased linearly with λact, it plateaued172

at higher λact values (Figure 4A,B, Figure S2C in Supplementary Material). The maximum speed reached173

depended on the protrusion shape-parameter maxact, but in all cases, the initial linear part of the graph spanned174

the entire transition from amoeboid to a keratocyte-like shape. This finding suggests that having to maintain a175

broad protrusion limits the speed a cell can reach. In line with this idea, we did not observe this saturation in176

microchannels, which prevent the cell from acquiring the broad protrusions observed in 2D and 3D (Figure S3A177

in Supplementary Material).178

Similarly, the cell shape changes observed in 2D and 3D seem to put an upper bound on persistence that179

disappears when the cell is constrained by a microchannel (Figure 4A,B, Figure S2C, S3B in Supplementary180

Material). The initial exponential increase in persistence again spanned the entire transition from amoeboid to181

keratocyte protrusion shapes, before eventually saturating at a maxact-dependent value. Also this phenomenon182

seems to be linked to protrusion shapes. Whereas cells with low maxact do tend to form keratocyte-like183

protrusions at high λact values, these protrusions do not extend far into the cell and are prone to breaking –184

forcing the cell to turn towards one of the protrusion halves (Figure 4A). Although higher maxact values allow185

larger persistence times by letting broad protrusions extend farther into the cell and preventing them from186

breaking (Figure 4A,B), persistence still saturates eventually due to slight, stochastic turning within the general187

direction of the stable protrusion (”angular diffusion”, Figure 4A,B) (Maiuri et al., 2015).188

By showing how the shape of migrating cells puts a natural upper bound on both the speed and the189

persistence a cell can reach, these results explain the saturation of persistence observed by Maiuri et al (Maiuri190

et al., 2015). However, there was a striking effect of dimensionality on this process: although we observed191

shape-driven saturation in both 2D and 3D, the shape of the speed-persistence curve was different for 2D and192
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Figure 5: Environmental constraints limit T cell persistence in a model of the epidermis. (A) An Act T cell (black) moving in
between keratinocytes (gray) in the epidermis. Simulations were performed in a 150 x 150 pixel grid with linked borders (for
example, a cell moving off the grid towards the red region on the right re-enters the grid at the equivalent red region on the
left). (B,C) Shapes of Act T cells constrained between keratinocytes. At lower λact values, T cells show typical amoeboid
”stop-and-go” behavior. At higher λact values, cells do not obtain a broad, keratocyte-like shape, but stay elongated due to
environmental constraints. At junctions between keratinocytes, however, protrusions tend to split. (D) Mean persistence time
plotted against speed for different combinations of λact and the keratinocyte rigidity parameter λP (maxact = 20). Shaded gray
background indicates regions where the persistence time is lower than the time it takes for a cell to move 10% of its length.

3D simulations (Figure 3B, 4). In both settings, speed and persistence saturated after an initial linear/exponential193

increase with λact. Yet, whereas persistence saturated before speed in 2D (Figure 4A), 3D Act cells showed a194

much stronger saturation of speed that preceded the saturation of persistence (Figure 4B). Thus, when both195

speed and persistence have a natural upper bound, the dominant saturation effect can be context-dependent –196

altering the shape of the speed-persistence curve.197

2.5 Environmental constraints break the UCSP for T cell migration in the epidermis198

After validating that the Act model robustly reproduces the UCSP, we applied this model to study our original199

question of how a crowded environment affects the speed and persistence of migrating T cells. Specifically, we200

modelled T cell migration in the epidermal layer of the skin. As one of the key entry points through which201

pathogens can enter the body, even healthy skin contains substantial numbers of T cells (Clark et al., 2006).202

T cells attracted to the epidermis during an infection can remain there for a long time: even a year after the203

resolution of an infection, specific T cells still persist in the same region of the epidermis (Gebhardt et al., 2009,204

