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ABSTRACT	25	

The	 social	 transmission	 of	 information	 is	 critical	 to	 the	 emergence	 of	 animal	 culture.	26	

Two	processes	are	predicted	to	play	key	roles	 in	how	socially-transmitted	information	27	

spreads	 in	 animal	populations:	 the	movement	of	 individuals	 across	 the	 landscape	and	28	

conformist	 social	 learning.	 We	 develop	 a	 model	 that,	 for	 the	 first	 time,	 explicitly	29	

integrates	 these	 processes	 to	 investigate	 their	 impacts	 on	 the	 spread	 of	 behavioural	30	

preferences.	Our	 results	 reveal	 a	 strong	 interplay	 between	movement	 and	 conformity	31	

for	 determining	 whether	 local	 traditions	 establish	 across	 a	 landscape	 or	 whether	 a	32	

single	preference	dominates	the	whole	population.	The	model	is	able	to	replicate	a	real-33	

world	cultural	diffusion	experiment	in	great	tits	Parus	major,	but	also	allows	for	a	range	34	

of	 predictions	 for	 the	 emergence	 of	 animal	 culture	 under	 various	 initial	 conditions,	35	

habitat	 structure	 and	 strength	 of	 conformist	 bias	 to	 be	 made.	 Integrating	 social	36	

behaviour	with	ecological	variation	will	be	important	for	understanding	the	stability	and	37	

diversity	of	culture	in	animals.	38	

	39	

INTRODUCTION	40	

The	social	 transmission	of	 information	plays	a	central	role	 in	the	 lives	of	many	animal	41	

species	[1–3].	Social	learning	via	observation	of,	or	interaction	with,	other	individuals	is	42	

an	 efficient	 mechanism	 for	 acquiring	 information	 about	 the	 environment,	 leading	 to	43	

adaptive	 adjustments	 of	 behavioural	 responses	 [4,5].	 The	 transmission	of	 information	44	

through	social	networks	can	lead	to	the	emergence	of	regional	variations	 in	behaviour	45	

that	 are	 stable	 through	 time	 (called	 local	 cultures	or	 traditions;	 [6–10]).	However,	we	46	

still	have	little	mechanistic	understanding	of	the	conditions	under	which	local	cultures	47	

can	emerge.	Understanding	how	ecological,	cognitive	and	social	processes	determine	the	48	

spread	of	 information	between	 individuals	 in	wild	populations	 is	crucial	 if	we	want	 to	49	

discern	the	conditions	under	which	information	spreads	and	local	traditions	emerge.	50	

A	key	ecological	process	that	 is	 likely	to	affect	the	spread	of	 information	is	movement.	51	

First,	movement	of	animals	between	discrete	groups	or	sub-populations	is	expected	to	52	

accelerate	information	spread	across	the	whole	population.	Second,	moving	individuals	53	

can	potentially	import	different	behaviours	into	local	groups	or	sub-population	[11,12].	54	

How	 individuals	 move	 in	 a	 landscape,	 itself	 influenced	 by	 a	 range	 of	 factors	 such	 as	55	

habitat	structure	[13]	and	demography	[14],	is	therefore	likely	to	shape	the	dynamics	of	56	

behaviours	in	natural	populations.	57	
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One	 of	 the	main	 socio-cognitive	 factors	 thought	 to	 affect	 the	 emergence	 of	 culture	 is	58	

conformity	 [15].	 Conformist	 social	 learning	 is	 here	 defined	 as	 positive	 frequency	59	

copying,	 where	 individuals	 are	 disproportionately	 likely	 to	 adopt	 the	 most	 common	60	

behavioural	 trait	 [16].	 Importantly,	 if	 individuals	 exhibit	 conformist	 learning,	 a	 single	61	

socially	learnt	behavioural	preference	might	fix	in	a	group,	remain	stable	over	time	and	62	

be	 resistant	 to	 invasion	 by	 alternative	 variants,	 leading	 to	 the	 establishment	 and	63	

persistence	 of	 group-specific	 traditions.	 Several	 experimental	 studies	 have	 therefore	64	

suggested	that	conformity	plays	an	important	role	in	the	establishment	and	stability	of	65	

local	traditions	in	various	animal	species	[11,12,17,18].	However,	the	interplay	between	66	

social	learning	biases	such	as	conformity,	and	the	ecological	factors	that	determine	the	67	

context	in	which	such	learning	takes	place,	has	rarely	been	studied.		68	

Here,	 we	 investigate	 how	 movement	 and	 conformity	 interact	 to	 shape	 the	 spread	 of	69	

socially-transmitted	 information	 and	 the	 establishment	 of	 local	 traditions	 in	 animal	70	

populations.	 We	 first	 develop	 a	 theoretical	 spatially-explicit	 model	 of	 the	 spread	 of	71	

behavioural	preference	in	which	a	puzzle	(representing	a	novel	foraging	resource)	can	72	

be	 solved	 in	 one	 of	 two	ways.	 The	 population	 is	 assumed	 to	 be	 composed	 of	 several	73	

spatially	distinct	sub-populations,	and	each	individual	can	either	be	unable	to	solve	the	74	

puzzle,	or	solve	the	puzzle	and	prefer	one	of	the	two	solutions.	Individuals	can	learn	the	75	

behaviour	from	each	other,	with	a	conformist	bias	guiding	which	preference	they	learn,	76	

and	 move	 between	 sub-populations.	 We	 then	 use	 this	 model	 to	 investigate	 the	77	

conditions	under	which	 local	cultural	traditions	emerge.	We	consider	simple	scenarios	78	

in	which	 there	are	only	 two	or	 three	sub-populations.	 In	addition,	we	test	 the	model’s	79	

ability	to	replicate	a	real-world	cultural	diffusion	experiment	[11],	in	which	alternative	80	

novel	 foraging	 techniques	 –	 consisting	 of	 opening	 a	 bi-directional	 door	 puzzle-box	 by	81	

sliding	 it	 either	 left	 or	 right	 to	 access	 food	 –	 were	 introduced	 in	 several	 wild	 sub-82	

populations	 of	 great	 tits	Parus	major.	 The	 spread	 of	 these	 foraging	 behaviours	 in	 the	83	

population	was	monitored,	revealing	that	the	behaviour	was	socially	transmitted	with	a	84	

significant	 conformist	 bias,	 and	 that	 local	 foraging	 traditions	 established	 within	 the	85	

population.	As	we	show,	our	modelling	approach	can	 recreate	 the	empirical	 results	of	86	

the	experiment	conducted	by	Aplin	et	al.	 [11],	and	predict	 the	conditions	under	which	87	

such	local	traditions	are	likely	to	establish	and	persist	in	the	population.	88	

	89	

	90	
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RESULTS	91	

The	baseline	model	92	

Our	model	 integrates	the	movement	of	 individuals	across	the	 landscape	and	the	social	93	

process	of	transmission	of	information	between	individuals,	including	a	conformist	bias.	94	

In	the	baseline	version	of	the	model,	the	spread	of	behavioural	preferences	for	solutions	95	

to	 a	 puzzle	 (solutions	 s1	 and	 s2)	 occurs	 in	 an	 environment	 with	 a	 metapopulation	96	

structure	composed	of	 two	connected	patches,	each	one	hosting	a	sub-population	(see	97	

details	 in	 Materials	 and	 Methods).	 These	 sub-populations	 are	 composed	 of	 naïve	98	

individuals	 (i.e.	 individuals	 who	 do	 not	 know	 how	 to	 perform	 the	 behaviour	 whose	99	

spread	is	being	modelled)	and	knowledgeable	individuals,	or	innovators	(i.e.	individuals	100	

who	 know	 how	 to	 perform	 one	 of	 the	 behaviours).	 At	 the	 start	 of	 each	 numerical	101	

solution	of	the	model	(hereafter,	“simulation”),	innovators	are	introduced	in	the	system	102	

