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Abstract  

Background: Pan-bacterial 16S rRNA microbiome surveys performed with massively 

parallel DNA sequencing technologies have transformed community microbiological 

studies.  Current 16S profiling methods, however, fail to provide sufficient taxonomic 

resolution and accuracy to adequately perform species-level associative studies for 

specific conditions.  This is due to the amplification and sequencing of only short 16S 

rRNA gene regions, typically providing for only family- or genus-level taxonomy.  

Moreover, sequencing errors often inflate the number of taxa present. Pacific 

Biosciences’ (PacBio’s) long-read technology in particular suffers from high error rates 

per base. Herein we present a microbiome analysis pipeline that takes advantage of 

PacBio circular consensus sequencing (CCS) technology to sequence and error correct 

full-length bacterial 16S rRNA genes, which provides high-fidelity species-level 

microbiome data  

Results: Analysis of a mock community with 20 bacterial species demonstrated 100% 

specificity and sensitivity.  Examination of a 250-plus species mock community 

demonstrated correct species-level classification of >90% of taxa and relative 

abundances were accurately captured. The majority of the remaining taxa were 

demonstrated to be multiply, incorrectly, or incompletely classified. Using this 

methodology, we examined the microgeographic variation present among the 

microbiomes of six sinonasal sites, by both swab and biopsy, from the anterior nasal 

cavity to the sphenoid sinus from 12 subjects undergoing trans-sphenoidal 

hypophysectomy.  We found greater variation among subjects than among sites within a 

subject, although significant within-individual differences were also observed.  
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Propiniobacterium acnes (recently renamed Cutibacterium acnes [1]) was the 

predominant species throughout, but was found at distinct relative abundances by site.   

Conclusions:  Our microbial composition analysis pipeline for single-molecule real-time 

16S rRNA gene sequencing (MCSMRT, https://github.com/jpearl01/mcsmrt) overcomes 

deficits of standard marker gene based microbiome analyses by using CCS of entire 

16S rRNA genes to provide increased taxonomic and phylogenetic resolution. 

Extensions of this approach to other marker genes could help refine taxonomic 

assignments of microbial species and improve reference databases, as well as 

strengthen the specificity of associations between microbial communities and dysbiotic 

states. 

Keywords:  microbiome; 16S rRNA; paranasal sinuses; sinonasal; database; long-read 

DNA sequencing, circular consensus sequencing 
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Background 

The advent of culture- and cloning-free methods to analyze bacterial phylogenetic 

marker genes by deep sequencing ushered in a new era of microbial community 

analysis, dramatically reducing the labor and cost of profiling the identities and 

abundances of microbes from different environments, independent of their ability to be 

cultivated [2-5]. The small subunit ribosomal RNA gene (16S rRNA) is shared by all 

bacteria and has been sequenced in thousands of distinct named species. Because of 

this, polymerase chain reactions (PCR) using primers that target conserved regions can 

amplify variable segments of the 16S rRNA gene from across the bacterial domain in a 

relatively unbiased fashion for amplicon-based deep sequencing [6, 7].  16S sequence 

databases can then be used to classify a given sequence read’s taxonomic source. 

Combined with increasingly powerful ecological methods for analyzing microbial 

community dynamics and inferring community-level metabolic networks, profiling the 

taxonomic composition of bacterial communities by 16S rRNA gene sequencing has 

become a standard part of microbiome analysis [8-11]. 

