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2	

Abstract 27	

Face-selective and voice-selective brain regions have been shown to represent face-identity and 28	

voice-identity, respectively. Here we investigated whether there are modality-general person-29	

identity representations in the brain that can be driven by either a face or a voice, and that 30	

invariantly represent naturalistically varying face and voice tokens of the same identity. 31	

According to two distinct models, such representations could exist either in multimodal brain 32	

regions (Campanella and Belin, 2007) or in face-selective brain regions via direct coupling 33	

between face- and voice-selective regions (von Kriegstein et al., 2005). To test the predictions 34	

of these two models, we used fMRI to measure brain activity patterns elicited by the faces and 35	

voices of familiar people in multimodal, face-selective and voice-selective brain regions. We 36	

used representational similarity analysis (RSA) to compare the representational geometries of 37	

face- and voice-elicited person-identities, and to investigate the degree to which pattern 38	

discriminants for pairs of identities generalise from one modality to the other. We found no 39	

matching geometries for faces and voices in any brain regions. However, we showed 40	

crossmodal generalisation of the pattern discriminants in the multimodal right posterior 41	

superior temporal sulcus (rpSTS), suggesting a modality-general person-identity representation 42	

in this region. Importantly, the rpSTS showed invariant representations of face- and voice-43	

identities, in that discriminants were trained and tested on independent face videos (different 44	

viewpoint, lighting, background) and voice recordings (different vocalizations). Our findings 45	

support the Multimodal Processing Model, which proposes that face and voice information is 46	

integrated in multimodal brain regions.  47	

	48	

 49	

 50	

 51	
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3	

Significance statement 52	

It is possible to identify a familiar person either by looking at their face or by listening to their 53	

voice. Using fMRI and representational similarity analysis (RSA) we show that the right 54	

posterior superior sulcus (rpSTS), a multimodal brain region that responds to both faces and 55	

voices, contains representations that can distinguish between familiar people independently of 56	

whether we are looking at their face or listening to their voice. Crucially, these representations 57	

generalised across different particular face videos and voice recordings. Our findings suggest 58	

that identity information from visual and auditory processing systems is combined and 59	

integrated in the multimodal rpSTS region.  60	

 61	

 62	

 63	

 64	

 65	

 66	

 67	
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4	

Introduction 77	

Looking at a familiar person’s face or listening to their voice automatically grants us access to 78	

a wealth of information regarding the person’s identity, such as their name, our relationship to 79	

them, and memories of previous encounters. Knowledge about how the brain processes faces 80	

and voices separately has advanced significantly over the past twenty years: functional 81	

magnetic resonance imaging (fMRI) revealed cortical regions that are face-selective 82	

(Kanwisher et al., 1997) and regions that are voice-selective (Belin et al., 2000). Recent 83	

advances using multivariate classification methods have further shown that some of these 84	

regions are important for identification. In particular, face-selective regions in the posterior 85	

occipitotemporal lobe, anterior temporal lobe, and posterior superior temporal sulcus (pSTS) 86	

can discriminate different facial identities (Kriegeskorte et al., 2007; Nestor et al., 2011; 87	

Goesaert and Op de Beeck, 2013; Verosky et al., 2013; Axelrod and Yovel, 2015; Collins et 88	

al., 2016; Visconti Di Oleggio Castello et al., 2017). Crucially, a number of studies also found 89	

representations in these regions that generalised across different images of the same person 90	

(Anzelotti et al., 2014; Anzelotti and Caramazza, 2016; Guntupalli et al., 2017), i.e., were able 91	

to “tell people together” (Jenkins et al., 2011; Burton, 2013). Similarly for voices, Formisano et 92	

al. (2008) found voice-identity representations in the right STS and Heschl’s gyrus that could 93	

both discriminate between speakers and generalise across different vowel sounds spoken by the 94	

same voice.  95	

 96	

Despite these advances, we still have a limited understanding of how the brain combines and 97	

integrates face and voice information. Two major models have been put forward. The 98	

Multimodal Processing Model proposes that there are multimodal systems that process 99	

information about people and receive input from both face- and voice-responsive regions (Ellis 100	

et al., 1997; Campanella and Belin, 2007). Patient (Ellis et al., 1989; Gainotti, 2011) and fMRI 101	
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studies (Shah et al., 2001; Joassin et al., 2011; Watson et al., 2014a) suggest the anterior 102	

temporal lobe, the posterior cingulate cortex, the STS, and the hippocampus as candidate 103	

multimodal regions. In contrast, the Coupling of Face and Voice Processing Model proposes 104	

that the direct coupling between face- and voice-responsive brain regions is crucial for the 105	

integration of person-identity information (von Kriegstein et al., 2005). In particular, fMRI 106	

studies have shown that voice recognition of familiar (or recently learned) people is associated 107	

with increased activation in face-responsive regions of the fusiform gyrus (von Kriegstein et 108	

al., 2005, 2006, 2008; von Kriegstein and Giraud, 2006). 109	

 110	

In this study, we tested the predictions from these two models by investigating whether there 111	

are modality-general person-identity representations in multimodal regions (Multimodal 112	

Model) and/or in face- and voice-selective regions (Coupling Model). We used representational 113	

similarity analysis — RSA (Kriegeskorte et al., 2008a, 2008b) to compare the representational 114	

geometries of face- and voice-elicited person-identities, and to investigate the degree to which 115	

pattern discriminants for pairs of identities generalise from one modality to the other. We 116	

predict that, if a region shows a modality-general person-identity representation, the 117	

representational geometry of face and voice identities will match, and/or pattern discriminants 118	

will generalise across faces and voices. Two recent studies found some support for the 119	

Multimodal Model by showing that multimodal regions in the STS and inferior frontal gyrus 120	

(Hasan et al., 2016; Anzelotti and Caramazza, 2017) could discriminate between the activation 121	

patterns of two face-identities based on voice information (and vice-versa). However, these 122	

studies did not show that the regions that could decode identities across modalities could also 123	

decode identities within each modality, which is a crucial feature of modality-general person-124	

identity representations. Furthermore, these studies used very few identities and tokens per 125	

identity. In our study, we included multiple, naturalistically varying face videos and voice 126	
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recordings of 12 different identities. Thus, we were able to sample the variability of visual and 127	

auditory appearance that we are exposed to in everyday life, and to better capture processes of 128	

person identification, which are distinct from image or sound recognition (Burton, 2013). 129	

 130	

Materials and Methods 131	

Overview of study 132	

In this study, we measured fMRI activation patterns in response to the faces and voices of 12 133	

famous individuals. It was important to use highly familiar individuals because we needed to 134	

guarantee that participants were well acquainted with the faces and voices of those individuals. 135	

We thus only recruited participants for the full study if they demonstrated that they were 136	

familiar with the majority of the famous individuals in an online Recognition Task. The full 137	

study consisted of two MRI scanning sessions and one behavioural session, with each session 138	

taking approximately 90 minutes. All three sessions took place on separate days. Before 139	

entering the scanner at the start of the first MRI session, participants repeated the Recognition 140	

Task in the presence of the experimenter and also completed a Familiarity Task in which they 141	

rated all face and voice stimuli on perceived familiarity.  142	

 143	

In each MRI session participants completed three functional runs (main experimental runs) in 144	

which they viewed the faces and listened to the voices of the famous people in an event-related 145	

design. In addition, participants underwent two structural scans (one in each session) and 146	

functional localisers for face-selective, voice-selective, and multimodal regions of interest 147	

(ROIs). Across both sessions participants completed at least one run (in most cases two) of (1) 148	

the temporal voice area (TVA) localiser (Belin et al., 2000), (2) a face localiser, (3) a 149	

multimodal (face-voice) localiser, and (4) a voice localiser. Finally, participants completed a 150	

behavioural testing session. In this behavioural session they rated the famous faces and voices 151	
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on various social and perceptual dimensions; however, these results are not included here.  152	

 153	

To investigate the existence of modality-general person-identity representations in each of our 154	

ROIs we used RSA (Kriegeskorte et al., 2008a, 2008b; Kriegeskorte and Kievit, 2013) to 155	

compare the representational geometry of face-identities with the representational geometry of 156	

voice-identities (Analysis A), and to investigate the  degree to which pattern discriminants for 157	

each pair of identities generalise from one modality to the other (Analysis B). Analysis A 158	

focused on the representational geometry of all of identities, i.e. the entire structure of pairwise 159	

distances between the activity patterns elicited by these identities in each modality, and 160	

compared geometries across modalities. Analysis B focused on the discriminability of pairs of 161	

identities, and used a linear discriminant computed in one modality to test discriminability of 162	

the same pair of identities in the other modality (in a similar way to traditional pattern 163	

classification methods). These two analyses complement each other and allowed us to test 164	

different predictions regarding the nature of modality-general person-identity representations.  165	