2011; Jiang et al., 2012; Zaid et al., 2014). Whereas subtle chemotaxis guides T cells towards infected cells205

during the effector phase (Ariotti et al., 2015), these remaining T cells actively patrol the epidermis without206

such chemotactic guidance (Ariotti et al., 2012) – migrating in patterns shaped by a combination of cell-intrinsic207

factors and environmental constraints. Importantly, even though the tight contacts between keratinocytes208

make the epidermis one of the most rigid environments T cells encounter in vivo, T cells in the epidermis are209
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nevertheless highly motile (Ariotti et al., 2012).210

We therefore focused on this extreme example to examine how environmental structure can affect the UCSP.211

To this end, we simulated T cell migration in the skin as reported previously (Niculescu et al., 2015), placing an212

Act cell in a grid covered completely with keratinocytes (Figure 5A). Because of the opposing forces from the213

surrounding keratinocytes, cells now required higher λact forces to counter this resistance and start moving214

(Figure S4 in Supplementary Material). At sufficiently high λact values, they once again showed the characteristic215

”stop-and-go” motility before eventually switching to near-constant motion with hardly any stops (Figure 5B,216

Figure S4 in Supplementary Material).217

Unlike Act cells in an unconstrained environment, these Act T cells did not switch from amoeboid to218

keratocyte-like cell shapes as λact increased. Cells at high λact now mostly maintained their amoeboid shape,219

probing their surroundings with narrow protrusions and migrating in the direction of their longest axis.220

However, when these cells approached a “T-junction” (Figure 5C), they sometimes formed a broad protrusion221

in the space between the keratinocytes that eventually split up into two separate protrusions going in opposite222

directions. This protrusion splitting caused the cell to slow down until one of the two active regions gained the223

upper hand.224

In this set-up, increases in λact were once again associated with a higher speed that gradually saturated at high225

λact values (Figure S5A in Supplementary Material), but persistence times now saturated much earlier, reaching226

a plateau at ∼30 MCS (Figure S5B in Supplementary Material). With cell speeds around ∼0.2 pixels/MCS, this227

corresponds to persistent movement over distances in the range of ∼5-10 pixels – which is roughly the distance228

the T cell can travel before arriving at another junction (Figure 5A). Thus, the structure of the environment229

appears to be the limiting factor for T cell persistence in this scenario.230

This rapid saturation of persistence overruled the UCSP for T cells migrating in the skin, abrogating the231

coupling of speed and persistence (Figure 5D). This result was independent of the rigidity of the surrounding232

keratinocytes: although a reduction in the keratinocyte rigidity parameter λP increased the speeds that T cells233

could reach (Figure S5A in Supplementary Material), it did not affect the maximum persistence time (Figure S5B234

in Supplementary Material) or the absence ofspeed-persistence coupling (Figure 5D). These results demonstrate235

that although the UCSP appears to be valid for all migrating cells, cell-intrinsic speed-persistence coupling may236

be obscured when environmental factors place additional, more stringent constraints on persistence.237

3 Discussion238

To date, the UCSP remains the only general law describing cell motility across the complete spectrum of239

migrating cell types. Given the incredible diversity of the mechanisms driving cell migration in different cell240

types, it is not straightforward that such a general law should exist at all. Nevertheless, the UCSP is now firmly241

established: after its initial discovery (Maiuri et al., 2012), Wu et al later confirmed the UCSP in an independent242

study (Wu et al., 2014), and Maiuri et al explained it by showing that actin retrograde flow can mechanistically243

couple cell polarity to migration speed (Maiuri et al., 2015). Here, we again confirm this fundamental law of cell244

migration in an independent model and show – for the first time – how it relates to cell shape dynamics and245

environmental constraints.246

The mathematical model of the UCSP described by Maiuri et al differs from the Act model in the level of247

detail used to describe cell polarity and cell shape. The Maiuri model treats the cell as a line along its length axis –248

describing describes both polarity molecule concentrations and actin retrograde flow only in this one dimension249