 Unfortunately, the use of the 16S rRNA gene as a taxonomic marker has, in part, been 

constrained by the short read length of the most commonly used sequencing platform 

for microbial community profiling (the Illumina MiSeq), which only allows interrogation of 

up to 3 of 9 variable regions in the 16S rRNA gene (called V1-V9), often targeting only 

V3-V5, V1-V3, or V4 alone [10, 12-16]. This constraint limits the taxonomic resolution to 

which short reads can be classified, typically only to the family- or genus-level, and 

furthermore taxonomic resolution varies for different groups of bacteria when using 

different portions of the 16S rRNA gene [10]. Low-resolution classification in turn limits 
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not only the accuracy and precision of ecological inferences and metabolic 

reconstructions, but also the ability to identify appropriate bacterial strains to use in 

follow-up experimental and translational studies. Metagenomic shotgun sequencing has 

been shown to often provide high taxonomic and phylogenetic resolution [17, 18], but 

these approaches continue to be prohibitively expensive in many cases (particularly 

when in the presence of excess host DNA), and consensus remains in flux regarding 

the best pipelines for shotgun metagenomics-based community analysis [17] . 

An alternative is to use “3rd generation” long-read sequencing technology to obtain full-

length 16S rRNA gene sequences (V1-V9, hereafter FL16S). This increases taxonomic 

and phylogenetic resolution by increasing the number of informative sites sequenced, 

while continuing to use a well-studied pan-bacterial marker gene. Initial applications of 

Pacific Biosciences (PacBio) single-molecule real-time (SMRT) sequencing were 

hampered by the technology’s high intrinsic error rate [19-21], but improvements to the 

chemistry have since allowed for the generation of high-quality “circular consensus 

sequence” (CCS) reads, in which individual 16S rRNA genes are sequenced many 

times using circularized library templates combined with highly processive polymerases 

that provide for single-molecule, consensus-sequence error correction [22]. Recent 

studies evaluating FL16S sequencing by PacBio have found that, with appropriate 

processing and filtering, CCS reads of FL16S genes can be generated that are of 

sufficiently high quality to offer higher taxonomic resolution than partial 16S rRNA 

sequences [23-26].   

The composition of the human sinonasal microbiome and how it changes in health and 

disease remains poorly understood, largely due to differences in methodology among 
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studies resulting in large variations in reported bacterial profiles [27-32]. Culture-based 

approaches capture <15% of resident bacterial taxa when compared to nucleic acid-

based techniques, since fast-growing bacteria like staphylococci tend to predominate in 

culture specimens, and recovery of anaerobes and slow-growing bacteria is limited [29, 

33, 34]. Comparing across recent surveys of the sinonasal bacterial community reveals 

broadly similar results, but few specific assertions can be made; agreement between 

studies and results have been limited by an inability to distinguish bacteria at the 

species level [35-39] but as discussed above does not give a complete reflection of the 

microbial community. Thus, despite the vastly superior ability of molecular techniques to 

identify bacterial phylotypes, species-specific identification of bacteria remains superior 

in culture-based techniques [40]. For this reason, improved specificity of molecular 

detection techniques is necessary for not only a more complete understanding of the 

human sinonasal microbiome and other microbial communities, but also to be able to 

use this approach for decision making in the clinical context.  Lastly, identifying the 

microbial taxa at play in different diseases with higher specificity will enable more 

directed experimental follow-up studies. 

To take advantage of newer PacBio sequencing chemistry, improve upon data 

processing methods, and apply FL16S gene sequencing to a clinically relevant context, 

we describe a new pipeline (MCSMRT, “Microbiome Classification by Single Molecule 

Real-time Sequencing”). We show using two mock communities (one with 280 bacterial 

species) that FL16S CCS reads offer unprecedented accuracy and precision. We then 

explore bacterial diversity in the human nose and paranasal sinuses using results from 
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MCSMRT, investigating not only bacterial diversity among subjects but also diversity 

within subjects at distinct sub-anatomical sites.   

Results 

Microbial community profiling by FL16S deep sequencing and CCS error 

correction 

The taxonomic and phylogenetic resolution of microbial community profiling via 16S 

rRNA gene sequencing was increased by using Pacific Biosciences (PacBio) RSII to 

generate FL16S sequences from mock and human sinonasal microbial communities. 