(initially	only	comprised	of	naïve	individuals),	with	different	behavioural	preferences	in	103	

each	sub-population.	The	spread	of	behavioural	preferences	 is	 then	simulated	 for	150	104	

time-steps.		105	

We	found	that	the	emergence	of	contrasting	local	traditions	(i.e.	the	situation	where,	at	106	

the	 end	 of	 the	 simulation,	 one	 sub-population	 is	 dominated	 by	 individuals	 with	 one	107	

behavioural	preference	while	the	other	sub-population	is	dominated	by	individuals	with	108	

the	 alternative	behavioural	preference)	 strongly	depends	on	 the	 relationship	between	109	

the	 strength	 of	 conformity	 and	 the	 rate	 of	movement	 of	 individuals	 between	 patches,	110	

determined	by	parameters	𝜆	and	𝑚	respectively	(see	details	in	Materials	and	Methods).	111	

When	 conformity	 was	 not	 included	 in	 the	 model	 (i.e.	𝜆 = 1),	 the	 pattern	 that	 always	112	

emerged	 regardless	 of	 other	 parameter	 values	 (except	 when	 the	 difference	 in	 size	113	

between	 the	 two	 sub-populations	 was	 very	 large)	 was	 a	 mixture	 of	 behavioural	114	

preferences	in	both	patches	(Figs	1	and	S1).	When	conformity	was	strong	relative	to	the	115	

movement	 rate,	 local	 traditions	 established	 and	 remained	 stable	 (Fig	 1).	 When	116	

conformity	 was	 weak	 relative	 to	 the	 movement	 rate,	 one	 of	 the	 two	 behavioural	117	

preferences	 dominated	 the	whole	 system	 (Fig	 1).	 In	 the	 latter	 case,	which	 preference	118	

dominated	depended	on	the	relative	sizes	of	the	sub-populations.	When	the	size	of	the	119	

sub-population	(i.e.	the	number	of	naïve	individuals	in	the	patch)	in	which	an	innovator	120	

with	a	given	behavioural	preference	was	initially	introduced	was	larger	than	the	size	of	121	

the	 other	 sub-population,	 then	 that	 preference	 came	 to	 dominate	 at	 the	 end	 of	 the	122	
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simulation	 (Fig	 S1).	When	 the	 two	 sub-populations	 had	 exactly	 the	 same	 size,	 which	123	

behavioural	preference	dominated	at	the	end	of	the	simulation	appeared	to	be	random	124	

and	very	sensitive	to	the	precise	parameter	values	(Fig	S1).	Finally,	the	main	effect	of	the	125	

learning	rate	was	to	determine	how	much	stronger/weaker	conformity	must	be	relative	126	

to	the	magnitude	of	the	movement	rate	to	obtain	these	patterns:	the	lower	the	learning	127	

rate,	 the	 stronger	 conformity	 had	 to	 be	 relative	 to	 the	 movement	 rate	 to	 see	 local	128	

traditions	establish	and	stabilise	(Figs	1	and	S1).	129	

	130	
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Fig	1.	Local	traditions	emerge	when	conformity	is	strong	relative	to	the	movement	131	
rate.	This	panel	shows	the	model	outputs	for	the	baseline	model	with	two	patches.	At	132	
the	 start	 of	 every	 simulation,	 patch	 1	 contained	 two	 innovators	 using	 solution	 s1	 and	133	
contained	P1	naïve	individuals,	while	patch	2	contained	two	innovators	using	solution	s2	134	
and	contained	P2	naïve	 individuals.	Each	pixel	 in	 the	phase	diagrams	corresponds	to	a	135	
simulation	 run	with	 the	 corresponding	 parameter	 values,	 and	 the	 colour	 of	 the	 pixel	136	
indicates	 the	 emerging	 pattern	 after	 150	 days:	 grey	 =	 mixture	 of	 solutions	 in	 every	137	
patch,	 blue	 =	 solution	 s2	 dominated	 the	 whole	 system,	 light	 green	 =	 weak	 local	138	
traditions,	 dark	 green	 =	 strong	 local	 traditions.	 The	 two	 columns	 of	 phase	 diagrams	139	
represent	 different	 learning	 rates:	 intermediate	 (α = 0.005)	 and	 fast	 (α = 0.01).	 The	140	
two	rows	of	phase	diagrams	represent	a	different	configuration	of	patch	sizes,	reflecting	141	
the	 differences	 in	 number	 of	 naïve	 individuals	 at	 the	 start	 of	 the	 simulation	 (U0)	142	
occurring	 in	 each	 patch.	 Three	 examples	 of	 the	 evolution	 of	 the	 number	 of	 naïve	143	
individuals	 (black	 curve)	 and	 number	 of	 solvers	 using	 solution	 s1	 (orange	 curve)	 and	144	
solution	s2	(blue	curve)	in	each	patch,	are	shown	for	fixed	movement	rate	(m = 0.003),	145	
learning	 rate	 (α = 0.01)	 and	 patch	 sizes	 configuration,	 but	 with	 varying	 conformity	146	
strength.	When	no	conformity	bias	was	included	(λ = 1),	patches	contained	a	mixture	of	147	
solutions;	when	conformity	was	relatively	weak	(λ = 1.5),	solution	s2	(that	seeded	in	the	148	
larger	 population)	 ended	 up	 dominating	 in	 both	 patches;	 and	 when	 conformity	 as	149	
relatively	strong	(λ = 3.5),	local	traditions	emerged.		150	
	151	

Simple	environmental	setting	152	

To	examine	the	role	of	space	in	the	spread	of	behavioural	preferences,	we	extended	the	153	

baseline	model	 to	a	simple	environmental	setting	with	three	spatially	distinct	patches,	154	

thereby	 effectively	 adding	 an	 extra	 patch	 containing	 no	 innovators	 at	 the	 start	 of	 the	155	

simulation	 (see	Materials	 and	Methods	 for	 details).	 Once	 again,	when	 conformity	was	156	

not	included	in	the	model	(𝜆 = 1),	the	pattern	that	always	emerged	regardless	of	other	157	

parameter	 values	 was	 a	 mixture	 of	 behavioural	 preferences	 in	 all	 patches	 (Fig	 2).	158	

Similarly	to	the	baseline	model,	there	was	a	strong	relationship	between	movement	rate	159	

and	 conformity	 strength;	when	 conformity	was	 strong	 relative	 to	 the	movement	 rate,	160	

local	 traditions	established	and	were	 stable	 (i.e.	 two	 sub-populations	were	dominated	161	

by	 individuals	 with	 one	 behavioural	 preference	 while	 the	 third	 sub-population	 was	162	

dominated	by	individuals	with	the	alternative	behavioural	preference;	Fig	2),	and	when	163	

conformity	 was	 weak	 relative	 to	 the	 movement	 rate,	 one	 of	 the	 two	 behavioural	164	

preferences	 ultimately	 dominated	 the	 entire	 system	 (Fig	 2).	 In	 the	 latter	 case,	 which	165	

preference	 dominated	 depended	 on	 both	 the	 relative	 sizes	 of	 the	 sub-populations	 as	166	

well	as	the	spatial	configuration	(i.e.	the	distances	separating	the	sub-populations,	which	167	

determines	 the	 relative	 movement	 rates	 of	 individuals	 between	 pairs	 of	 sub-168	
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populations).	 If	 the	 size	 of	 the	 sub-population	 in	 which	 innovators	 with	 a	 given	169	

behavioural	 preference	were	 initially	 introduced	was	 larger	 than	 the	 size	 of	 the	 sub-170	