 166	

For Analysis A (RSA comparing representational geometries), we predicted that brain regions 167	

with modality-general person-identity representations would show matching representational 168	

geometries for face-identities and voice-identities. This analysis is constrained by two 169	

assumptions. The first assumption is that there is sufficient variability in the representational 170	

distances between different identities within-modality, i.e. different degrees of similarity 171	

between identities. If all identities are equally distinct from each other, we do not expect to find 172	

correlations between geometries across the two modalities. The second assumption is that 173	

modality-general information dominates over any modality-specific information that may be 174	

present in the same voxels. Specifically, it is possible that the voxels comprising the pattern 175	

estimates contain both unimodal and multimodal neurons (Quiroga et al., 2009). In this case, 176	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 13, 2018. ; https://doi.org/10.1101/338475doi: bioRxiv preprint 

https://doi.org/10.1101/338475


	

8	

the influence of modality-specific information on the representational distances between all 177	

identities could override the influence of modality-general information on the representational 178	

geometry, and could result in non-matching representational geometries across modalities.  179	

 180	

We thus also conducted Analysis B (RSA investigating identity discriminability), and we 181	

predicted that brain regions with modality-general person-identity representations would be 182	

able to discriminate between pairs of identities in one modality based on their representational 183	

distance in the other modality. This analysis focuses on one pair of identities at a time, and thus 184	

is not affected by the degree of variability in the representational distances between all 185	

identities. In addition, this analysis is focused on pattern discriminants that generalise across 186	

modalities, and therefore we believe that it is more sensitive to detect modality-general person-187	

identity representations even in the presence of modality-specific information. 188	

 189	

Participants 190	

Participants were recruited at Royal Holloway, University of London and Brunel University 191	

London to take part in a behavioural and fMRI experiment. All participants were required to be 192	

native English speakers aged between 18 and 30, and to have been resident in the UK for a 193	

minimum of 10 years. These requirements were set to increase the likelihood of participants 194	

being familiar with the famous people whose faces and voices were presented in the 195	

experiment. In addition, participants completed an online Recognition Task (see below) as part 196	

of the screening procedure for the study and were only invited if they were able to recognise at 197	

least 75% of our set of famous people from both their face and their voice.  198	

 199	

Thirty-one healthy adult participants were recruited who matched all the above criteria. One 200	

participant was excluded from the study after the first MRI session due to excessive head 201	
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movement in the scanner (more than 3 mm in any direction within one run). The final sample 202	

consisted of 30 participants (eight males) with mean age of 21.2 years (SD=2.37, range=19-203	

27). All reported normal or corrected-to-normal vision and normal hearing, provided written 204	

informed consent and were reimbursed for their participation. The study was approved by the 205	

Ethics Committee of Brunel University London.  206	

 207	

Recognition Task 208	

Participants completed a face and voice Recognition Task to determine whether they could 209	

recognise at least 75% of the famous people (i.e. at least 9 out of 12) from both the face and the 210	

voice. Face stimuli consisted of single photographs of each of the 12 famous people that were 211	

obtained from the Internet through Google Image searches. Photographs included the top part 212	

of the body and were front-facing. Voice stimuli consisted of single sound-clips for each of the 213	

12 famous people and were obtained from YouTube videos. Sound-clips were approximately 214	

8-seconds long and were root-mean-square (RMS) normalized using Praat (version 5.3.80; 215	

Boersma and Weenink, 2014; www.praat.org). None of these face or voice stimuli were 216	

presented in the main experiment.  217	

 218	

Stimuli were presented using Qualtrics (Qualtrics, Provo, UT). For each stimulus participants 219	

had to identify the person shown in the picture or the person speaking (by providing their name 220	

or other uniquely identifying biographical information). In the online task participants typed 221	

their responses below each stimulus, and in the lab task responses were made verbally.  222	

 223	

Stimuli for Familiarity Task and Main Experimental Runs  224	

Six silent, non-speaking video clips of moving faces, and six sound clips of voices for each of 225	

the 12 famous people (six female, six male) were obtained from videos on YouTube (in total, 226	
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72 stimuli per modality). These people had been identified in our pilot studies as having highly 227	

recognisable faces and voices within samples of native English speakers between the ages of 228	

18-30 who have been resident in the UK for a minimum of 10 years. This list of famous people 229	

included actors, pop stars, politicians, comedians, and TV personalities: Alan Carr, Beyonce 230	

Knowles, Daniel Radcliffe, Emma Watson, Arnold Schwarzenegger, Barack Obama, Sharon 231	

Osbourne, Kylie Minogue, Graham Norton, Cheryl Cole, Barbara Windsor, and Jonathan Ross.  232	

 233	

The face stimuli were selected so that the background did not provide any cues to the identity 234	

of the person. Other than the absence of speech, there were no constraints on the type of face 235	

movement. Examples of face movements included nodding, smiling, and rotating the head. 236	

However, all stimuli were selected to be primarily front-facing. Face stimuli were edited using 237	

Final Cut Pro X (Apple, Inc.) so that they were three seconds long and centred on the bridge of 238	

the nose. Six video-clips of the face of the same person were obtained from different original 239	

videos set in a different background.  240	

 241	

Voice stimuli were edited using Audacity® 2.0.5 recording and editing software 242	

(RRID:SCR_007198) so that they contained three seconds of speech after removing long 243	

periods of silence. Voice stimuli were converted to mono with a sampling rate of 44100, low-244	

pass filtered at 10KHz, and RMS normalised using Praat. Six sound clips of the voice of the 245	

same person were obtained from different original videos. All of the voice stimuli had a 246	

different verbal content and were non-overlapping. The stimuli were selected so that the 247	

speakers’ identity could not be determined based on the verbal content, conforming to the 248	

standards set by Van Lancker et al. (1985) and Schweinberger et al. (1997).  249	

 250	

Familiarity Task 251	
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Before entering the scanner, participants rated all stimuli that would be presented in the main 252	

experimental runs on perceived familiarity. Participants were presented with the face stimuli 253	

first, followed by the voice stimuli, in separate blocks. Stimuli were presented using the 254	

Psychophysics Toolbox (version 3; RRID:SCR_002881; Brainard, 1997; Pelli, 1997) running 255	

in Matlab (version R2013b; MathWorks; RRID:SCR_001622). Face stimuli were presented in 256	

the centre of the screen. Participants listened to the voice stimuli through headphones 257	

(Sennheiser HD 202). Participants rated each stimulus on scale from 1 (very unfamiliar) to 7 258	

(very familiar). Each block took approximately 5 minutes to complete. 259	

 260	

MRI data acquisition 261	

Participants were scanned using a 3.0 Tesla Tim Trio MRI scanner (Siemens, Erlangen) with a 262	

32-channel head coil at the Combined Universities Brain Imaging Centre (CUBIC) at Royal 263	

Holloway, University of London. In each of the two scanning sessions, a whole-brain T1-264	

weighted anatomical scan was acquired using magnetization-prepared rapid acquisition 265	

gradient echo (MPRAGE) [1.0 x 1.0 in-plane resolution; slice thickness, 1.0mm; 176 axial 266	

interleaved slices; PAT, Factor 2; PAT mode, GRAPPA (GeneRalized Autocalibrating 267	

Partially Parallel Acquisitions); repetition time (TR), 1900ms; echo time (TE), 3.03ms; flip 268	

angle, 11°; matrix, 256x256; field of view (FOV), 256mm].  269	

 270	

For all functional runs T2*-weighted whole-brain functional scans were acquired using echo-271	

planar imaging (EPI) [3.0 x 3.0 in-plane resolution; slice thickness, 3.0mm; PAT, Factor 2; 272	

PAT mode, GRAPPA (GeneRalized Autocalibrating Partially Parallel Acquisitions); 34 273	

sequential (descending) slices; repetition time (TR), 2000ms; echo time (TE), 30ms; flip angle, 274	