We combined a circular sequencing template approach with the long DNA polymerase 

read-lengths provided by the PacBio sequencing technology.  This provided for multiple 

sequencing passes of each molecule, enabling the generation of circular consensus 

sequence (CCS) reads of exceptionally high quality [20, 22]. To analyze these data, we 

developed a new bioinformatics pipeline, MCSMRT, building upon the uparse pipeline 

[41], which (a) processes and filters PacBio CCS reads generated from multiplexed 

samples, (b) de novo clusters high-quality FL16S sequences into “operational 

taxonomic units” (OTUs), (c) taxonomically classifies each read and assigns confidence 

values at each taxonomic level, and (d) quantifies the abundance of each OTU based 

on the full CCS read dataset (Figure 1). This processed data is suitable for downstream 

microbiome analyses using standard tools [42-45]. We further apply our classifier to all 

filtered reads and also allow for detection of amplicon sequence variants (ASVs) among 

groups of related sequences via minimum entropy decomposition (MED). Details are in 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2018. ; https://doi.org/10.1101/338731doi: bioRxiv preprint 

https://doi.org/10.1101/338731
http://creativecommons.org/licenses/by/4.0/


 9 

the Methods and Additional File 1, and the MCSMRT software documentation which 

is freely available (https://github.com/jpearl01/mcsmrt).  

 
Figure 1. Overview of the MCSMRT pipeline represented as a flowchart. The 
MCSMRT method for analysis of 16S rRNA reads from the PacBio is carried out in two 
steps: In the pre-clustering step, CCS reads are generated during demultiplexing, 
labeled by sample, pooled together, and then filtered based on several criteria (length 
distribution, terminal matches to the primer sequences, and not aligning to a host or 
background genome sequence). Before the clustering step, CCS reads are filtered 
based on cumulative expected error (EE<1). The clustering pipeline uses uclust to 
unique sequences based on their abundance, then cluster CCS reads into OTUs, 
filtering out chimeric reads during clustering, and then by using uchime after clustering. 
An OTU count table is created by mapping the filtered results from the end of the pre-
clustering pipeline, and each OTU is taxonomically classified based on a representative 
“centroid” sequence. Taxonomic classification is also applied to all filtered reads, and 
ASV detection by MED can be applied on multiple alignments of sets of related 
sequencing, grouped by either OTU or binned by taxonomic level.  
 

Below, we demonstrate the robustness and high taxonomic and phylogenetic resolution 

of our experimental and bioinformatics approach. We use results from two distinct mock 

microbial communities: one from the Biodefense and Emerging Infections Research 

Resource (BEI) and the other from the “Critical Assessment of Metagenome 

Interpretation” (CAMI) project[46]. We then applied FL16S gene sequencing to ask how 

the healthy human sinonasal microbiome varies among individuals and among sub-

anatomical sites within individuals (Table 1; expected mock community compositions in 

S1 Table and S2 Table, Additional File 2). 

Table 1 Community Characteristics* 
 BEI-EC CAMI HSNM-MS 

Source 

Biodefense and Emerging 
Infections Research 
Resource Repository 

(BEI) 

Joint Genome 
Institute (JGI) 

Philadelphia 
Veterans 

Affairs Medical 
Center 
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Type Mock Community Mock 
Community 

Wild 
Community 

Details BEI Even B (Catalog ID: 
HM-782D) 

CAMI 
competition 

Human 
Sinonasal 

Microbiome 
Number of bacterial 

species 20 282 (308 
strains) Unknown 

Number of other 
species 2 (archaeal and fungal) 2 (archaeal) Unknown 

Species distribution Reportedly even Widely 
varying Unknown 

Other Pooling DNA based on 
16S qPCR 

Pooling DNA 
based on 

genomic DNA 
mass 

12 subjects, 6 
sites, swab and 

biopsy 

*Source and composition characteristics of BEI-EC and CAMI (mock communities), and 
HSNM-MS (Human sinonasal community). 
 