population	 in	 which	 innovators	 with	 the	 alternative	 behavioural	 preference	 were	171	

introduced,	 and	all	 sub-populations	were	equidistant,	 then	 the	 former	preference	was	172	

predominant	 at	 the	 end	 of	 the	 simulation	 (Fig	 S2).	 Also,	 increasing	 the	 distance	173	

separating	 a	 sub-population	 in	which	 innovators	with	 a	 given	 behavioural	 preference	174	

were	 initially	 introduced	 from	 the	 two	 other	 sub-populations	 (i.e.	 creating	 unequal	175	

movement	 rates	 between	 patches)	 resulted	 in	 this	 preference	 not	 being	 able	 to	176	

dominate	the	system	at	the	end	of	the	simulation	(Fig	S2).	177	

Increasing	 the	 distance	 between	 patches	 also	 affected	 how	 much	 stronger/weaker	178	

conformity	 must	 be	 in	 comparison	 to	 the	 movement	 rate	 to	 generate	 the	 emerging	179	

patterns:	 the	 smaller	 the	 distance,	 the	 stronger	 conformity	 had	 to	 be	 relative	 to	 the	180	

movement	rate	for	local	traditions	to	establish	and	stabilise	(Figs	2	and	S2).	When	both	181	

patch	size	and	spatial	configuration	acted	in	opposite	directions,	then	either	behavioural	182	

preference	 could	 ultimately	 dominate	 depending	 on	 the	 relationship	 between	 the	183	

strength	of	conformity	and	the	magnitude	of	 the	movement	rate.	This	may	arise	when	184	

the	size	of	the	sub-population	in	which	innovators	with	a	given	behavioural	preference	185	

were	 initially	 introduced	 was	 larger	 than	 the	 size	 of	 the	 sub-population	 in	 which	186	

innovators	 with	 the	 alternative	 behavioural	 preference	 were	 initially	 introduced,	 but	187	

this	sub-population	was	also	further	away	form	the	two	others	(see	illustration	in	Fig	2).	188	

When	conformity	was	relatively	strong,	but	not	so	strong	as	to	generate	local	traditions,	189	

then	the	behavioural	preference	that	was	not	released	in	the	 larger,	 further	away	sub-190	

population	 ended	 up	 dominating	 the	 system,	 otherwise	 the	 alternative	 preference	191	

dominated	at	the	end	of	the	simulation	(Fig	2).		192	

Unexpected	results	were	also	observed	when	both	sub-populations	in	which	innovators	193	

were	introduced	at	the	start	of	the	simulation	had	the	same	size,	which	is	larger	than	the	194	

third	sub-population,	with	one	of	these	two	sub-populations	being	slightly	further	away	195	

from	 the	 two	 others.	 In	 contrast	 to	 what	 might	 have	 been	 expected	 based	 on	 other	196	

results,	 when	 conformity	 was	 very	 weak	 compared	 to	 the	 movement	 rate,	 then	 the	197	

behavioural	preference	of	the	innovator	that	was	initially	introduced	in	the	most	distant	198	

sub-population	ended	up	being	the	most	prevalent	in	the	system	(Fig	S2,	second	plot	of	199	

fourth	row,	in	blue).	200	
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	201	
Fig	2.	Space	has	a	complex	effect	on	how	conformity	and	movement	lead	to	either	202	
the	emergence	of	local	traditions	or	the	domination	of	a	single	solution.	This	panel	203	
shows	the	model	outputs	in	the	three-patch	case.	At	the	start	of	every	simulation,	patch	204	
1	contained	two	innovators	using	solution	s1	and	contained	P1	naïve	individuals,	while	205	
patch	2	contained	two	 innovators	using	solution	s2	and	contained	P2	naïve	 individuals,	206	
and	 patch	 3	 contained	 only	 naïve	 individuals.	 Each	 pixel	 in	 the	 phase	 diagrams	207	
corresponds	 to	 a	 simulation	 run	 with	 the	 corresponding	 parameter	 values,	 and	 the	208	
colour	 of	 the	 pixel	 indicates	 the	 emerging	 pattern	 after	 150	 days:	 grey	 =	 mixture	 of	209	
solutions	 in	 every	 patch,	 blue	 =	 solution	 s2	 dominated	 the	 whole	 system,	 orange	 =	210	
solution	s1	dominated	the	whole	system,	light	green	=	weak	local	traditions,	dark	green	211	
=	strong	local	traditions.	The	two	columns	of	phase	diagrams	represent	different	spatial	212	
configurations:	a	different	distance	between	patch	2	and	the	other	two	patches	(whose	213	
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distance	 separating	 them	 was	 set	 to	 1),	 which	 results	 in	 different	 relative	 migration	214	
rates	between	pairs	of	patches.	The	 two	rows	of	phase	diagrams	represent	a	different	215	
configuration	 of	 patch	 sizes,	 reflecting	 differences	 in	 the	 number	 of	 naïve	 individuals	216	
(inds)	 at	 the	 start	 of	 the	 simulation	 (U0)	 that	 occurred	 in	 patches	 P1	 and	 P2.	 Four	217	
examples	of	the	evolution	of	the	number	of	naïve	individuals	(black	curve)	and	number	218	
of	solvers	using	solution	s1	(orange	curve)	and	solution	s2	(blue	curve)	in	each	patch,	are	219	
shown	for	fixed	movement	rate	(m = 0.007),	and	spatial	and	patch	sizes	configuration,	220	
but	with	 varying	 conformity	 strength.	When	no	 conformity	bias	was	 included	 (λ = 1),	221	
patches	contained	a	mixture	of	solutions;	when	conformity	was	relatively	weak	(λ = 2),	222	
solution	 s2	 ended	 up	 dominating	 in	 every	 patch;	 when	 conformity	 was	 intermediate	223	
(λ = 3),	 solution	 s1	 ended	 up	 dominating	 in	 every	 patch;	 and	 when	 conformity	 was	224	
relatively	strong	(λ = 4),	local	traditions	emerged.	225	
	226	

Realistic	environmental	setting		227	

To	 examine	 the	 role	 of	 habitat	 structure	 and	 the	 ecological	 process	of	movement	 in	 a	228	

realistic	setting,	we	extended	the	baseline	model	to	represent	the	great	tit	population	of	229	

Wytham	Woods,	which	has	been	 the	subject	of	a	 long-running	study,	and	 the	site	of	a	230	

recent	cultural	diffusion	experiment	 [11].	Running	 the	model	of	spread	of	behavioural	231	

preference	 for	 this	 real-world	 animal	 population	 in	 its	 natural	 environment	 (see	232	

Materials	 and	Methods	 for	details)	 yielded	 results	 that	were	 consistent	with	 those	 for	233	

the	baseline	model	and	its	extension	to	three	patches.	Three	possible	patterns	emerged	234	

at	 the	 end	 of	 the	 simulation	 depending	 on	 parameter	 values:	 (1)	 a	 mixture	 of	235	

behavioural	preferences	in	every	sub-population	when	conformity	was	not	included	in	236	

the	 model	 (i.e.	𝜆 = 1 ),	 (2)	 domination	 of	 one	 behavioural	 preference	 across	 the	237	

population	when	conformity	was	weak	relative	to	the	magnitude	of	the	movement	rate,	238	

and	(3)	the	establishment	of	local	traditions	when	conformity	was	strong	relative	to	the	239	

magnitude	 of	 the	 movement	 rate	 (i.e.	 some	 sub-populations	 were	 dominated	 by	240	

individuals	 with	 one	 behavioural	 preference	 while	 the	 rest	 were	 dominated	 by	241	

individuals	 with	 the	 alternative	 preference,	 Fig	 3).	 Increasing	 the	 degree	 of	242	

fragmentation	 of	 the	 landscape	 (by	 only	 allowing	 individuals	 to	 move	 through	243	

contiguous	 forest,	 as	 opposed	 to	moving	 along	 straight	direct	paths	between	patches)	244	

affected	how	much	stronger/weaker	conformity	must	be	compared	to	the	magnitude	of	245	

the	movement	 rate	 to	generate	 the	different	emerging	patterns	 (Fig	3).	 Increasing	 the	246	

learning	 rate	 had	 a	 similar	 effect	 to	 increasing	 the	degree	 of	 landscape	 fragmentation	247	