– and lacks a more detailed description of the cell shape and shape dynamics. By contrast, the Act model250

does reproduce realistic cell shapes and shape dynamics (Niculescu et al., 2015). Although it lacks an explicit251

description of the actin retrograde flow, it nevertheless reproduces the exponential speed-persistence coupling252

observed in the Maiuri model and in experimental data. Similar to the experimental data, this association253

is weak in heterogeneous cell populations – but becomes stronger when cells are stratified into more similar254

groups (in this case, by maxact value) (Figure 2B,C, 3B).255
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Because the Act model provides a more detailed description of cell shape than the Maiuri model, it allowed256

us to investigate how the UCSP interacts with cell shape dynamics. Firstly, our data show that speed-persistence257

coupling spans a transition between different cell shapes and migration modes (Figure 3). This finding highlights258

that cell shape and cell motility characteristics interact – consistent with several other studies showing a link259

between cell shape and speed within individual cell types (Keren et al., 2008; Ofer et al., 2011; Tweedy et al., 2013).260

Secondly, the model demonstrates that cell shape puts an upper bound on migratory speed and persistence:261

both saturated at high λact levels where the cell had attained a broader, more keratocyte-like shape (Figure262

4). Interestingly, a similar shape-speed correlation with saturation at broad cell shapes was found in fish263

keratocytes (Keren et al., 2008). These observations clearly show that not only persistence, but also cell speed264

has a natural upper bound determined at least partly by cell shape dynamics. We also show an important role265

for dimensionality in this process, as the saturation of speed and persistence behaved differently in 2D versus266

3D. Together, these results shed new light on the saturation of persistence observed in the experimental data:267

whereas persistence saturated before speed in all experimental settings considered by Maiuri et al (Maiuri et al.,268

2015), our model suggests that – depending on the cell’s shape – scenarios in which speed saturates earlier could269

likewise exist.270

In our in silico model of T cell migration in the epidermis, environmental constraints posed by the271

dense keratinocyte layer restricted persistent movement and obscured the UCSP (Figure 5) – showing that272

environmental constraints can overrule the UCSP in at least some of the environments T cells face in vivo.273

We therefore predict that speed-persistence coupling should not be visible in in vivo imaging data of T cells274

patrolling the epidermis: in such an environment, both speed and persistence likely reflect the maximum of275

what is feasible given the environmental constraints rather than being the result of an intrinsic coupling.276

It is worth noting here that the epidermis is an extreme example of a confining environment, and that other277

tissues likely place less stringent constraints on T cell movement. This would allow a more important role for278

the UCSP in determining persistence in such tissues. Interestingly, thymocytes navigating the thymic cortex279

during positive selection perform a random walk at a low speed – whereas the same region also contains a280

population of cells with much higher speed and persistence, representing the cells that have already completed281

positive selection (Witt et al., 2005; Halkias et al., 2013). This finding shows that the slow-moving population of282

thymocytes still undergoing positive selection has not yet reached the maximal speed and persistence permitted283

by the environment – suggesting a role for the UCSP in this context. Future studies should elucidate whether284

the UCSP indeed applies in cortical thymocytes.285

Our results have implications for studies investigating the efficiency of T cell search behavior. Motility286

characteristics such as speed and persistence are not independent parameters that can be tuned to generate287

”optimal” search behavior, but rather reflect a complex interplay between cell-intrinsic rules such as the UCSP288

and the topology of the environment. Random walk models of T cell search strategies should therefore consider289

that speed and persistence are subject to both cell-instrinsic and environmental constraints. As different models290

can often explain the same data, understanding these constraints will be crucial to select those models that are291

not only consistent with data, but represent search strategies that T cells might actually adopt in vivo.292
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4 Materials and Methods293

4.1 Act model294

For our simulations, we used the Act model as described in (Niculescu et al., 2015). Our JavaScript implementation295

of this model is available at http://github.com/jtextor/cpm.296

Briefly, the Act model is an extension of the Cellular Potts Model that represents cells as collections of pixels297

on a 2D or 3D grid. These pixels randomly try to copy their cell’s identity into neighbor pixels belonging to other298

cells. The probability that such a copy attempt will succeed depends on the global energy or Hamiltonian of the299

system, which is in turn determined by cell-cell adhesion and constraints on the cell’s volume and perimeter.300

The success probability of a copy attempt therefore not only depends on the cell’s shape, but also on that of301

the cell that it tries to copy into. Time in the CPM is measured in Monte Carlo Steps (MCS), where one MCS302

contains a number of copy attempts equal to the total number of pixels in the grid.303