 

CCS and filtering for FL16S reads 

From each sample across the three types of communities, PCR was used to amplify 

FL16S genes (~1.5 kilobases [kb]) from total DNA purifications using primers that 

targeted conserved regions at both ends of the gene that also contained terminal 

asymmetric barcodes to allow for pooling and subsequent demultiplexing of multiple 

samples into the same SMRTcell (S3 Table, Additional File 2). For the simpler BEI 

mock community, we tested PCR parameters, varying the polymerase (GoTaq vs. 

AccuPrime), cycle number (22 vs. 35), and the presence of excess off-target DNA (i.e. 

10-fold excess of genomic DNA from U937 lymphoblast lung cell line). 

 
We used the PacBio RSII (P6-C4 chemistry) to collect 3,446,849 polymerase reads in 

total across the 3 communities (Table 2). We typically obtained ~50K-60K polymerase 

reads per RSII SMRTcell, in which 3-4 barcoded 16S amplimer libraries were pooled 
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together and subsequently demultiplexed. More than half of polymerase reads were 

typically >20 kb, such that the average polymerase read included ~12 complete 

sequencing passes around each molecule (average 1,422 base pair [bp] inserts). Those 

polymerase reads with >4 passes were used to generate error-corrected CCS reads, 

whose quality was dramatically improved (mean cumulative expected errors, EE, of 4.9 

per kb) compared to polymerase reads to (EE / kb = 139.4). CCS reads with 1-4 passes 

had considerably lower quality (mean EE / kb = 193; 98.9% of these reads had EE > 

10), and these were not considered further. The requirement for at least 5 passes 

resulted in a large reduction in overall yield compared to total polymerase reads but 

massively increased confidence in base calling (Table 2). 

 
Table 2 Bulk sequencing and filtering stats for all three communities  

Source1 BEI-EC2 CAMI3 HSMC-
MS4 

Type mock mock human 
Total Samples 8 1 122 

Total # SMRTcells 4 1 85 
Total Pol Reads 396,625 53,164 2,997,060 

N50 Pol Read length in kb  23523 21220 18837 
Avg Read Length in Pol 

Reads 12997 11232 11940 
Avg Phred-quality in Pol 

Reads 9.89 9.5 9.35 

Avg EE of Pol Reads5 1868.82 1727.44 1653.9 
EE per kb of Pol Reads 143.79 153.8 138.52 

Avg CCS passes 14.04 13.06 11.48 
Avg Phred-quality in CCS 

Reads 40.46 40.84 39.26 

Avg CCS length 1454 1481 1417 
Avg EE for all CCS Reads5 5.36 3.15 7.16 

EE per kb of CCS Reads   3.69 2.13 5.05 
Total CCS Yield (>4 

passes) 163,689 19,576 
    

787,302  
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Size filtered (0.5-2kb) 131,413 16,061 
    

498,007  

Host filtered 163,670 19,574 
    

704,935  

Primer matched 131,856 16,156 
    

498,820  
Percent passed primary 

filters 80.4 81.8 63.1 
1In addition to mixed species communities, 7 independent negative reagent controls and 
4 positive controls (2 x DNA from pure cultures of Escherichia coli and Agrobacterium 
tumefaciens) were run. 
2Three conditions: Polymerase (GoTaq vs. AccuPrime) x PCR Cycles (35 vs. 22) x 
Excess DNA (no human DNA vs. 10-fold excess). 
3Four independent libraries. 
4Twelve subjects with healthy sinuses sampled at 6 sinonasal anatomic locations, both 
swab and biopsy. Twenty samples (mostly sites E and F) were not collected or not run.  
5EE is cumulative expected error across the full read. 
 

A series of additional filters were applied to these CCS reads to eliminate off-target 

sequences: (a) a size filter, (b) a filter against background (host) sequences, and (c) a 

primer matching filter. Collectively, these filters eliminated ~20-40% of CCS reads 

(Figure 1A, Table 2, S1 Figure, Additional File 3, S4 Table, Additional File 2). 