(Fig	 3).	 That	 is,	 for	 local	 traditions	 to	 establish	 and	 stabilise,	 conformity	 had	 to	 be	248	
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stronger	 relative	 to	movement	 rates	 when	 either	 the	 habitat	 was	 less	 fragmented	 or	249	

when	the	learning	rate	was	slower	(Fig	3).	250	

	251	
Fig	 3.	 Predictions	 for	 the	 spread	 of	 information	 in	 great	 tit	 cultural	 diffusion	252	
experiment	in	Wytham	Woods.	This	analysis	was	designed	to	replicate	the	conditions	253	
of	 the	 cultural	 diffusion	 experiment	 performed	 by	 Aplin	 et	 al.	 [11],	 in	 which	 two	254	
alternative	foraging	techniques	were	introduced	in	the	great	tits	population	of	Wytham	255	
Woods	in	the	United	Kingdom,	and	their	spread	through	time	monitored.	Each	pixel	 in	256	
the	phase	diagrams	corresponds	to	a	simulation	run	with	the	corresponding	parameter	257	
values,	and	the	colour	of	the	pixel	indicates	the	emerging	pattern	after	150	days:	grey	=	258	
mixture	 of	 solutions	 in	 every	 patch,	 blue	 =	 solution	 s2	 dominates	 the	 whole	 system,	259	
orange	=	 solution	 s1	 dominates	 the	whole	 system,	 light	 green	=	weak	 local	 traditions,	260	
light	green	=	strong	local	traditions.	The	two	top	phase	diagrams	(with	intermediate	and	261	
fast	learning	rates)	correspond	to	model	runs	in	which	the	distance	separating	patches	262	
is	 the	 Euclidean	 distance	 (direct	 distance),	 while	 the	 phase	 diagram	 at	 the	 bottom	263	
corresponds	to	model	runs	using	the	shortest	route	through	the	forest	separating	pairs	264	
of	 patches	 (forest	 distance).	 Three	 examples	 of	 the	 evolution	 of	 the	 prevalence	 of	265	
solution	s1	among	solvers	are	shown	for	fixed	movement	rate	(m = 0.03),	learning	rate	266	
(α = 0.005)	 but	 with	 varying	 conformity	 strength.	 The	 maps	 represent	 the	 extent	 of	267	
Wytham	Woods	and	the	location	of	the	60	feeders.	Each	feeder	is	represented	by	a	pie	268	
chart	 indicating	 the	 number	 of	 naïve	 individuals	 (grey),	 solvers	 using	 solution	 s1	269	
(orange)	and	solvers	using	solution	s2	(blue),	and	the	size	of	the	pie	chart	is	proportional	270	
to	the	total	number	individuals	occurring	around	the	feeder.	When	no	conformity	bias	is	271	
included	(λ = 1)	it	results	in	a	mixture	of	solutions	in	every	patch;	when	conformity	is	272	
relatively	 weak	 (λ = 1.3)	 solution	 s1	 ends	 up	 dominating	 in	 every	 patch;	 and	 when	273	
conformity	is	relatively	strong	(λ = 4.5)	local	traditions	emerged.	274	
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The	emergence	of	patterns	depended	on	precisely	where	 innovators	with	preferences	275	

for	solutions	s1	and	s2	occurred,	particularly	when	conformity	was	weak	relative	to	the	276	

magnitude	 of	 the	 movement	 rate	 (Fig	 4).	 When	 this	 was	 the	 case	 (i.e.	𝜆 = 1.2	and	277	

𝑚 = 0.02),	62%	of	simulations	in	which	initial	conditions	were	randomised	resulted	in	278	

the	 emergence	 of	 local	 traditions,	 and	 the	 rest	 of	 the	 simulations	 resulted	 in	 one	279	

behavioural	 preference	 dominating	 the	 whole	 system	 (with	 half	 of	 those	 simulations	280	

leading	to	solution	s1	to	be	predominant,	and	the	other	half	of	simulation	with	solution	281	

s2	 dominating).	 Which	 behavioural	 preference	 ended	 up	 dominating	 was	 strongly	282	

affected	 by	 the	 sizes	 of	 the	 pools	 of	 naïve	 individuals	 in	 contact	 with	 innovators	283	

preferring	 each	 solution	 at	 the	 start	 of	 the	 simulation.	 If	 one	 behavioural	 preference	284	

came	 to	 dominate	 the	whole	 system,	 then	 it	was	 likely	 to	 be	 the	 preference	 that	was	285	

initially	 added	 in	 the	 comparatively	 larger	 sub-population	 (Fig	 4),	 consistent	 with	286	

previous	 results.	 However,	 when	 conformity	 was	 strong	 relative	 to	 the	magnitude	 of	287	

movement	rate	(i.e.	𝜆 = 4	and	𝑚 = 0.02),	all	 the	simulations	resulted	in	the	emergence	288	

of	 local	traditions.	When	no	conformity	was	included	(i.e.	𝜆 = 1	and	𝑚 = 0.02),	79%	of	289	

simulations	 resulted	 in	 a	mixture	 of	 behavioural	 preferences	 in	 every	 sub-population,	290	

and	the	rest	of	simulations	resulted	in	one	behavioural	preference	dominating	the	whole	291	

system	(with	half	of	simulations	leading	to	solution	s1	throughout	the	landscape,	and	the	292	

other	 half	 of	 simulations	 with	 solution	 s2	 predominant).	 Once	 again,	 the	 sizes	 of	 the	293	

pools	of	naïve	 individuals	 in	contact	with	each	 innovator	at	 the	start	of	 the	simulation	294	

affected	which	pattern	emerged,	similarly	to	when	a	weak	conformity	was	included	(Fig	295	

4).		296	
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	297	
Fig	 4.	 The	 outcome	 of	 the	 spread	 of	 information	 is	 sensitive	 to	 the	 initial	298	
conditions.	This	panel	shows	results	for	the	randomisation	of	initial	conditions	for	the	299	
spread	 of	 information	 in	 Wytham	 Woods.	 Each	 column	 of	 plots	 corresponds	 to	 a	300	
different	 conformity	 strength,	 for	 which	 100	 simulations	 with	 randomised	 initial	301	
conditions	were	 run.	The	 first	 row	of	 plots	 indicates	 the	 values	of	 simulations	 for	 the	302	
two	 summary	 statistics	 used	 to	 identify	 the	 emerging	 pattern.	 The	 horizontal	 line	303	
indicates	 the	 threshold	 above	which	 local	 traditions	were	 said	 to	 have	 emerged.	 The	304	
second	row	of	plots	investigates	a	relationship	between	the	total	prevalence	of	solution	305	
s1	 (one	 of	 the	 two	 summary	 statistics)	 and	 the	 difference	 between	 the	 pool	 of	 naïve	306	
individuals	 initially	 in	contact	with	solution	s1	and	s2	 (i.e.	 size	of	 the	sub-population	 in	307	
which	innovators	with	solution	s1	were	released	at	the	start	of	the	simulation	minus	the	308	
size	of	the	sub-population	in	which	innovators	with	solution	s2	were	released).	The	third	309	
row	of	plots	investigates	a	relationship	between	the	total	prevalence	of	solution	s1	and	310	
the	difference	in	the	centrality	of	the	sub-populations	in	which	innovators	with	solutions	311	
s1	and	s2	were	released	at	the	start	of	the	simulation.	The	centrality	of	a	sub-population	312	
was	 computed	 as	 the	median	 distance	 between	 itself	 and	 other	 sub-populations	 (the	313	
smaller	the	value	the	more	central	is	the	sub-population).	The	smaller	the	difference	in	314	
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centrality,	the	more	solution	s1	was	released	in	a	central	location	compared	to	solution	315	
s2.	316	
	317	