78°; matrix, 64x64; field of view (FOV), 192mm]. For the majority of participants, slices 275	

covered all parts of the brain except for the most dorsal part of parietal cortex. In each 276	
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experimental run we obtained 293 brain volumes, in the TVA localiser we obtained 251 brain 277	

volumes, and in each run of the face, voice, and multimodal localiser runs we obtained 227 278	

brain volumes.  279	

 280	

fMRI data pre-processing  281	

Data were pre-processed using Statistical Parametric Mapping (SPM12; Wellcome Department 282	

of Imaging Science, London, UK; RRID:SCR_007037; http://www.fil.ion.ucl.ac.uk/spm) 283	

operating in Matlab. Pre-processing was performed separately for each scanning session. All 284	

runs within each session (main experiment or localizer runs) were pre-processed together. The 285	

first three EPI images in each run (dummy scans) were discarded to allow for T1-equilibration 286	

effects. Images were slice-time corrected based on the middle slice in each volume and then 287	

realigned to correct for head movement based on the first image. The structural image in native 288	

space was then coregistered with the realigned mean functional image and segmented into grey 289	

matter, white matter, and cerebrospinal fluid. No smoothing was performed on the images from 290	

the experimental runs. Functional images from the localiser runs were smoothed with a 4-mm 291	

Gaussian kernel (full width at half maximum).  292	

 293	

After separate pre-processing of the images in each session, images from the second scanning 294	

session were realigned to the structural image from the first session. Specifically, the structural 295	

image from session two was coregistered to the structural image from session one, and the 296	

transformation was then applied to all functional images from session two. As a result, all 297	

functional images were in the same space.   298	

 299	

Functional localiser runs 300	

TVA localiser. We used the TVA localiser developed by Belin et al. (2000) which contains 301	
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vocal and non-vocal auditory stimuli. Stimuli were presented in 40 blocks of 8 seconds each. 302	

Vocal stimuli were presented in 20 blocks and included speech and non-speech vocalisations 303	

obtained from 47 speakers (Pernet et al., 2015).  Non-vocal stimuli were presented in 20 blocks 304	

and consisted of industrial sounds, environmental sounds, and animal vocalisations. Within 305	

each block stimuli were presented in a random order that was fixed across participants. 306	

Participants were instructed to close their eyes and focus on the sounds. The TVA localiser was 307	

presented directly after the main experimental runs. The duration of a single run was 308	

approximately 10 minutes.  309	

 310	

Face, Voice, and Multimodal localisers. We created new face, multimodal, and voice 311	

localiser runs that shared the same experimental design and presented stimuli from comparable 312	

categories (people and objects/scenes). Importantly, we used videos and not static images of 313	

faces. Dynamic face stimuli have been shown to be more effective that static face stimuli for 314	

localising face-selective regions (Fox et al., 2009; Pitcher et al., 2011). Stimuli used for the 315	

face localiser were silent, non-speaking video clips of famous and non-famous (French 316	

celebrities unknown to our participants) moving faces, and silent video clips of moving large 317	

objects and natural or manmade visual scenes (such as videos of airplanes, trains, traffic, 318	

rainforests, waves on a beach) obtained from videos on YouTube. For the multimodal localiser 319	

the stimuli were audio-visual and included videos clips of the faces of famous and non-famous 320	

people speaking, and video clips of moving large objects and natural or manmade scenes (same 321	

categories as above). For the voice localiser we presented voice clips of famous and non-322	

famous people, and sound clips of manmade or natural environmental sounds (same categories 323	

as used in the other two types of localisers), with no video.  324	

 325	

Videos (640 x 360 pixels) were presented at the centre of the screen. The screen resolution was 326	
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1024 x 768 pixels, and from a distance of 85 cm, the videos subtended 20.83 x 12.27 degrees 327	

of visual angle. Audio stimuli were presented via MR-compatible earbuds (S14; Sensimetrics 328	

Corp.), which participants used for each entire scanning session. Each stimulus lasted 8 329	

seconds and each run presented 48 stimuli. Stimuli were presented in pairs (24 pairs) showing 330	

the same person (such as two videos of Brad Pitt) or the same category of objects or scenes 331	

(such as two videos of trains). Eight pairs showed stimuli from famous people, eight pairs 332	

showed stimuli from non-famous people, and eight pairs showed object/scene stimuli. 333	

Participants were encouraged to always fixate at the centre of the screen. Participants 334	

performed a one-back task in which they had to detect the exact same stimulus repetition 335	

within each pair, which occurred in approximately 15% of the trials. A 16-second period of 336	

fixation was presented at the end of each run and twice in the middle of each run (every 16 337	

trials). 338	

 339	

The order of the face, voice, and multimodal localisers was counterbalanced across 340	

participants. For participants who completed two runs of each localiser, different identities 341	

were presented on each run. The duration of each localiser run was approximately 8 minutes.  342	

 343	

General linear models. To identify face-selective (face localiser), voice-selective (voice 344	

localiser and TVA localiser), and people-selective (multimodal localiser) brain regions, we 345	

computed mass univariate time-series models for each participant. Regressors modelled the 346	

blood-oxygenation-level-dependent (BOLD) response following the onset of the stimuli and 347	

were convolved with a canonical hemodynamic response function (HRF). We also used a high-348	

pass filter cutoff of 128 seconds, and autoregressive AR(1) model to account for serial 349	

correlations. For the face, voice, and multimodal localisers there were three experimental 350	

regressors: (1) famous faces/voices/people, (2) non-famous faces/voices/people, and (3) objects 351	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 13, 2018. ; https://doi.org/10.1101/338475doi: bioRxiv preprint 

https://doi.org/10.1101/338475


	

15	

and scenes. For the TVA localiser there were two experimental regressors: (1) voices and (2) 352	

non-voices. For all localisers six head motion parameters computed during realignment were 353	

included as covariates. Selectivity was defined with a t-test contrasting the responses to 354	

faces/voices/people (famous and non-famous) versus responses to the control stimuli. 355	

 356	

ROI definition. We used probabilistic maps from previous studies to define regional masks in 357	

which we predicted that our regions of interest (ROIs) would be located.  We then defined 358	

ROIs by extracting all selective voxels within those regional masks for each participant. This 359	

approach is similar to the one implemented by  Julian et al. (2012)  and avoids experimenter 360	

biases in ROI definition.  361	

 362	

Probabilistic maps were thresholded to only show voxels that were present in 20% of the 363	

participants and binarised to create regional masks. We used a probabilistic map of the TVAs 364	

created by Pernet et al. (2015) and obtained from neurovault 365	

(http://neurovault.org/images/106/) to create separate masks for the right and left TVA (rTVA, 366	

lTVA). For all other regional masks, we used probabilistic maps that were obtained from a 367	

previous study conducted in the lab (unpublished data). In this previous study we tested 22 368	

participants using the same face and voice localisers as the current study (we did not use the 369	

multimodal localiser in this previous study). We defined face-selective and voice-selective t-370	

test images for each participant, thresholded each image at p<.05 (uncorrected), binarised the 371	

resulting image, and summed all images across participants to create face-selective and voice-372	

selective probabilistic maps. In cases where there was some overlap between the masks for 373	

different regions we manually defined the borders of these masks using anatomical landmarks.   374	

 375	

Regional masks of face-selective regions were created for the right fusiform face area (rFFA), 376	
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the right occipital face area (rOFA), and the right posterior superior temporal sulcus (rpSTS). 377	

Regional masks of voice-selective regions were created for the right and the left superior 378	

temporal sulcus and gyrus (rSTS/STG, lSTS/STG). Regional masks of multimodal regions 379	

were created based on joint face-selective and voice-selective probabilistic maps. These masks 380	

were created for a number of regions that showed both face-selective and voice-selective 381	

responses in most participants: precuneus/posterior cingulate, orbitofrontal cortex (OFC), 382	

frontal pole (FP), and right and left temporal pole with anterior inferior temporal cortex (rTP-383	

aIT, lTP-aIT) — we considered the TP and aIT together as the peaks were difficult to separate 384	

in most participants. We did not create a mask of the multimodal STS using this method due to 385	

the voice-selective STS region being much larger than the face-selective STS region. However, 386	

there was large overlap between our mask of the face-selective rpSTS and our masks of the 387	

rSTS/STG and rTVA, suggesting that this face-selective rpSTS region also responds to voices.  388	

 389	

All of the regional masks (in MNI space) were registered and resliced to each participant’s 390	

native space using FSL (version 5.0.9; RRID:SCR_002823; Jenkinson et al., 2012). These 391	

masks were then used to extract ROIs from the t-test maps obtained from the contrasts of 392	

interest from the face, voice, TVA, and multimodal localisers from the current study. All 393	

voxels that fell within the boundaries of the mask and that were significantly activated at 394	

p<.001 (uncorrected) were included in the subject-specific ROI. If there were fewer than 30 395	

voxels at p<.001 the threshold was lowered to p<.01 or p<.05. If we could not define 30 396	

selective voxels even at p<.05, the ROI for that participant was not included in the analyses. 397	

We required that all ROIs be present in at least 20 participants (out of 30).  398	