Size filter: CCS reads were removed if they were outside the thresholds of FL16S 

sequences (those between 0.5-2 kb were retained). This 2-3% of all CCS reads were 

mostly dimeric 16S sequences ~3 kb long, most likely created during the ligation step of 

library preparation (S2 Figure, Additional File 3). 

  

Host filter: CCS reads were removed if they aligned to a background genome (in this 

case, the human GRCh37, or hg19, reference). Notably, only 19 of ~160K reads from 

the BEI mock community samples mapped to the human genome, despite half of these 

samples including a 10-fold excess human DNA (extracted from U937 human 
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lymphoblast lung cell line to minimize contamination from the human microbiome). This 

indicates no appreciable off-target priming or contaminating fragments from U937 cell 

line DNA added at a 10:1 excess (by mass). However, samples with added human DNA 

had marginally lower sequencing yields (~25%), possibly indicating a weak inhibitory 

effect by excess off-target DNA (S3A Figure, Additional File 3, effect on CCS yield, 

Tukey’s HSD p=0.048 for 10-excess human DNA, but p>0.2 for polymerase or cycle 

number).  

By contrast, a much larger proportion of CCS reads from the human sinonasal 

communities mapped to the human genome (9.9%), suggesting off-target amplification 

of human DNA when in vast excess over bacterial DNA (alternatively, the U937 cell line 

DNA used for the BEI experiment may have lacked some or all off-target priming sites 

present in the human reference).  Supporting this interpretation, biopsy samples had 

substantially higher total DNA yields after extraction than swabs (though no obvious 

differences in PCR yield, S4 Figure, Additional File 3), and reads derived from human 

were significantly more abundant in biopsy samples (S3BC Figure, Additional File 3, 

comparing biopsies and swabs, Tukey’s HSD p<<0.01 for total CCS yield or % human-

contaminants, but p>0.8 when for patient or site). The 105,801 reads in the sinonasal 

dataset that mapped to the human genome aligned to 9,716 distinct genomic positions, 

but they were highly enriched at only a few (67.9% of mapped positions had only a 

single mapped read, but 58.2% of reads started at only 16 positions and had >1,000-

fold coverage, S5 Figure, Additional File 3). These data suggest an off-target priming 

effect at high excess concentrations of human DNA with “hotspots” for off-target 

priming, along with a proportion of library molecules carrying apparently random human 
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genomic DNA fragments. To confirm that reads mapped to the human genome were not 

improperly aligning true bacterial 16S genes, utax classification of all human-mapping 

reads showed that all had extremely low confidence assignments to the bacterial 

domain (<0.1), indicating a probable host origin. 

Primer matching: CCS reads were required to have the forward and reverse primer 

sequences each found once and oriented correctly at the ends of the sequence, and 

this removed 12-18% of reads (Table 2, S4 Table and S13 Table, Additional File 2, 

S6 Figure, Additional File 3, Additional File 1). Primer matching also served to 

determine the orientation of the 16S gene in each CCS read, so reads were reverse 

complemented when the reverse primer came first. Finally, primers were trimmed from 

reads. In principle, this loses several taxonomically informative sites, since the primers 

contained four degenerate bases; however, in practice, the primer sequence seen in a 

given read was random with respect to the taxonomic source of that 16S gene. This is 

most easily illustrated from control sequencing of 16S rRNA genes amplified from clonal 

cultures of Escherichia coli K12 MG1655 and Agrobacterium tumefaciens NTL1 (S7 

Figure and S8 Figure, Additional File 3).  

 

Clustering CCS reads into OTU 

Profiling the bacterial composition of a microbiome often begins by clustering 

sequences with high sequence identity into OTU, with a standard cutoff of 97% [47, 48], 

though sometimes other cut-offs are used [49-51].  Newer approaches to grouping 

related sequences together avoid using similarity thresholds but instead define amplicon 
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sequence variants (ASVs) based on controlling for variant sites arising due to 

sequencing error; these methods include oligotyping, minimum entropy decomposition 

(MED), and DADA2 [44, 45, 52]. Here, we initially show results with OTU clustering and 

then further show how MED can further discriminate species whose 16S rRNA genes 

diverge by less than the threshold used for OTU picking.  