DISCUSSION	318	

Our	 results	 demonstrate	 the	 importance	 of	 the	 relationship	 between	 movement	 and	319	

conformity	 for	 determining	 whether	 or	 not	 local	 traditions	 establish	 in	 animal	320	

populations.	First,	our	model	 indicates	that	a	conformist	bias	 in	 learning	 is	key	for	the	321	

emergence	of	local	traditions,	as	none	of	our	simulations	in	which	a	conformist	bias	was	322	

not	included	led	to	the	generation	of	local	traditions	(Figs	1–4;	except	in	the	two-patch	323	

case	when	the	difference	in	size	between	the	two	sub-populations	is	very	large	and	the	324	

learning	rate	is	relatively	fast,	Fig	S1).	The	importance	of	conformity	in	this	scenario	is	in	325	

line	with	previous	hypotheses	and	indications	from	experimental	results	[11,12,16,18].	326	

Second,	 we	 extended	 this	 finding	 to	 show	 that	 local	 traditions	 establish	 only	 when	327	

conformity	 is	 relatively	 strong	 compared	 to	 the	 magnitude	 of	 the	 movement	 rate	 of	328	

individuals	 between	 sub-populations.	 This	was	 observed	 for	 the	 baseline	model	 (two	329	

patches;	 Fig	 1)	 and	 its	 extension	 to	 three	 patches	 (Fig	 2)	 as	 well	 as	 for	 the	 realistic	330	

environmental	setting	of	Wytham	Woods	(Fig	3).	As	highlighted	for	the	baseline	model,	331	

when	 conformity	 was	 weak	 relative	 to	 the	magnitude	 of	 the	movement	 rate,	 moving	332	

individuals	could	continuously	invade	a	patch	with	alternative	behavioural	preferences	333	

at	a	faster	rate	than	which	they	could	conform	to	the	local	behavioural	preference	in	that	334	

patch,	 thereby	 leading	to	the	domination	of	a	single	behavioural	preference	across	the	335	

whole	 system	 by	 the	 end	 of	 the	 simulation	 (e.g.	 Figs	 1–3).	 Since	 neither	 of	 the	 two	336	

alternative	behavioural	preferences	had	a	selective	advantage,	 the	solution	 that	ended	337	

up	dominating	was	determined	by	the	initial	conditions:	a	given	behavioural	preference	338	

that	started	in	a	larger	pool	of	naïve	individuals	was	more	likely	to	dominate	(Figs	1,	2	339	

and	 4).	 This	 is	 because	 it	 spread	more	 quickly	 at	 the	 start	 of	 the	 simulation	 than	 the	340	

alternative	 preference,	 and	 knowledgeable	 individuals	 moving	 out	 of	 that	 sub-341	

population	 therefore	 represented	 a	 relatively	 large	 proportion	 of	 knowledgeable	342	

individuals	in	each	sub-population	that	they	arrived	in.		343	

Importantly,	 the	 spatial	 configuration	 of	 patches	 also	 influences	 the	 outcome	 of	 the	344	

spread	 of	 information.	 Increasing	 habitat	 fragmentation	 led	 to	 more	 favourable	345	

conditions	for	the	establishment	of	local	traditions	by	lowering	the	movement	rate	and	346	

thus	 increasing	 the	relative	 impact	of	conformist	 learning.	This	was	observed	 for	both	347	
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the	 three-patches	 setting	 (Fig	2)	 and	 in	 the	 realistic	 setting	of	Wytham	Woods	 (Fig	3;	348	

when	we	 used	 forest	 distance,	 the	 fragmentation	 of	 the	 habitat	 was	 effectively	 larger	349	

than	when	we	used	Euclidean	distance).	The	spatial	configuration	of	patches	also	affects	350	

which	 of	 the	 two	 alternative	 behavioural	 preferences	 ultimately	 dominates	 when	351	

conformity	is	weak	relative	to	the	magnitude	of	the	movement	rate.	In	the	three-patch	352	

setting,	 the	 behavioural	 preference	 that	 colonised	 the	 third	 patch	 first	 (in	 which	 no	353	

innovators	were	introduced)	was	generally	the	one	that	ended	up	dominating	at	the	end.	354	

This	effect	was	determined	by	how	far	the	patches	were	from	each	other	and	the	relative	355	

sizes	of	the	sub-populations.	Interestingly,	if	the	sub-population	with	the	largest	pool	of	356	

naïve	individuals	at	the	start	of	the	simulation	was	also	more	distant	from	the	other	sub-357	

populations,	 which	 preference	 predominated	 at	 the	 end	 depended	 on	 the	 interplay	358	

between	conformity	strength	and	the	magnitude	of	movement	rate	(Fig	2	second	row	of	359	

phase	 diagrams),	 as	 this	 affected	which	preference	was	 better	 at	 colonising	 the	 patch	360	

with	no	innovator.		361	

Finally,	 a	 surprising	 effect	 of	 space	was	observed	 in	 a	 three-patch	 landscape	 in	which	362	

innovators	were	initially	introduced	in	two	large	patches	but	where	one	of	the	two	large	363	

patches	was	 located	slightly	further	away	from	the	other	two	patches.	 In	this	case,	 the	364	

behavioural	preference	of	the	innovator	in	the	most	distant	patch	ended	up	dominating	365	

the	 whole	 system	 when	 conformity	 was	 very	 weak	 relative	 to	 the	 magnitude	 of	 the	366	

movement	rate	 (Fig	S2,	 second	plot	of	 fourth	row,	 in	blue).	A	possible	explanation	 for	367	

this	result	is	that,	with	a	very	high	movement	rate	relative	to	conformity	strength,	naïve	368	

individuals	 from	 the	 patch	without	 innovators	moved	 en	masse	 and	 slowed	 down	 the	369	

initial	 spread	 of	 the	 behavioural	 preferences.	 This	 effect	was	 less	 pronounced	 for	 the	370	

preference	 introduced	 in	 the	 most	 distant	 patch	 (as	 movement	 was	 dependent	 on	371	

distance)	 and	 so	 this	 preference	 could	 subsequently	 colonise	 the	 patch	 without	372	

innovators	 faster	 than	 the	 alternative	 preference.	 Overall,	 these	 results	 highlight	 the	373	

important	effects	of	habitat	configuration	and	fragmentation	on	the	spread	of	culture	in	374	

animal	populations	(see	also	 [19]),	and	allow	 for	 testable	predictions	 to	be	made.	 It	 is	375	

particularly	relevant	given	the	wide	range	of	animal	populations	around	the	world	that	376	

are	affected	by	habitat	fragmentation	[20,21].		377	

Our	model	 replicated	 the	 diffusion	 curves	 empirically	 observed	 in	 a	 cultural	 diffusion	378	

experiment	in	great	tits	in	Wytham	Woods	[11].	With	the	same	initial	conditions	in	our	379	
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model	as	in	the	field	experiment	(i.e.	trained	innovators	released	at	the	same	locations	380	

in	 the	 landscape)	and	 for	an	 intermediate	 learning	rate,	 the	model	predicted	 that	sub-381	

populations	 in	 which	 trained	 individuals	 were	 released	 should	 have	 reached	 a	382	