 399	

Main experimental runs: Experimental design and statistical analysis 400	

Design and procedure. Face and voice stimuli were presented using the Psychophysics 401	
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Toolbox via a computer interface inside the scanner. Face and voice clips of all 12 identities 402	

were intermixed within each run. A fixation point was always present and participants were 403	

asked to fixate. The videos were 640 x 360 pixels and, from a viewing distance of 85cm, 404	

videos subtended 20.83 x 12.27 degrees of visual angle. The six face videos and the six voice 405	

recordings for each of the 12 identities were evenly distributed among the three runs so that 406	

each run contained two different videos of the face and two different recordings of the voice of 407	

each identity. Each individual stimulus was presented twice within each run. Therefore, in each 408	

run there were 96 experimental trails (48 face trials, 48 voice trials) in total.  409	

 410	

Participants performed an anomaly detection task that involved pressing a button when they 411	

saw or heard a novel famous person that was not part of the set of the 12 famous people that 412	

they had been familiarised with prior to entering the scanner. Therefore, each run also 413	

contained 12 task trials presenting six famous faces and six famous voices that were not part of 414	

the set of famous people that the participants had been familiarised with. 415	

 416	

Stimuli were presented in a pseudorandom order that ensured that within each modality each 417	

identity could not be preceded or succeeded by one of the other identities more than once, and 418	

that each stimulus could not be succeeded by a repetition of the exact same stimulus. Face and 419	

voice clips were presented for three seconds with a SOA of four seconds. Thirty-six null 420	

fixation trials were added to each run (~25% of the total number of trials). Thus, each run 421	

contained 144 trials in total and lasted approximately 10 minutes.  422	

 423	

The presentation order of the three runs was counterbalanced across participants. The same 424	

three runs with the same face videos and voice recordings that were presented in scanning 425	

session one were also presented in session two. However, the three runs were presented in 426	
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different orders in both sessions (counterbalanced across participants) and stimuli within each 427	

run were presented in a new pseudorandom sequence. As an exception, the stimuli for the task 428	

trials were different in the two sessions in order to maintain their novelty.  429	

 430	

General linear models. We computed mass univariate time-series models for each participant. 431	

Models were defined separately for each scanning session and each experimental run (six runs 432	

in total). Regressors modelled the BOLD response following the onset of the stimuli and were 433	

convolved with a canonical hemodynamic response function (HRF). We also used a high-pass 434	

filter cutoff of 128 seconds and autoregressive AR(1) model to account for serial correlations. 435	

The 12 different identities in each modality were entered as separate regressors in the model 436	

(i.e. 24 regressors). Each of these regressors included the two different face videos and voice 437	

recordings of each identity that were presented in the run, as well as the two repetitions of each 438	

stimulus. Task trials and six head motion parameters computed during realignment were 439	

included as regressors of no interest.  440	

 441	

As part of the crossvalidation procedure used in the RSA analyses described below, separate 442	

models were estimated for each partition of each crossvalidation fold, thus resulting in 443	

parameter estimates and residual time courses for every possible independent partition. For 444	

partitions with two runs, data was concatenated before estimating the model.  In the analyses 445	

described below we used the beta estimates computed at each voxel of each ROI for each of 446	

the 24 experimental conditions (12 face-identities and 12 voice-identities).  447	

 448	

Mean response to faces and voices in ROIs. We conducted an analysis to characterise the 449	

responses to faces and voices in each ROI, and to confirm that each ROI showed the expected 450	

responsivity to faces and voices. For this analysis, we calculated the mean (across all voxels in 451	
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each ROI, and across all runs) of the parameter estimates for the 12 face-identities and the 452	

mean of the parameter estimates for the 12 voice-identities. For each ROI we tested whether 453	

the mean for faces and mean for voices were significantly different from zero (across 454	

participants) using one-sample t-tests. P values were corrected for 24 comparisons (2 tests x 12 455	

ROIs) controlling the false discovery rate (FDR), with q<.05. We also compared the mean for 456	

faces with the mean for voices in each ROI using paired t-tests. P values were corrected for 457	

multiple comparisons (12 comparisons) using FDR with q<.05. 458	

 459	

Analysis A: RSA comparing representational geometries. For this analysis we computed 460	

representational dissimilarity matrices (RDMs) for faces and voices (12x12 matrices) 461	

separately for each participant, each scanning session and each ROI. We then computed the 462	

correlations between pairs of these RDMs (for an example, see Figure 4). These analyses were 463	

performed using in-house Matlab code and the RSA toolbox (Nili et al., 2014). To compute the 464	

RDMs we used the linear discriminant contrast (LDC), a crossvalidated distance measure (Nili 465	

et al., 2014; Walther et al., 2016). For each ROI, each modality (i.e. faces and voices 466	

separately), and each scanning session, we calculated the LDC between the pattern estimates 467	

(beta estimates across all voxels within an ROI) elicited by the different identities. The 468	

resulting 12x12 matrices were symmetric around a diagonal of zeros (Figure 4). Each cell in 469	

the RDMs showed the discriminability of the pattern estimates corresponding to a pair of 470	

identities in the chosen modality and ROI.  471	

 472	

RDMs were computed using leave-one-run-out crossvalidation across the three runs in each 473	

session (each run presented the same identities with different stimuli). In each of three 474	

crossvalidation folds, the pattern estimates for each identity were computed with data from two 475	

runs (partition one) and separately from the pattern estimates from the remaining run (partition 476	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 13, 2018. ; https://doi.org/10.1101/338475doi: bioRxiv preprint 

https://doi.org/10.1101/338475


	

20	

two). The pattern estimates from each pair of identities from partition one were used to obtain a 477	

linear discriminant, which was then applied to differentiate the activity patterns of the same 478	

identity pairs in partition two (Nili et al., 2014; Walther et al., 2016). We applied multivariate 479	

noise normalisation by computing a noise variance-covariance matrix based on the residual 480	

time courses obtained from the model that was estimated with data from partition one. More 481	

specifically, to compute the LDC for each pair of identities we first multiplied the contrast 482	

between the patterns of a pair of identities in partition one (the discriminant weights) by the 483	

inverse of the noise variance-covariance matrix (after regularisation using the optimal 484	

shrinkage method: Ledoit and Wolf, 2004), and transformed the resulting weights to unit 485	

length. We then computed the dot product between the resulting vector and the vector with the 486	

contrast between the patterns of the same pair of identities from partition two (Carlin and 487	

Kriegeskorte, 2017), which resulted in a single value showing the discriminability of those 488	

identities.  Finally, the resulting RDMs with LDC values from each crossvalidation fold were 489	

averaged to create one RDM per scanning session. This procedure resulted in four RDMs per 490	

participant per ROI: faces session 1, voices session 1, faces session 2, and voices session 2 491	

(Figure 4).  Crossvalidating across runs with different videos of the face and recordings of the 492	

voice of each identity ensured that the resulting RDMs represented face- and voice-identity, 493	

rather than specific face videos and voice recordings.  494	

 495	

In order to compare the representational geometries of the face- and voice-identities, the RDMs 496	

for each participant were compared across the two scanning sessions using Pearson’s 497	

correlation coefficient (Figure 4). We also compared the representational geometries of face 498	

and voice-identities within modality across two scanning sessions in order to investigate the 499	

stability of the representational geometries across the two scanning sessions. For the 500	

crossmodal comparisons we compared the face and voice RDMs from session one with the 501	
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RDMs of the other modality in session two (i.e. faces session 1 vs. voices session 2, and voices 502	

session 1 vs. faces session 2). For the unimodal comparisons we compared the face and voice 503	

RDMs from session one with RDMs of the same modality in session two (i.e. faces session 1 504	

vs. faces session 2 and voices session 1 vs. voices session 2). At the group level for each ROI 505	

we compared the single-subject correlations for each of the four comparisons (two crossmodal, 506	

two unimodal) against zero using one-sample one-tailed Wilcoxon signed-rank tests (because 507	

correlations are not normally distributed). P values were corrected for multiple comparisons 508	

(48 comparisons: 4 tests x 12 ROIs) controlling for FDR with q < .05.  509	

 510	

Analysis B: RSA investigating identity discriminability. For this analysis we computed 511	

crossmodal RDMs separately for each participant, each scanning session and each ROI. We 512	

used the activity patterns of identity pairs in one modality to create a linear discriminant and 513	

then applied the discriminant to the activity patterns of the same identity pairs in the other 514	

modality. With this exception, the crossvalidation procedure was identical to the procedure for 515	

creating face and voice RDMs for the previous analysis. Two crossmodal RDMs for each ROI 516	

were computed using this method: one by applying a linear discriminant based on face data to 517	

voice data, and one by applying a linear discriminant based on voice data to face data. The 518	