To first cluster reads and identify representative “centroid” OTU sequences, we used 

the UCLUST algorithm [53]( Additional File 1), which filters chimeric 16S sequences by 

identifying apparent hybrids between distinct OTU as they accumulate in the dataset 

(here called CHIM1). A second chimera filter (CHIM2, using uchime) [54] then removes 

centroid OTU that appear to be hybrids of distinct 16S sequences in the curated 

Ribosomal Database Project (RDP) Gold database [55] (Additional File 1). The 

abundance of each OTU in each sample was then determined by counting the number 

of filtered CCS reads that aligned to each centroid (Figure 1B).  Though OTU clustering 

can collapse or separate distinctly named species into the same or different OTU, it 

systematically defines taxa in a uniform way that does not depend on taxonomic 

nomenclature [56, 57].  

Sequencing error increases observed OTU counts: Erroneous base calls in CCS 

reads risk artificially inflating the number of OTUs, since reads with sequencing errors in 

similar 16S rRNA genes can be spuriously separated into distinct OTUs, especially if 

their actual divergence is near the 3% divergence cut-off and/or they are short. Thus, a 

final pre-clustering filter was applied based on cumulative expected error (EE, or the 

sum of error probabilities across all positions in a read as determined from Phred-scaled 
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base quality scores). This measure has previously been shown to discriminate against 

error prone sequences better than the average quality score [58].  

Analysis of the BEI mock community:  Using the BEI mock community to examine 

the relationship between CCS passes and EE, we found, as expected, that reads with 

more CCS passes had a lower median EE (Figure 2, linear model of log(EE) vs. CCS 

passes gives R2=0.22). 98.9% of reads with less than five CCS passes had EE>10 

(across ~1.4 kb total length) and were not considered further (Figure 2).  

Figure 2 - Distribution of reads at different CCS passes and cumulative expected 
error values (EE) in the BEI mock community. Violin plot showing the distribution of 
cumulative EE (after primer matching and trimming) at different CCS passes. Reads 
with less than two CCS passes were not reported by PacBio CCS software. Histograms 
at the top and right show read count by CCS and EE, respectively. The 35 reads with 26 
to 46 CCS passes are not show (median EE = 0.22). Subsequent analyses used only 
CCS reads with >4 passes. 
 

 

To empirically determine an appropriate EE cut-off for clustering CCS reads into OTUs, 

we compared the expected number of OTUs in the BEI mock community to that 

obtained by OTU clustering at different EE cut-offs. The expected number of OTUs was 

19, since 2 of the 20 species’ 16S rRNA genes differed by at most 23 nucleotides 

(Staphylococcus aureus and Staphylococcus epidermidis have only 1.4% divergence, 

less than the OTU clustering cut-off of 3% divergence, S1 Table, Additional File 2). As 

expected, increasing the stringency of the EE filter reduced the total number of CCS 

reads available for OTU clustering, as well as the total number of OTUs detected 

(Figure 3A).  Using EE≤1 (one or fewer expected errors per read) retained less than 
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half (40.1%) of filtered CCS reads, but these clustered into the 19 OTUs expected. 

Decreased stringency (higher EE cut-offs) increased the total OTUs detected, 

dramatically for cut-offs of EE ≤8 and above; using no expected error threshold (EE 

≤128), 3,453 OTUs were detected, more than 100-fold greater than the true number. In 

summary, using a high stringency expected error cut-off for OTU clustering reduced the 

number of reads available for clustering but provided exact total OTU counts for the BEI 

mock community.  

Figure 3 - Clustering of post-filtered CCS reads into OTUs. A. Count of total, 
unique, CHIM1 and centroid OTU reads at different maximum EE thresholds. 
B. Count of total OTU detected using full-length or truncated reads at different 
maximum EE thresholds. 
 