proportion	 of	 solvers	 approximately	 between	 0.6–0.8	 after	 20	 days	 (Fig	 S3;	with	 one	383	

exception	with	a	proportion	of	solvers	of	0.35),	and	sub-populations	in	which	no	trained	384	

innovators	were	 released	 to	 contain	 a	 proportion	 of	 solvers	 between	0.1–0.4	 after	 20	385	

days	 (Fig	 S3).	 These	 values	 are	 very	 similar	 to	 the	 empirical	 results	 reported	 in	 the	386	

original	study	(Fig	1b	in	[11]).	This	supports	the	potential	for	this	model	to	be	used	to	387	

make	 predictions	 about	when	novel	 behaviours	 could	 result	 in	 local	 traditions.	 These	388	

predictions	could	in	turn	be	tested	in	cultural	diffusion	experiments.		389	

Our	 model	 predicts	 that	 local	 traditions	 establish	 when	 the	 movement	 rate	 of	390	

individuals	between	sub-populations	is	low	relative	to	the	strength	of	conformity,	based	391	

on	a	given	 learning	rate.	 If	movement	rates	are	relatively	high,	 the	 location	where	 the	392	

different	behaviours	emerge	has	an	important	effect	on	the	outcome.	The	model	predicts	393	

that	 the	centrality	of	 location	 in	 the	 landscape	 largely	does	not	affect	 the	outcome	but	394	

that	the	size	of	the	pool	of	naïve	individuals	living	there	has	a	strong	effect	(Fig	4).	If	a	395	

conformist	 bias	 exists	 in	 the	 transmission	 of	 information,	 and	 for	 a	 given	movement	396	

ability	 of	 the	 population,	 local	 traditions	 are	 more	 likely	 to	 establish	 and	 be	 well	397	

pronounced	 if	 two	 different	 behavioural	 preferences	 appear	 in	 sub-populations	 with	398	

similar	 sizes	 (Fig	 4).	 These	 predictions	 have	 many	 implications	 for	 studying	 the	399	

emergence	 of	 behavioural	 traditions	 in	 animal	 populations	 in	 which	 social	 learning	400	

occurs.	They	highlight	the	key	and	often	neglected	role	of	movement,	and	particularly	its	401	

interplay	with	conformist	learning,	as	well	as	the	importance	of	the	initial	conditions.	It	402	

should	 therefore	 be	 interesting	 going	 forwards	 to	 test	 these	 model	 predictions	 for	403	

species	 with	 different	 levels	 of	 mobility	 –	 e.g.	 high	 mobility	 of	 fission-fusion	 bird	404	

populations	[22]	versus	low	inter-group	movement	rates	by	vervet	monkeys	[12]	–	and	405	

for	various	initial	conditions.		406	

In	this	study,	we	modelled	a	scenario	in	which	two	alternative	behavioural	preferences	407	

are	introduced	at	the	same	time	into	a	population	of	naïve	individuals.	This	is	consistent	408	

with	 cultural	 diffusion	 experiments.	 However,	 in	 natural	 settings,	 it	 is	 also	 likely	 that	409	

solutions	 to	 a	 foraging	 task	 might	 be	 discovered	 and	 rediscovered	 through	 repeated	410	

innovations	 [17].	 Incorporating	 an	 asocial	 learning	 rate,	 whereby	 individuals	 can	411	
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spontaneously	learn	to	solve	the	puzzle	using	a	certain	solution,	would	be	an	interesting,	412	

and	relatively	straightforward,	addition	to	our	model.	However,	it	should	have	very	little	413	

impact	 unless	 it	 is	 large	 relative	 to	 the	 social	 learning	 rate,	 or	 if	 individuals	 do	 not	414	

abandon	personal	preferences	to	conform.	Future	research	could	also	extend	our	model	415	

to	reflect	other	characteristics.	For	example,	including	demographic	processes	could	be	416	

a	fruitful	avenue	for	making	long-term	predictions.	We	assumed	that	the	total	carrying	417	

capacity	 of	 the	 environment	 had	 been	 reached	 and	 that	 each	 sub-population	 had	 a	418	

constant	number	of	 individuals.	However,	 including	varying	population	 sizes	 could	be	419	

interesting	 for	exploring	whether	or	not	 local	 traditions	remain	stable	across	multiple	420	

generations.	Furthermore,	the	model	may	also	be	useful	for	considering	how	individual-421	

level	 differences	 interact	 with	 the	 emergence	 and	 spread	 of	 culture.	 For	 example,	422	

juveniles	could	potentially	learn	faster	than	adults,	or	conformity	could	vary	across	age	423	

classes	 [18].	 Individual-level	 differences	 have	 recently	 been	 highlighted	 as	 being	424	

important	in	shaping	the	dynamics	of	collective	behaviour	in	animal	groups	[23,24].	It	is	425	

therefore	 likely	 that	 such	differences	 could	play	a	major	 role	 in	 shaping	 the	 spread	of	426	

behaviours	 and	 the	 establishment	 of	 local	 traditions	 in	 natural	 populations.	 It	 would	427	

also	be	 interesting	 to	consider	a	stochastic	version	of	our	model,	 since	random	events	428	

soon	after	traditions	arrive	in	a	naïve	population	are	likely	to	play	an	important	role	in	429	

determining	the	tradition	that	ends	up	dominating.	430	

In	summary,	our	results	provide	new	insights	into	the	interplay	between	the	movement	431	

of	 individuals	 and	 conformist	 learning	 in	 the	 emergence	 of	 animal	 culture.	 By	 simply	432	

incorporating	 these	 two	 processes,	 our	 model	 is	 able	 to	 make	 predictions	 about	 the	433	

emergence	and	stability	of	local	traditions,	and	allow	the	influence	of	quantities	such	as	434	

initial	 population	 conditions	 and	 the	 degree	 of	 habitat	 fragmentation	 to	 be	 tested.	 A	435	

major	 strength	 of	 the	 model	 is	 its	 generalisability.	 Future	 research	 could	 extend	 the	436	

model	 to	 explore	 the	 spread	 of	 animal	 culture	 for	 more	 than	 two	 behavioural	437	

preferences,	 other	 environmental	 settings	 and	 different	 time	 scales,	 and	 integrating	438	

individual	differences	and	non-static	sub-population	demographics.	Such	exploration	of	439	

the	spread	of	socially-transmitted	information	in	animal	populations	has	the	potential	to	440	

provide	additional	insights	into	the	conditions	under	which	local	traditions	emerge	and	441	

persist.	442	

	443	

	444	
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MATERIALS	AND	METHODS	445	

The	 baseline	 model:	 The	 spatially-explicit	 model	 describing	 the	 spread	 of	 animal	446	

culture	 integrates	 two	processes:	 (1)	 transmission	of	 information	between	 individuals	447	

with	 a	 conformity	 bias,	 and	 (2)	 movement	 of	 individuals	 between	 spatially	 distinct	448	

patches	of	habitat.	A	novel	behaviour,	which	consists	of	two	equally	difficult,	and	equally	449	

rewarding,	 solutions	 to	 a	 novel	 foraging	 resource	 (s1	 and	 s2)	 is	 introduced	 into	 a	450	

population	 of	 naïve	 individuals	 (who	 are	 unable	 to	 solve	 the	 task	 at	 the	 time	 of	451	

introduction)	by	adding	 innovators,	which	are	 individuals	who	know	how	to	solve	 the	452	

task	with	a	preference	 for	either	solution	 s1	or	s2.	The	 information	about	how	to	solve	453	

the	novel	task,	along	with	the	preference	for	either	one	of	the	two	alternative	solutions,	454	

can	 be	 socially	 transmitted	 to	 other	 individuals.	 The	 spread	 of	 the	 two	 behavioural	455	

preferences	in	the	population	is	then	modelled,	with	simulations	being	run	for	150	days	456	