The Act model extends the CPM with positive feedback, such that pixels that were recently added to a cell304

(= recent ”protrusive” activity) remember this activity for a period of maxact MCS – during which they become305

more likely to protrude again. This is accomplished via a negative contribution ∆Hact to the Hamiltonian for all306

copy attempts from a source pixel s in an active region into a target pixel t in a less active region:307

∆Hact(s→ t) = − λact

maxact
(GMact(s) −GMact(t)) (1)

where GMact(p) of pixel p is the geometric mean of the activity values of all pixels in the (Moore) neighborhood308

of p. Thus, ∆Hact is negative when GMact(s) > GMact(t).309

For a complete description of the CPM, see (Niculescu et al., 2015). For details on parameters used, see310

section 4.2 below.311

4.2 Simulations312

Before the start of each simulation, cells were seeded in the middle of the grid and allowed a burnin time of313

500 MCS to gain their optimal volume and shape. Every cell centroid was then tracked for a period of 50,000314

MCS. To maximize measurement resolution while still allowing the cells to displace enough for an accurate315

determination of movement direction, cell centroids were recorded every 5 MCS.316

4.2.1 Basic CPM parameters317

For each experiment, we selected parameters combinations where cells had realistic shapes and migration318

behavior (see Table 1). Temperature, volume, perimeter, adhesion, and λV/λP were chosen such that cells stayed319

connected even at high maxact and λact values tested (”connectedness” at least 95% for at least 95% of the time320

for all simulations except skin simulations. See section ”Connectedness” below). Except for maxact and λact,321

parameters were held constant within each experiment. Parameters for 1D and 2D simulations were mostly322

equal – except for the larger perimeter in 1D to account for the elongated shape of cells in microchannels. For323

3D simulations, however, we had to select other parameters to account for changes in surface to volume ratio324

and thus altered relative contributions of the different terms to the total ∆H.325

4.2.2 Act model parameters326

To investigate the link between speed and persistence, we analyzed cell tracks with increasing λact while keeping327

maxact fixed (Table 2). Maxact values were chosen to obtain a range of protrusion sizes, from small protrusions to328

large protrusions occupying most – but not all – of the cell volume (see percentage active pixels analysis below).329

For each maxact, a range of λact values was then chosen such that cells went from completely brownian motion330

(persistence time ∼ 5 MCS, the time between subsequent measurements of cell location) to maximally persistent331

motion (persistence time ∼ 10,000 MCS). Persistence times higher than 10,000 MCS were not considered, as such332
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Table 1: CPM parameters used in different experiments. Within each experiment, parameters were kept constant. Skin
simulation parameters apply to the T cells; bracketed parameters indicate values used for the keratinocytes.

1D 2D 3D Skin

Grid size (pixels) 50000 x 12 10000 x 10000 1024 x 1024 x 1024 150 x 150
Linked grid borders no no no yes
Simulation duration (MCS) 50000 50000 50000 50000
Burnin time (MCS) 500 500 500 500
Temperature 20 20 7 20
Volume (pixels) 500 500 1800 100 (152)
λVolume 30 30 25 30 (30)
Perimeter 360 260 8600 130 (145)
λPerimeter 2 2 0.01 2 (0/2/5)
Adhesion cell-channel 15 - - -
Adhesion cell-ECM 20 20 5 20 (20)
Adhesion cell-cell 100 100 15 20 (20)
Adhesion T cell-keratinocyte - - - 100

Table 2: Combinations of maxact and λact used in different experiments. For each maxact, λact values were chosen such that
cells went from no persistence to maximal persistence.