LDC provides a continuous measure of discriminability for each pair of stimuli (Nili et al., 519	

2014; Walther et al., 2016; Carlin and Kriegeskorte, 2017). Importantly, under the null 520	

hypothesis the LDC is symmetrically distributed around zero, and thus unbiased. By 521	

calculating the mean LDC value across all cells in an RDM for a certain ROI we can determine 522	

the overall ability of that ROI to discriminate between identities. Mean LDC values for all 523	

participants can then be subjected to random-effects inference comparing against zero. 524	

Therefore, we predicted that crossmodal RDMs for regions with modality-general person-525	

identity representations would show mean LDC values that are significantly greater than zero.  526	
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 527	

In addition to investigating identity discrimination across modalities using crossmodal RDMs, 528	

we also investigated the ability of each ROI to discriminate between identities within modality, 529	

using the face and voice RDMs that were created in the previous analysis. We predicted that 530	

face or voice RDMs for regions that represent face or voice identity, respectively, would show 531	

mean LDC values that are significantly greater than zero.  532	

 533	

For this analysis the corresponding RDMs (e.g. faces session 1 and faces session 2) for each 534	

scanning session were averaged across the two sessions, and then the mean LDC across the 535	

vectorised matrix was calculated. Thus, for each participant and each ROI we obtained four 536	

mean LDC values representing (1) face discriminability, (2) voice discriminability, (3a) 537	

crossmodal discriminability - face discriminant generalised to voices, and (3b) crossmodal 538	

discriminability - voice discriminant generalised to faces. For each ROI and each type of 539	

discriminability we entered participants’ LDC values into a one-sample one-tailed t-test 540	

comparing them against zero. P values were corrected for all comparisons (48 comparisons: 4 541	

tests x 12 ROIs) controlling for FDR with q<.05. 542	

 543	

Code and data accessibility. All the code and data for the above analyses will be made 544	

available after publication.	545	

 546	

Exploratory whole-brain searchlight analyses. Despite including a broad range of 547	

functionally defined ROIs, it is possible that modality-general person-identity representations 548	

may exist in brain regions not included in our ROIs. Specifically, these representations may 549	

exist in brain regions that are not face-selective or voice-selective. Therefore, we used an 550	

exploratory whole-brain searchlight analysis to identify potential brain regions with person-551	
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identity representations using the same methods as in our main ROI analyses. We note that we 552	

focused solely on modality-general person-identity representations in this exploratory analysis, 553	

as that was the main aim of this study. 554	

 555	

For each participant we created 6mm radius spheres centred on each voxel within a grey-matter 556	

mask of their brain (obtained from the segmentation procedure) using the RSA toolbox (Nili et 557	

al., 2014) in Matlab. A 6 mm radius resulted in a searchlight sphere of 33 voxels, which 558	

matched our requirement for minimum ROI size of 30 voxels in the main analyses. For the 559	

analysis comparing representational geometries we computed a face and a voice RDM in each 560	

searchlight sphere, averaging the RDMs from both scanning sessions, and then calculated the 561	

Pearson correlation between them. Correlations were Fisher z-transformed. The output of this 562	

analysis was a whole-brain map of Fisher-transformed correlation coefficients for each 563	

participant. For the second analysis investigating identity discriminability we computed a 564	

single crossmodal RDM in each searchlight sphere by averaging the crossmodal face-voice 565	

RDM with the crossmodal voice-face RDM, and then calculating the mean LDC across the 566	

resulting matrix in vector form. The output for each participant was a whole-brain map of mean 567	

LDC values.  568	

 569	

The whole-brain searchlight maps from each analysis were normalised to MNI space using the 570	

normalisation parameters generated during the segmentation procedure and spatially smoothed 571	

with 9-mm Gaussian kernel (full width at half maximum) to correct for errors in intersubject 572	

alignment. For group-level analysis, all searchlight maps were entered into a one-sample t-test 573	

to determine whether the correlation coefficient/mean LDC value was significantly greater than 574	

zero at each voxel. We used the randomise tool (Winkler et al., 2014) in FSL for inference on 575	

the resulting statistical maps (5,000 sign-flips). Clusters were identified with threshold-576	
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free cluster enhancement (TFCE), and p-values were corrected for multiple comparisons (FWE 577	

< 0.05).  578	

 579	

Results 580	

Familiarity ratings 581	

Familiarity ratings of both faces and voices were high (Faces: M = 6.28, SD = 0.5; Voices: M = 582	

6.2, SD = 0.49). Average familiarity of each identity’s face and voice are shown in Table 1.  583	

 584	

Table 1. Familiarity ratings of the face and voice of each identity averaged across participants showing the mean 585	
(M) rating of the face and voice of each identity across all face videos and all voice recordings of that identity, the 586	
standard deviation (SD) of participants’ ratings of each identity, and the range of mean ratings for the six face 587	
tokens and six voice tokens for each identity. The rating scale ranged from 1 (very unfamiliar) to 7 (very familiar). 588	

 589	

 590	

ROI definition 591	

Using functional localisers we defined face-selective ROIs (rFFA, rOFA, rpSTS), voice-592	

selective ROIs (rSTS/STG, rTVA, lSTS/STG, lTVA), and multimodal ROIs (OFC, FP, rTP-593	

aIT, lTP-aIT, Prec./P.Cing. [including the retrosplenial cortex]) in each participant. We were 594	

able to localise these ROIs with at least 30 voxels in all 30 participants, except for the face-595	

selective rFFA (28 participants) and rOFA (29 participants), the Prec./P.Cing.  (26 596	

participants), and the OFC (21 participants). We note that the voice-selective ROIs in the right 597	

hemisphere (rTVA, rSTS/STG) overlap with each other and with the face-selective rpSTS and 598	

  AC AS BO DR GN JR BK BW CC EW KM SO 
Faces M 6.48 5.72 6.94 6.76 6.27 6.42 6.36 5.65 6.49 6.73 5.25 6.32 
 SD 0.75 1.19 0.2 0.59 0.85 0.59 0.94 1.45 0.79 0.45 1.48 0.92 
 Token 

range 
6.37- 
6.60 

4.83- 
6.13 

6.90- 
7 

6.67- 
6.87 

5.87- 
6.5 

6.17- 
6.57 

6.07- 
6.57 

5.33- 
5.9 

6.37- 
6.60 

6.47- 
6.9 

4.6- 
5.57 

6.17- 
6.47 

              
Voices M 6.59 5.66 6.73 6.69 6.37 6.54 6.23 5.54 6.63 6.07 5.3 6.02 
 SD 0.54 1.48 0.63 0.57 0.77 0.71 1.04 1.74 0.74 0.94 1.45 1.03 
 Token 

range 
6.37- 
6.83 

5.43- 
5.87 

6.7- 
6.8 

6.57- 
6.8 

6.07-
6.67 

6.3 
6.7 

6.07- 
6.37 

5.47- 
5.67 

6.4- 
6.77 

4.6- 
6.53 

5- 
5.53 

5.5- 
6.43 
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the multimodal rTP-aIT ROIs. In addition, the voice-selective ROIs in the left hemisphere 599	

(lTVA, lSTS/STG) overlap with each other and with the multimodal lTP_aIT ROI. For 600	

visualisation purposes only, probabilistic maps of all ROIs were created by normalising the 601	

single subject ROIs to MNI space and summing them. Figure 1 shows those maps thresholded 602	

to display all voxels that were present in at least 20% of the participants.  603	

 604	

                                   605	
Figure 1: Face-selective, voice-selective, and multimodal ROIs. Location of ROIs that resulted from the face, 606	
voice, and multimodal localisers in MNI space.  607	
  608	
r = right, l = left, FFA = fusiform face area, OFA = occipital face area, pSTS = posterior superior temporal sulcus, 609	
STS/STG = superior temporal sulcus/superior temporal gyrus, TVA = temporal voice area, OFC = orbitofrontal 610	
cortex, FP = frontal pole, TP = temporal pole, aIT = anterior inferior temporal cortex, Prec = precuneus, P.Cing. = 611	
posterior cingulate. 612	
 613	

Mean response to faces and voices in ROIs 614	

In order to confirm that each ROI showed the expected responsiveness to faces and voices, we 615	

computed the regional mean of the parameter estimates for faces and for voices across 616	

participants for each ROI and modality (Figure 2). As expected, mean beta values for faces 617	

were high and significantly greater than zero in all three face-selective ROIs (all one-sample t-618	
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tests with p<.0001). Mean beta values for voices were also significantly greater than zero in 619	

the rFFA (p<.0001) and rpSTS (p<.0001), but not in the rOFA. The rFFA and the rOFA 620	

showed significantly greater responses to faces compared with voices (both paired-samples t-621	

tests with p<.0001). In contrast, the rpSTS showed significantly greater responses to voices 622	

compared with faces (p=.0002) despite being defined using our face localiser. This is most 623	

likely due to the large overlap between this ROI and the voice-selective rSTS/STG and rTVA 624	