(with	a	daily	time	step).	At	any	time,	an	individual	is	either	naïve,	a	solver	s1,	or	a	solver	457	

s2.	During	encounters	with	other	 individuals,	naïve	 individuals	 can	 learn	 from	solvers,	458	

and	 in	 doing	 so	 copy	 their	 behavioural	 preference,	 with	 parameter	𝛼	governing	 the	459	

magnitude	of	 the	 learning	rate.	The	rate	at	which	naïve	 individuals	acquire	one	of	 the	460	

two	alternative	solutions	(s1	and	s2)	 is	a	 function	of	the	proportion	of	solvers	with	this	461	

behavioural	 preference	 among	 all	 the	 solvers	 in	 the	 local	 sub-population.	 When	462	

individuals	 have	 a	 conformity	 bias	 (i.e.	 they	 are	 more	 likely	 to	 copy	 a	 specific	463	

behavioural	 preference	 than	 the	 prevalence	 of	 this	 preference	 among	 local	 solvers),	464	

which	 is	 given	by	 the	 conformity	parameter	𝜆,	 then	 individuals	use	 information	about	465	

the	behaviour	of	all	other	 individuals	 in	 the	patch	when	choosing	which	preference	 to	466	

acquire.	 The	 conformity	 parameter	𝜆	determines	 the	 strength	 of	 sigmoidality	 (i.e.	 S-467	

shapedness)	of	 the	acquisition	curve.	An	acquisition	curve	 is	 the	relationship	between	468	

the	 prevalence	 of	 a	 preference	 for	 a	 solution	 in	 the	 local	 sub-population	 and	 the	469	

probability	of	adopting	that	preference	(see	equations	below	describing	the	conformist	470	

learning	function	L	for	learning	s1	and	s2).	In	this	model,	conformist	learning	(from	naïve	471	

to	solver)	and	conformist	switching	(from	solving	the	puzzle	using	one	solution	to	using	472	

the	alternative	solution)	were	modelled	in	the	same	way	using	the	same	parameters.	By	473	

doing	 this,	 the	 likelihood	 of	 an	 individual	 learning	 from	 another	 is	 approximately	474	

independent	 of	 whether	 or	 not	 the	 individual	 already	 has	 a	 preference	 for	 either	475	

solution	to	the	puzzle.		476	
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In	the	initial	baseline	version	of	the	model,	the	environment	is	assumed	to	consist	of	two	477	

patches,	 with	 each	 one	 hosting	 a	 sub-population.	 Within	 each	 sub-population,	 we	478	

assume	 individuals	 mix	 entirely	 at	 random.	 The	 size	 of	 each	 sub-population	 is	 at	479	

equilibrium	 throughout	 the	 simulation	 (i.e.	 no	 variation	 during	 the	 150	 days),	480	

essentially	 assuming	 that	 each	 sub-population	 size	 is	 at	 the	 strict	 carrying	 capacity	 of	481	

each	 patch.	 The	 movement	 rate	 of	 individuals	 between	 the	 patches	 decreases	482	

exponentially	with	the	distance	𝑑	separating	them,	with	a	parameter	𝑚	determining	the	483	

magnitude	of	the	movement	rate	between	the	patches.	In	each	patch	j	(where	j	=	1	or	j	=	484	

2),	 the	 change	 of	 the	 numbers	 of	 individuals	 that	 are	 naïve	 (𝑈(!)),	 solvers	 with	 a	485	

preference	 for	 solution	 s1	 (𝑆!
(!))	 and	 solvers	 with	 a	 preference	 for	 solution	 s2	 (𝑆!

(!))	486	

through	 time	 is	 modelled	 using	 a	 system	 of	 differential	 equations.	 For	 example,	 the	487	

change	in	the	composition	of	individuals	in	patch	j	=	1	is	given	by:	488	

	489	
𝑑𝑈(!)

𝑑𝑡 = −𝛼 𝑆!
(!) + 𝑆!

(!) 𝑈(!) −
𝑚 𝑈(!) + 𝑆!

(!) + 𝑆!
(!) 𝑈(!)

𝑑 +
𝑚 𝑈(!) + 𝑆!

(!) + 𝑆!
(!) 𝑈(!)

𝑑 
 

𝑑𝑆!(!)

𝑑𝑡 = 𝐿!!
(!)𝛼 𝑆!(!) + 𝑆!(!) 𝑈(!) − 𝐿!!

(!)𝛼 𝑆!(!) + 𝑆!(!) 𝑆!(!) + 𝐿!!
(!)𝛼 𝑆!(!) + 𝑆!(!) 𝑆!(!) −

𝑚 𝑈(!) + 𝑆!(!) + 𝑆!(!) 𝑆!(!)

𝑑 +
𝑚 𝑈(!) + 𝑆!(!) + 𝑆!(!) 𝑆!(!)

𝑑 
 

𝑑𝑆! !

𝑑𝑡
= 𝐿!!

(!)𝛼 𝑆! ! + 𝑆! ! 𝑈 ! − 𝐿!!
(!)𝛼 𝑆! ! + 𝑆! ! 𝑆! ! + 𝐿!!

(!)𝛼 𝑆! ! + 𝑆! ! 𝑆! ! −
𝑚 𝑈 ! + 𝑆! ! + 𝑆! ! 𝑆! !

𝑑
+
𝑚 𝑈 ! + 𝑆! ! + 𝑆! ! 𝑆! !

𝑑 

	

	490	

The	 equations	 for	 j	=	2	 are	 similar.	 In	 the	 equations	 above,	 the	 parameters	𝐿!!
(!)and	𝐿!!

(!)	491	

correspond	 to	 the	 conformist	 learning	 functions	 for	 learning	 solutions	 s1	 and	 s2	492	

respectively,	which	are	functions	of	the	prevalence	of	solution	s1	 in	the	sub-population	493	

(𝑃(!);	i.e.	proportion	of	individuals	in	state	s1	among	solvers	in	patch	1)	and	are	defined	494	

as	follows:	495	

𝐿!!
(!) =

𝑃(!)
1 − 𝑃(!)

!

1 + 𝑃(!)
1 − 𝑃(!)

!	

	496	
𝐿!!
(!) = 1 − 𝐿!!

(!)	

These	 conformist	 learning	 functions	 produce	 a	 sigmoidal	 relationship	 between	 a	497	

solution’s	 prevalence	 in	 the	 sub-population	 and	 the	 probability	 of	 adoption	 of	 that	498	

behavioural	 preference	 (called	 acquisition	 curve;	 [25,26];	 Fig	 S4).	 If	𝜆	=	 1,	 there	 is	 no	499	

conformity	bias	included	in	the	model	(i.e.	straight	1:1	line;	see	Fig	S4).		500	
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At	 the	 start	 of	 each	 simulation,	 two	 innovators	 (i.e.	 knowledgeable	 individuals)	 with	501	

solution	s1	were	added	to	one	patch	and	two	innovators	with	solution	s2	were	added	to	502	

the	other	patch.	We	ran	simulations	for	various	conformity	strengths:	𝜆 ∈ [1, 5]	sampled	503	

every	0.1;	and	movement	rate	magnitudes:	𝑚 ∈ [0.0005, 0.01]	sampled	every	0.0005.	To	504	

investigate	 if	 results	 were	 affected	 by	 how	 quickly	 individuals	 learn,	 we	 ran	 the	505	

simulations	 for	 different	 learning	 rate:	 𝛼 = 0.001 	(slow	 learning	 rate),	 𝛼 = 0.005	506	