Experiment maxact λact

1D 30 100, 200, 600, 800, 1000, 1200, 1400
40 60, 80, 100, 200, 400, 600
50 50, 60, 70, 80, 90, 95, 100
60 40, 45, 50, 55, 60, 65, 70
80 25, 30, 35, 38, 40, 42, 45
100 30, 32, 34, 36, 38, 40

2D 30 50, 100, 200, 300, 400, 500, 700, 1000
40 50, 75, 100, 150, 200, 250, 300, 500, 800, 1000
50 50, 75, 100, 125, 150, 200, 300, 500
60 40, 60, 80, 100, 120, 150, 250
80 30, 40, 50, 60, 70, 100, 150, 200
100 30, 35, 40, 45, 50, 60, 70, 100, 150, 200

3D 30 30, 35, 40, 42, 44, 46, 48, 50, 52, 55
40 30, 35, 37, 38, 39, 40, 42, 45, 50
50 25, 30, 33, 34, 35, 36, 37, 38, 39, 40

high persistences will likely be underestimated due to the finite total simulation time (50,000 MCS). For skin333

simulations, keratinocytes were modelled with maxact = λact = 0, and variable λP, T cells with maxact = 20 and334

variable λact (Table 3).335

4.2.3 Microchannel simulations336

To simulate migration of cells confined in a 1D microchannel, we created a 2D grid with a height of 10 pixels337

and a width of 50,000 pixels. Cells were confined by a layer of ”barrier” pixels on the top and bottom of the grid,338

into which copy attempts were forbidden (yielding a total grid height of 12 pixels). Cells were seeded in the339

middle of the channel for each simulation.340

Table 3: Combinations of keratinocyte λP and T cell λact used in the skin simulations.

Experiment λP λact

skin 0 200, 300, 400, 500, 750, 1000, 1250, 1500, 2000
2 400, 500, 750, 1000, 1250, 1500, 2000
5 500, 750, 1000, 1250, 1500, 2000
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4.2.4 2D and 3D simulations341

To simulate migration in 2D and 3D, we seeded single cells in the middle of an empty 2D (10,000 x 10,000 pixels)342

or 3D (1024 x 1024 x 1024 pixels) grid, respectively.343

4.3 Analysis of cell shape and protrusions344

During each simulation (every 5 MCS), we recorded not only the position of the cell’s centroid, but also several345

other cell properties to keep track of the cell’s shape and degree of polarization (see below).346

4.3.1 Connectedness347

In the CPM, the pixels belonging to a single cell are held together mostly via the adhesion term in the Hamiltonian,348

which favours cell shapes where pixels belonging to the same cell adhere to each other. However, this adhesive349

force can become negligible relative to the other ∆H terms – for example when ∆Hact is large due to a high350

λact. Thus – especially in 3D – cells may break apart at high values of λact, despite the unfavourable changes in351

adhesion energy associated with this break.352

As frequent cell breaking causes artefacts in the tracking data that may bias the measurement of speed and353

persistence, it is important to use parameter ranges that prevent such an unbalanced contribution of the different354

∆H terms. To estimate the frequency of cell breaking, we therefore recorded the connectedness (C) of the cell355

every 5 MCS of each simulation.356

C represents the probability that two randomly chosen pixels from the same cell are part of a single, unbroken357

unit. To compute Ci of a cell i, we represent the cell i as a graph Gi where every node p is a pixel belonging to358

cell i, and pixels are connected by an edge if they are adjacent to each other on the CPM grid (that is, if they are359

from the same Moore neighborhood). We then group the pixels into n connected components [c1, ..., cn] – that is,360

groups of pixels where for every pair of pixels (p1 ∈ c, p2 ∈ c), it is possible to walk from p1 to p2 via the edges of361

graph Gi. We then define Ci as:362

Ci =

n∑
k=1

(Vk

Vi

)2

(2)

where Vk is the pixel volume of connected component ck in Gi, and Vi the total volume of cell i. Thus, an363

unbroken cell – which by definition has only one connected component – has Ci = 1, whereas a cell broken into364

many isolated pixels has Ci → 0.365

4.3.2 Percentage active pixels366

As a measure of the size of the active protrusion of a cell, we counted the percentage of pixels of that cell with an367

Act-model activity > 0.368

4.4 Track analysis369

All simulated cell tracks were analyzed in R (version 3.4.3) using the MotilityLab package (version 0.2.5). To370

compute speed and persistence, we performed step-based analyses on 4 groups of 5 simulated tracks (see371

below), yielding 4 estimates of speed and persistence for every parameter combination. These four values were372

then used to estimate the overall value (mean) and measurement precision (standard deviation) of speed and373

persistence at that parameter combination.374

4.4.1 Speed375

To compute speeds, we first computed instantaneous speeds at every step in every cell track (using the ”speed”376

function of MotilityLab). The reported mean speed was then the average of all the instantaneous speeds in the377

recorded tracks.378
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4.4.2 Persistence379