ROIs. This finding demonstrates that the rpSTS also showed substantial responses to voices.  625	

 626	

    627	
 628	
Figure 2: Regional mean responses to faces and voices in ROIs. Regional mean responses for all face-identities 629	
and for all voice-identities in face-selective, voice-selective, and multimodal ROIs (mean beta estimates across all 630	
voxels of each ROI, and across all runs). Bars show mean responses across participants, error bars show standard 631	
error, and grey circles show individual participants. We tested whether mean responses were significantly greater 632	
than zero using one-sample t-tests across all 30 participants, and stars show significant results at p≤.0209 (FDR 633	
corrected for all 24 comparisons). We also tested whether mean beta values for faces were significantly different 634	
from mean beta values for voices in each ROI using paired t-tests across all participants. In all ROIs mean beta 635	
values for faces and voices were significantly different at p≤.0011 (FDR corrected for all 12 ROIs).  636	
 637	

It could be that the responses to voices in rpSTS were due to the voices being familiar, and not 638	

because of being voices per se. To determine whether this region responded to voices more 639	
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generally or just to familiar voices, we investigated the responses in rpSTS to familiar voices, 640	

unfamiliar voices, and non-voices during the functional voice localisers. For each participant, 641	

we calculated the mean parameter estimates across all voxels of the face-selective rpSTS for 642	

each condition of the voice localiser (familiar voices, unfamiliar voices, and auditory scenes) 643	

and of the TVA localiser (vocal and non-vocal sounds). For the voice localiser, both the 644	

familiar and the unfamiliar voices had significantly higher parameter estimates than the 645	

auditory scenes (both p<.0001). For the TVA localiser, the rpSTS also showed significantly 646	

higher responses to voices than non-voices (p<.0001). These results show that the face-647	

selective rpSTS also responds to voices in general and not only familiar voices (for similar 648	

results, see Deen et al., 2015), and therefore in the rest of this article we will refer to this rpSTS 649	

region as displaying multimodal responses.  650	

 651	

Returning to the analysis of the parameter estimates for faces and voices during the main 652	

experimental runs, the mean beta values for voices were significantly greater than zero for all 653	

four voice selective ROIs (all p<.0001). Mean beta values for faces were also significantly 654	

greater than zero for all voice-selective ROIs (all p≤.0209), but the parameter estimates were 655	

significantly lower than for voices (all p<.0001). 656	

 657	

For the multimodal ROIs mean beta values for faces and for voices were significantly greater 658	

than zero in all ROIs (all p≤.0009) except the frontal pole for faces. This result demonstrates 659	

that, although we still included the frontal pole ROI in the main analyses, we cannot be 660	

confident about the multimodal responses of this ROI. Also, we note that in all multimodal 661	

ROIs (OFC, FP, rTP-aIT, lTP-aIT, Prec./P.Cing.) mean beta values for voices were 662	

significantly higher than mean beta values for faces (all p≤.0011). We observed this 663	

consistently across all participants.  664	
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 665	

Analysis A: RSA comparing representational geometries 666	

Our first main analysis compared the representational geometry of the 12 famous identities 667	

across and within modalities in each ROI. We computed face and voice RDMs separately for 668	

each session using the LDC and compared the RDMs using Pearson correlation (Figures 3 & 669	

4). We then tested whether these correlations were significantly above zero. 670	

 671	

 672	
 673	
Figure 3: Results of RSA comparing representational geometries. Comparisons between the representational 674	
distance matrices (RDMs) from two scanning sessions using Pearson’s correlation coefficient. Bars show mean 675	
correlations across participants, error bars show standard error, and grey circles show the correlations of 676	
individual participants. Correlations were calculated across scanning sessions and compared face RDMs, voice 677	
RDMs, face and voice RDMs, and voice and face RDMs in face-selective, voice-selective, and multimodal ROIs. 678	
We tested whether correlations were significantly greater than zero using Wilcoxon signed-rank tests across all 30 679	
participants. No correlations were significant after correction for multiple comparisons at p≤.0001 (FDR corrected 680	
for all 48 comparisons). Note that in this figure the rpSTS is classed as a face-selective ROI for consistency 681	
purposes only, but in fact it demonstrated multimodal properties. 682	
 683	
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        684	
Figure 4: Representational distance matrix (RDM) comparisons across scanning sessions 1 and 2 in the 685	
rpSTS. Face and voice RDMs for the rpSTS were averaged across all 30 participants for illustration purposes. 686	
Each cell shows the discriminability of the brain activity patterns corresponding to a pair of identities (12 687	
identities in total) computed using the linear discriminant contrast (LDC) and crossvalidating across data from 688	
three runs. Each matrix is symmetric around a diagonal of zeros. A value of zero or lower indicates no 689	
discriminability. For each participant we compared the representational geometry of the face and voice RDMs 690	
with the representational geometry in the RDM of the other modality (crossmodal comparisons) and in the RDM 691	
of the same modality (unimodal comparisons) using Pearson’s correlation. The figure shows Pearson’s 692	
correlations for all comparisons averaged across participants.  693	
 694	

We predicted that face and voice RDMs would be correlated in ROIs that represent person-695	

identity independently from modality. However, our results showed no significant correlations 696	

between face and voice RDMs in face-selective, voice-selective, or multimodal ROIs (Figure 697	

3). It is possible that comparing RDM across different scanning sessions taking place on 698	

separate days did not allow us to detect subtle consistencies in the representational geometry 699	

for face-identities and voice-identities. To address this concern, we also compared face and 700	

voice RDMs within the same scanning session. However, we still found no significant 701	

correlations between face and voice RDMs. Therefore, using this method we found no 702	

evidence of modality-general person-identity representations in our ROIs.   703	

 704	

We also predicted that there would be correlations between RDMs within the same modality in 705	
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regions that represent only face-identity or only voice-identity. No correlations between face 706	

RDMs or between voice RDMs in any ROI were significant after correction for multiple 707	

comparisons.         708	

 709	

Analysis B: RSA investigating identity discriminability 710	

Our second main analysis tested the generalisation of pattern discriminants from one modality 711	

to the other. More specifically, we computed crossmodal RDMs and we tested whether linear  712	

discriminants computed on pairs of faces could be used to discriminate between pairs of 713	

voices, and vice-versa. We also tested whether each ROI could discriminate between pairs of 714	

stimuli within the same modality. Mean LDC distances across all cells in crossmodal, face, and 715	

voice RDMs were compared against zero. 716	

 717	

   718	
 719	
Figure 5: Results of RSA investigating identity discriminability. Mean LDC between identities in face RDMs, 720	
voice RDMs, and crossmodal RDMs in face-selective, voice-selective, and multimodal ROIs. There are two types 721	
of crossmodal RDMs: (a) face discriminant applied to voices (F-V), and (b) voice discriminant applied to faces 722	
(V-F). Bars show mean LDC values averaged across participants, error bars show standard error, and grey circles 723	
show mean LDC values for individual participants. We tested whether the mean LDC values were significantly 724	
greater than zero using one-sample t-tests across all 30 participants. Stars represent significant tests at p≤.0150 725	
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(FDR corrected for all 48 comparisons). These results show generalisation of the pattern discriminants from one 726	
modality to the other in the rpSTS and in the lSTS/STG. In addition, face-selective ROIs discriminate between 727	
face-identities, and voice-selective ROIs discriminate between voice-identities. Note that in this figure the rpSTS 728	
is classed as a face-selective ROI for consistency purposes only, but in fact it demonstrated multimodal properties.  729	
 730	

Table 2. One-sample t-test results for mean LDC values in crossmodal RDMs. Stars represent statistical 731	
significance at p≤.0150 (FDR corrected for all 48 comparisons in face, voice, and crossmodal RDMs). The rpSTS 732	
is classed as a face-selective ROI for consistency purposes only, but in fact it demonstrated multimodal properties. 733	

  Crossmodal RDMs 
(face-voice) 

 Crossmodal RDMs 
(voice-face) 

 df t Sig. (1-
tailed) 

d  t Sig. (1-
tailed) 

d 

  Face-selective ROIs 
rFFA 27 -0.198 .5779 0.04  -0.529 .6993 0.10 
rOFA 28 0.374 .3557 0.07  0.624 .2689 0.12 
rpSTS 29 4.091 .0002* 0.75  4.582 .0001* 0.84 
         