(intermediate	 learning	 rate)	 and	𝛼 = 0.01	(fast	 learning	 rate).	 As	 there	 are	 only	 two	507	

patches	here,	changing	the	distance	between	the	patches	 is	equivalent	 to	changing	the	508	

movement	rate	m	(see	equations	above),	so	we	therefore	set	𝑑 = 1	for	every	simulation	509	

run.	 To	 investigate	 the	 effect	 of	 patch	 size,	 we	 also	 ran	 simulations	 with	 different	510	

numbers	of	naïve	individuals	in	each	patch	at	the	start	of	the	simulation	(see	Figs	1	and	511	

S1).	512	

	513	

Simple	environmental	setting:	We	extended	the	baseline	model	to	three	patches,	each	514	

containing	a	sub-population.	In	this	case,	the	equations	described	above	for	the	baseline	515	

model	 were	 adapted	 for	 environmental	 settings	 with	 more	 than	 two	 patches	 (see	516	

Supporting	Methods).	 At	 the	 start	 of	 each	 simulation,	 two	 innovators	with	 solution	 s1	517	

were	 added	 to	 one	 patch	 and	 two	 innovators	with	 solution	 s2	were	 added	 to	 another	518	

patch	(the	third	patch	was	assumed	to	initially	consist	of	only	naïve	individuals).	We	ran	519	

simulations	for	the	same	ranges	of	values	of	conformity	strength	(𝜆)	and	movement	rate	520	

(m)	as	for	the	baseline	model.	The	learning	rate	was	kept	at	the	fast	level	(𝛼 = 0.01)	for	521	

every	simulation	so	that	emerging	patterns	were	more	pronounced	within	the	range	of	522	

values	 explored	 for 𝜆	and	𝑚.	 We	 also	 investigated	 the	 effect	 of	 patch	 size	 by	 running	523	

simulations	with	the	different	numbers	of	naïve	individuals	in	each	patch	at	the	start	of	524	

the	simulation	(see	Figs	2	and	S2).	To	investigate	the	effect	of	habitat	fragmentation,	we	525	

varied	the	distance	between	the	patch	where	two	individuals	trained	to	solve	the	puzzle	526	

with	solution	s2	were	added	and	the	two	other	patches,	investigating	distances	1,	1.5	and	527	

5,	 while	 the	 distance	 separating	 the	 two	 other	 patches	 was	 maintained	 at	 1	 (see	528	

schematics	in	Fig	2).	529	

	530	

Realistic	environmental	setting:	Wytham	Woods,	Oxfordshire,	UK	(51°	46’	N,	01°	20’	531	

W)	is	a	385ha	broadleaf	deciduous	woodland	surrounded	by	open	farmland	and	covered	532	

by	an	evenly-spaced	grid	of	60	feeders	(see	the	map	in	Fig	S5).	This	is	the	location	where	533	
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Aplin	 et	 al.	 [11]	 performed	 the	 cultural	 diffusion	 experiment	 in	 great	 tits,	 introducing	534	

alternative	 novel	 foraging	 techniques	 and	 monitoring	 their	 spread.	 We	 extended	 the	535	

baseline	model	 to	 this	 realistic	 setting,	 and	used	 the	adapted	equations	 for	more	 than	536	

two	 patches	 (see	 Supporting	 Methods).	 We	 started	 simulations	 with	 the	 same	 initial	537	

conditions	as	in	the	field	study,	releasing	two	innovators	at	targeted	patches	in	a	similar	538	

fashion	(i.e.	at	the	same	feeders;	see	Fig	S5).	We	divided	the	landscape	so	that	each	patch	539	

in	our	model	 contained	one	 feeder.	The	 total	number	of	 individuals	 across	 the	woods	540	

and	relative	patch	size	(i.e.	the	number	of	individuals	in	each	patch	around	each	feeder	541	

in	each	time	step)	were	derived	from	data	described	in	[13].	We	ran	simulations	for	the	542	

same	ranges	of	values	for	conformity	strength	as	described	for	the	baseline	model.	We	543	

investigated	the	following	range	of	values	for	the	movement	rate:	𝑚 ∈ [0.005, 0.1].	This	544	

was	different	from	the	range	of	values	explored	for	the	two-patch	and	three-patch	cases	545	

for	this	parameter	because	the	distances	separating	patches	were	in	meters	here	rather	546	

than	in	arbitrary	spatial	units.	We	modified	the	environment	and	the	initial	conditions	to	547	

investigate	how	these	changes	affected	the	model	outcomes.	First,	we	used	two	distance	548	

measures	 between	 pairs	 of	 patches:	 direct	 Euclidean	 distance	 and	 forest	 distance,	 the	549	

latter	 being	 computed	 as	 the	 length	 of	 the	 shortest	 route	 between	 the	 two	 patches	550	

through	the	forest	(without	crossing	open	ground).	This	is	known	to	be	an	ecologically	551	

relevant	 measure	 of	 distance	 with	 regard	 to	 movement	 within	 this	 population	 [13].	552	

Second,	we	randomised	the	locations	of	feeders	where	trained	individuals	were	released	553	

at	 the	 start	 of	 simulations.	 For	 three	different	 values	of	 conformity	 strength	𝜆 = 1	(no	554	

conformity	 included),	𝜆 = 1.2	(weak	 conformity)	 and	𝜆 = 4	(strong	 conformity),	 and	 a	555	

fixed	 movement	 rate	 magnitude	 (𝑚 = 0.02),	 we	 ran	 100	 simulations,	 each	 with	 a	556	

random	location	(i.e.	sub-population/patch)	where	two	innovators	with	solution	s1,	and	557	

another	random	location	where	two	innovators	with	solution	s2,	were	added	at	the	start.	558	

	559	

Analysing	emerging	patterns:	 In	all	model	runs	for	every	environmental	setting	(two	560	

patches,	 three	 patches	 and	 Wytham	 Woods),	 we	 reported	 the	 total	 prevalence	 of	561	

solution	s1	across	the	whole	population	at	the	end	of	the	simulation	(𝑃!"!;	i.e.	proportion	562	

of	 individuals	 with	 behavioural	 preference	 for	 solution	 s1	 among	 all	 solvers	 in	 all	563	

patches)	and	the	spatial	variance	of	the	final	prevalence	of	solution	s1	in	sub-populations	564	

(𝑃!"#;	 i.e.	 variance	 in	 the	 proportion	 of	 individuals	 with	 behavioural	 preference	 for	565	
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solution	s1	among	local	solvers	in	each	patch).	These	two	summary	statistics	were	used	566	

to	identify	the	emerging	patterns:		567	

- if	𝑃!"# 	>	0.1:	 strong	local	traditions	 established	at	 the	 end	of	 the	 simulation	 (i.e.	568	

some	 sub-populations	 are	 strongly	 dominated	 by	 one	 behavioural	 preference	569	

while	the	others	are	strongly	dominated	by	the	alternative	preference)		570	

- if	0.1	>	𝑃!"# 	>	0.01:	weak	local	traditions	established	at	the	end	of	the	simulation	571	

(i.e.	some	sub-populations	have	a	bit	more	of	one	behavioural	preference	while	572	

the	others	have	a	bit	more	of	the	alternative	preference)		573	

- if	𝑃!"# 	<	0.01	and	𝑃!"!	>	0.66:	solution	s1	dominated	across	the	whole	system	at	the	574	

end	of	the	simulation	575	

- if	𝑃!"# 	<	0.01	and	𝑃!"!	<	0.33:	solution	s2	dominated	across	the	whole	system	at	the	576	

end	of	the	simulation	577	

- if	𝑃!"# 	<	0.01	and	0.33	>	𝑃!"!	<	0.66:	mixture	of	solutions	in	every	sub-population	578	

These	criteria	and	thresholds	were	chosen	in	order	to	best	reflect	a	visual	identification	579	

of	the	emerging	patterns	(see	examples	in	Fig	3).		580	

	581	
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