To measure the persistence of a moving cell, consider the vectors ~v(t) (movement direction at time t) and ~v(t+∆t)380

(movement direction at time t + ∆t). When the cell moves persistently, we expect that the direction of movement381

at t + ∆t is similar to that at t, even for relatively large values of ∆t. By contrast, for a cell undergoing random382

Brownian motion, the direction of ~v(t+∆t) is probably unrelated to that of ~v(t).383

To quantify this, consider the dot product between the movement vectors ~vt and ~vt+∆t:384

~v(t) · ~v(t+∆t)
def
= ‖~v(t)‖‖~v(t+∆t)‖ cosθ (3)

Here, cosθ of the angle between vectors ~v(t) and ~v(t+∆t) is 1 when the vectors align perfectly (θ = 0) , -1 when385

they are exactly opposite (θ = 180), and somewhere in between for all other angles. When we take ∆t = 0,386

equation 3 simplifies to:387

~v(t) · ~v(t+∆t) = ~v(t) · ~v(t) = ‖~v(t)‖‖~v(t)‖ cos 0 = ‖~v(t)‖2 (4)

As ‖~v(t)‖ equals the instantaneous speed at time t, the average of this dot product for different values of t388

with ∆t = 0 is just the squared mean speed v̄2.389

However, when we increase ∆t, the vectors ~v(t) and ~v(t+∆t) are no longer perfectly aligned, and their dot390

product becomes smaller. The rate at which this decay occurs depends on the motility mode of a cell: for a391

given ∆t, persistent cells will on average have a smaller θ and thus a larger dot product than cells undergoing392

Brownian motion. Thus, to compute persistence, we first construct the autocovariance curve of the average393

dot product ~v(t) · ~v(t+∆t) as a function of ∆t (using the ”overallDot” function of the MotilityLab package). As a394

measure of persistence, we then compute the half-life τ of this autocovariance curve for which:395

~v(t) · ~v(t+τ)

~v(t) · ~v(t+0)
=
‖~v(t)‖‖~v(t+τ)‖ cosθ

‖~v(t)‖2 = 0.5 (5)

As the dot product decays more slowly for more persistent cells, high values of τ indicate persistent396

movement. Note that, as the average ‖~v(t)‖‖~v(t+τ)‖ = ‖~v(t)‖2 = v̄2, τ is independent of the mean speed v̄, even397

though the dot product is not.398
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Supplementary Figures475
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Figure S1: Act cells in microchannels have ”stop-and-go” motility and variable protrusion sizes. (A) Example of ”stop-and-go”
motility. When a protrusion decays, the cell stops until a new protrusion forms – which may be in another direction. (B)
Example cells for different combinations of the parameters maxact/ λact.
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Figure S2: Act cells in 2D show similar behavior for different values of maxact, see also Figure 3B,C and 4A. Plots show
(A) Exponential speed-persistence coupling, (B) Distributions of instantaneous speeds, and (C) Saturation of speed and
persistence at high λact values.
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Figure S3: Confinement of Act cells in microchannels slows down saturation of speed and persistence. Plots show mean ±
SD of (A) cell speed, and (B) persistence as a function of λact, for different values of maxact. Open circles indicate points
where the persistence time is lower than the time it takes the cell to move 10% of its length (corresponding to points in the
gray region in Figure 2).
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Figure S4: Act T cells in skin display ”stop-and-go” behavior. Plots show distributions of instantaneous speed for different
values of the tissue rigidity parameter λP and migration parameter λact (see also Figures 3C and S2B).
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Figure S5: Both speed and persistence saturate for T cells moving in skin. Plots show mean ± SD of (A) cell speed, and (B)
persistence as a function of λact, for different values of the tissue rigidity parameter λP. Open circles indicate points where
the persistence time is lower than the time it takes the cell to move 10% of its length (corresponding to points in the gray
region in Figure 5).
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