  Voice-selective ROIs 
rSTS/STG 29 1.928 .0319  0.35  2.093 .0226 0.38 
rTVA 29 2.064 .0240 0.38  1.662 .0537 0.30 
lSTS/STG 29 2.443 .0104* 0.45  3.543 .0007* 0.65 
lTVA 29 0.062 .4755 0.01  1.891 .0343 0.35 
         
  Multimodal ROIs 
OFC 20 1.698 .0525 0.37  0.841 .0250 0.18 
FP 29 -0.062 .5244  0.01  0.285 .3888 0.05 
rTP-aIT 29 0.023 .4910  0.00  0.153 .4398 0.03 
lTP-aIT 29 0.301 .3830 0.05  0.075 .4703 0.01 
Prec./P.Cing. 25 0.660 .2577 0.13  0.220 .4138 0.04 

 734	

 735	

Table 3. One-sample t-test results for mean LDC values in face and voice RDMs. Stars represent statistical 736	
significance at p≤.0150 (FDR corrected for all 48 comparisons in face, voice, and crossmodal RDMs). The rpSTS 737	
is classed as a face-selective ROI for consistency purposes only, but in fact it demonstrated multimodal properties. 738	

               Face RDMs               Voice RDMs 
 df t Sig. (1-

tailed) 
d  t Sig. (1-

tailed) 
d 

 Face-selective ROIs 
rFFA 27 7.764 .0001* 1.47  -0.753 .7711 0.14 
rOFA 28 6.707 .0001* 1.25  0.995 .1641 0.18 
rpSTS 29 4.378 .0001* 0.80  5.871 .0001* 1.07 
         
 Voice-selective ROIs 
rSTS/STG 29 1.850 .0373 0.34  5.025 .0001* 0.92 
rTVA 29 2.945 .0031*  0.54  5.447 .0001* 0.99 
lSTS/STG 29 1.019 .1583  0.19  8.667 .0001* 1.58 
lTVA 29 2.846 .0040*  0.52  7.834 .0001* 1.43 
         
 Multimodal ROIs 
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OFC 20 -0.662 .7424 0.14  2.337 .0150* 0.51 
FP 29 0.799 .2153  0.15  4.007 .0002* 0.73 
rTP-aIT 29 1.617 .0583  0.30  2.685 .0059*  0.49 
lTP-aIT 29 -2.369 .9877  0.43  1.630 .0570 0.30 
Prec./P. Cing. 25 2.538 .0089* 0.50  5.524 .0001* 1.08 

 739	
 740	

We predicted that in brain regions with modality-general person identity representations the 741	

mean LDC values for crossmodal RDMs would be significantly greater than zero. Our results 742	

showed that mean LDC values in these RDMs were significantly greater than zero in the 743	

rpSTS, and in the voice-selective lSTS/STG (Figure 5; Table 2). These results show that the 744	

rpSTS could discriminate pairs of face-identities based on pattern discriminants computed from 745	

pairs of voice-identities (and vice-versa), and therefore appears to form modality-independent 746	

person-identity representations.  747	

 748	

We note that while the mean LDC values for crossmodal RDMs in the lSTS/STG were 749	

significant, the mean LDC value for face RDMs was not. While this result suggests that this 750	

region was able to discriminate identities based on crossmodal information, it is unlikely that a 751	

modality-general representation could exist without face-identity discrimination. Therefore, 752	

this result should be interpreted with caution. It is possible that in addition to the rpSTS, the 753	

lpSTS also contains a modality-general person-identity representation and it could be driving 754	

the positive result in the lSTS/STG. However, we were not able to test this because we could 755	

not localise the lpSTS in our participants using our face localiser.  756	

 757	

We also predicted that mean LDC values for face RDMs and voice RDMs would be 758	

significantly greater than zero in ROIs that represent face-identity and voice-identity, 759	

respectively. We found that mean LDC values in face RDMs were significantly greater than 760	

zero in all ROIs originally defined as face-selective (rFFA, rOFA, rpSTS), in the TVAs, and in 761	
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the multimodal Prec./P. Cing. (Figure 5; Table 3). These results show that all these regions 762	

could discriminate between face-identities. A follow up analysis in which all overlapping 763	

rpSTS voxels were removed from the rTVA showed that the significant result for faces in 764	

rTVA was driven by the rpSTS. Mean LDC values in voice RDMs were significantly greater 765	

than zero in all voice-selective ROIs (TVAs, STS/STG), in the rpSTS (originally defined as 766	

face-selective), and in the multimodal OFC, FP, rTP-aIT and Prec./P. Cing. (Figure 5; Table 3).  767	

 768	

It is possible that the discrimination of identities in our ROIs was driven by different-gender 769	

identity pairs (female-male). To investigate this possibility, for each ROI and condition that 770	

showed mean LDC values significantly greater than zero (Figure 5 & Tables 2,3) and for each 771	

participant we compared the mean LDC values for different-gender identity pairs (calculated 772	

across 36 pairs) with the mean LDC values for same-gender identity pairs (calculated across 30 773	

pairs: female-female & male-male) in each RDM (we used paired t-tests, and used FDR 774	

correction for all 19 comparisons). Results for the rpSTS showed no significant difference 775	

between the discriminability of different-gender and same-gender identity pairs for face, voice, 776	

or crossmodal RDMs (all p>.0533), demonstrating that person-identity discrimination in this 777	

region was not driven by discriminating gender. In contrast, mean LDC values for different-778	

gender identity pairs were significantly higher than mean LDC values for same-gender identity 779	

pairs for face RDMs in the rFFA and rOFA (both p ≤.0010), and for voice RDMs in the 780	

bilateral TVAs and STS/STG (all p≤.0005), suggesting that gender contributed to the 781	

discrimination in these regions. However, mean LDC values for same-gender identity pairs 782	

were still significantly greater than zero (one-sample t-tests) for face RDMs in the rFFA and 783	

rOFA (both p<.0001) and for voice RDMs in the bilateral TVAs and STS/STG (all p≤.0239), 784	

suggesting that identity discrimination in these regions is not solely driven by differences in 785	

gender.  786	
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 787	

Exploratory whole-brain searchlight analyses.  788	

Finally, we conducted additional exploratory searchlight analyses across the whole brain to 789	

determine whether there were brain regions with modality-general person-identity 790	

representations that are not included in our ROIs. The first searchlight analysis investigated 791	

correlations between face and voice RDMs across the whole brain, and we did not find any 792	

regions showing such correlations between face and voice representational geometries. 793	

 794	

The second searchlight analysis investigated crossmodal generalization of discriminants for 795	

pairs of identities across the whole brain. We found a number of clusters in which the mean 796	

LDC in crossmodal RDMs was significantly greater than zero (FWE corrected threshold p ≤ 797	

.05), and below we report t-values and MNI coordinates for the peak grey matter voxels in each 798	

cluster. Anatomical labels for peak voxels are based on the Harvard-Oxford cortical and 799	

subcortical structural atlases. The results showed a large cluster (k=1927, p=.007) with peaks in 800	

the right putamen (t=4.33, x=21, y=20, z=-1), the left posterior middle temporal gyrus 801	

(t=4.04,x=-57, y=-19, z=-7), and the right precentral gyrus (t=3.89, x=54, y=8, z=32). 802	

Significant clusters were also found in the right paracingulate gyrus (k=1340, p=.003, t=4.34, 803	

x=6, y=47, z=23), in the left hippocampus (k=160, p=.017, t=4.45, x=-24, y=-37, z=2), in the 804	

right anterior supramarginal gyrus (k=84, p=.006, t=6.18, x=48, y=-22, z=38), in the left cuneal 805	

cortex (k=48, p=.036, t=3.99, x=-18, y=-76, z=29), and a cluster (k=100, p=.039) with peaks in 806	

the left temporooccipital middle temporal gyrus (t=3.58, x=-48, y=-46, z=5) and inferior lateral 807	

occipital cortex (t=3.45, x=-48, y=-67, z=8). Finally, we also found a significant cluster in the 808	

rpSTS at an uncorrected threshold of p ≤ .005 (k=592, p=.001, t=4.05, x=48, y=-49, z=11) that 809	

overlapped with our rpSTS ROI. 810	

 811	
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Discussion  812	

We show evidence of a modality-general person-identity representation in a multimodal region 813	

of the rpSTS, demonstrating that this region was able to discriminate familiar identities based 814	

on modality-general information in faces and voices. More specifically, the rpSTS could 815	

discriminate pattern estimates for pairs of face-identities based on linear discriminants 816	

computed from pattern estimates for pairs of voice-identities, and vice-versa. A crucial and 817	

novel aspect of our study is that we showed that the rpSTS not only discriminates between 818	

identities, but also generalises across multiple naturalistically varying face videos and voice 819	

recordings of the same identity. By always comparing pattern estimates across independent 820	

runs with different face and voice tokens for the same identities, we showed that the face- and 821	

voice-elicited person-identity representations in the rpSTS are stimuli-invariant. Invariant 822	

identity representations were also found for face-identities in face-selective regions (rFFA and 823	

rOFA) and for voice-identities in voice-selective regions (bilateral TVA and STS/STG). 824	

Finally, we did not find evidence of matching representational geometries for faces and voices, 825	

across or within modalities.  826	

 827	

A modality-general and invariant person-identity representation in the rpSTS 828	

Our finding of a modality-general person-identity representation in a multimodal region of the 829	

rpSTS supports the Multimodal Processing Model, which proposes that face and voice 830	

information is integrated in multimodal brain regions (Ellis et al., 1997; Campanella and Belin, 831	

2007). In contrast, we did not find support for the prediction from the Coupling of Face and 832	

Voice Processing Model (von Kriegstein et al., 2005; von Kriegstein and Giraud, 2006) that 833	

there would be a modality-general identity representation in face-selective regions of the 834	

fusiform gyrus.  835	

 836	
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The rpSTS has previously been associated with crossmodal representations of emotion from 837	

faces and voices and shows a preference for people-related stimuli regardless of modality 838	

(Watson et al., 2014a, 2014b). Furthermore, multiple studies have demonstrated overlap 839	

between face-selective and voice-selective regions in the rpSTS (Wright et al., 2003; Watson et 840	

al., 2014a; Deen et al., 2015; Anzellotti and Caramazza, 2017;). It has been proposed that the 841	

STS integrates person-specific patterns of movement from faces, voices, and bodies to assist in 842	

person-identity recognition (Yovel and O’Toole, 2016). It is possible that the intrinsic 843	

relationship between a person’s idiosyncratic facial movements and manner of speech 844	

contributes to the integration of face- and voice-identity information in the rpSTS.  845	

 846	

Our finding of a modality-general identity representation in the rpSTS is also in agreement 847	

with two recent studies showing across-modality classification of pattern estimates for familiar 848	

faces and voices in the rpSTS (Anzellotti and Caramazza, 2017) and a more anterior part of the 849	

STS (Hasan et al., 2016). In contrast to these previous studies, we showed that the rpSTS also 850	

demonstrates face- and voice-elicited representations of person-identity that are invariant to 851	

different tokens of the same face and voice. The ability to “tell people together” by identifying 852	

different tokens of a face and voice as belonging to the same person is as important as the 853	

ability to “tell people apart” (i.e. discriminate between different people) (Burton, 2013; 854	

Anzellotti and Caramazza, 2014). Hasan et al. (2016) were unable to investigate invariant 855	

representations because they used a single face image and a single voice recording for each 856	

identity, which in turn were derived from the same original stimulus, making interpretation of 857	

their results difficult (Lavan, 2017). Anzellotti and Caramazza (2017) used two face and voice 858	

tokens for each identity but did not train and test their classifier on different tokens, and 859	

therefore did not demonstrate representations that were invariant to different tokens of the 860	

same face and voice in this study. Finally, in contrast to these previous studies, we used a 861	
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larger set of identities and multiple naturalistically varying tokens in order to better capture the 862	

level of robust invariant recognition required in everyday life. While behavioural studies have 863	

shown the importance of within-person variability for recognition (Jenkins et al., 2011; Burton, 864	

2013; Burton et al., 2016), this is rarely taken into account in neuroimaging experiments, which 865	

typically use highly similar or artificial stimuli for the same person. 866	

 867	

Invariant representations of face-identity and voice-identity 868	

The face-selective rFFA and rOFA were able to discriminate between the faces of different 869	

people while also showing invariance to the different videos of each person’s face. This finding 870	

is in agreement with Anzellotti et al. (2014) and Guntupalli et al. (2017), who showed 871	

representations of face-identity in the FFA (and OFA, in Anzelotti et al., 2014) that generalise 872	

across different viewpoints of the face. However, in contrast with these studies, which used 873	

stimuli with low within-person variability, we show that representations in these regions 874	

generalise across highly variable face videos, and can thus discriminate between different face- 875	

identities, rather than between individual face images. 876	

 877	

Voice-selective regions in STS/STG and the TVAs bilaterally could discriminate between 878	

different speakers while showing invariance to the different recordings of each voice. These 879	

findings are in line Formisano et al. (2008), who showed representations of speaker identity 880	

that generalise across utterances of different vowels in the lateral Heschl’s gyrus/sulcus and in 881	

the right STS. We extend this finding by showing that generalisation across different 882	

recordings of the same voice is possible even when using short sentences with variable speech 883	

content that were recorded in different settings.  884	

 885	

We also found invariant discrimination of face- and voice-identity in a multimodal region in 886	
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the precuneus/posterior cingulate. This region has been previously associated with the 887	

processing of familiar faces and voices (Shah et al., 2001), and has been found to discriminate 888	

between different face-identities (Visconti Di Oleggio Castello et al., 2017). Our results 889	

suggest that representations of faces and voices may be interspersed in this region, but are not 890	

shared across modalities. Finally, we showed invariant representations of voice-identity, but 891	

not face-identity, in the frontal pole, a region that has been previously associated with the 892	

processing of familiar voices (Nakamura et al., 2001). It should be noted that although we 893	

initially localised the frontal pole as a multimodal region, our results showed that it did not 894	

respond significantly to faces in the main experimental runs. 895	

 896	

Representational geometries 897	

We did not find matching representational geometries across faces and voices in rpSTS despite 898	

finding crossmodal generalisation of the pattern discriminants. It is possible that all identities 899	

were equally distinct from each other within each modality (i.e. the nature of person-identity 900	

code in these regions does not result in variable representational distances between identities). 901	

In addition, the rpSTS shows both modality-specific and modality-general representations, and 902	

it is possible that the former had stronger influence on the representational geometry. 903	

Beauchamp et al. (2004) showed that the pSTS contains intermixed visual, auditory, and 904	

multisensory patches, and future studies could use higher-resolution neuroimaging methods to 905	

probe person-identity representations in this region.  906	

 907	

In all other ROIs, we also did not find any evidence of stable representational geometries for 908	

face-identities or voice-identities only. Again, it could be that identities were equally distinct 909	

across from each other within each modality, or it could be that experimental conditions would 910	

need to be improved to obtain more reliable representational geometries.  911	
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 912	

Anterior temporal lobe and searchlight results 913	

We did not find evidence of face-, voice-, or person-identity representations in the anterior 914	

temporal lobe. This was surprising given that this region has been previously associated with 915	

the processing of person-identity (Ellis et al., 1989; Gainotti, 2011). The fact that our TP-aIT 916	

ROIs responded more to voices that to faces suggests that our multimodal region localiser was 917	

not optimal for detecting multimodal responses in the anterior temporal lobe. Moreover, our 918	

sequences were not tailored to detect fMRI responses in this region (Axelrod and Yovel, 2013), 919	

and therefore more research using specialised scanning parameters for the localisation of this 920	

region is warranted. 921	

 922	

It is possible that modality-general representations exist outside face- and/or voice-selective 923	

regions, and our exploratory searchlight results revealed person-identity representations in the 924	

paracingulate gyrus, right insular cortex, left nucleus accumbens, left anterior postcentral 925	

gyrus, and left hippocampus. Quiroga et al. (2005, 2009) found that cells in the hippocampus 926	

(and also amygdala and entorhinal cortex) were highly responsive to specific identities, and 927	

responded to both the face and name of that person. It will be interesting to further probe the 928	

role of the hippocampus (and the other regions found during the searchlight analyses) in 929	

person-identity recognition.  930	

 931	

Conclusion 932	

To conclude, we showed a modality-general person-identity representation that generalises 933	

across different, naturalistically varying face videos and voice recordings of the same person in 934	

a multimodal region of the rpSTS. This supports the Multimodal Processing Model for face 935	

and voice integration. We also found evidence of video-invariant face-identity representations 936	
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in face-selective regions (rFFA, rOFA), and sound-invariant voice-identity representations in 937	

voice-selective regions (TVA, STS/STG). Future studies could focus on the nature and type of 938	

face and voice information that is represented in these different regions, and in how these 939	

representations are formed, both through development, and during the process of becoming 940	

familiar with someone. 941	

 942	

 943	

 944	

 945	

 946	

 947	

 948	

 949	

 950	

 951	

 952	

 953	

 954	

 955	

 956	
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