Sequence length and OTU clustering: To examine how OTU clustering would be 

affected by using partial instead of FL16S gene sequences for the BEI mock 

community, we performed in silico primer matching and trimming on the full-length CCS 

reads for three short-read primer pairs commonly used for microbial community 

profiling, namely primers targeting the V1-V3, V3-V5, or V4 hypervariable regions of the 

16S rRNA gene, which are amenable to analysis using Illumina short-read sequencing 

(S3 Table, Additional File 2). Using these in silico short-read data produced 

dramatically higher OTU counts than predicted, even when using substantially more 

stringent EE cut-offs (Figure 3B). Thus, for example, whereas full-length V1-V9 reads 

clustered into the expected 19 OTUs at EE ≤1, reads truncated to include only the V3-

V5 hypervariable regions (average = 536 nt) clustered into 116 OTUs. The other 

truncated sequences (V1-V3 and V4) had even higher elevated total OTU counts. Even 

when the shorter length of partial sequences was compensated for by using an 8-fold 
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higher stringency cut-off (EE ≤ 0.125), spurious OTUs were still detected, e.g. 58 OTUs 

were detected with the V3-V5 truncated reads, substantially higher than expected. The 

comparisons above relied on in silico truncation of full-length reads from the same 

PacBio dataset to maintain consistent error profiles, but inflated OTU counts have also 

been reported in published results for truncated 16S from the BEI mock community 

collected using both 454 pyrosequencing and Illumina MiSeq short-read technology [59-

63]. For comparison, we also applied closed-reference OTU clustering at a 97% cutoff 

via QIIME2, and found inflated OTU counts using either FL16S (115 OTUs) or V3-V5 

truncated reads (202 OTUs) (if counting only OTUs with >4 reads mapping, then FL16S 

detected 60 OTUs and V3-V5 detected 115 OTUs), though FL16S still detected fewer 

OTU counts than truncated reads. Finally, we similarly found elevated OTU counts in a 

re-analysis of Illumina MiSeq data for the V1-V3 region of the same BEI mock 

community [62] through our pipeline, finding 171 OTUs at EE<1 (40 OTUs at 

EE<0.125). This suggests that inflated OTU counts when using partial 16S sequences 

is independent of the specific PCR conditions or the particular error profile of PacBio 

CCS reads.  

The above results underline the value of using FL16S to minimize the effect of 

sequencing errors on de novo OTU cluster counts. They also indicate that methods that 

profile taxonomic composition using partial 16S rRNA genes may be prone to 

overestimating bacterial diversity. For all subsequent analyses, we used only CCS 

reads with EE ≤1 for OTU clustering, and then mapped all reads passing all pre-

clustering filters onto these centroid OTU’s to obtain abundance data (Pre-clustering 

Pipeline, Clustering Pipeline, Additional File 1). 
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Taxonomic classification of FL16S reads 

Bacterial taxonomic nomenclature has traditionally been based on physiological and 

other microbiological traits (e.g. virulence) rather than 16S rRNA gene sequences, so 

the accuracy and precision with which a read can be taxonomically defined is dictated 

by: a combination of organism-specific criteria used for naming species; the quality and 

completeness of the database used; and the distribution of informative variable sites 

within the 16S rRNA among named taxa [10]. Unfortunately, commonly used databases 

for classifying 16S rRNA gene sequences, namely RDP and Silva [55, 64, 65] (although 

see [66] for a new way of extracting FL16S reads with species level classifications from 

RDP),  do not provide species-level taxonomic identifiers [67]. Another problem with 

these databases is the absence of representative sequences from genera present in our 

mock communities (for example the genus Clostridium was not found in RDP). Though 

285,289 sequences in the popular Greengenes database do have species labels, only 

631 of these are unique species. Although Greengenes (N=1,262,986) and Silva 

(N=1,922,213) have vastly more taxonomically classified sequences than RDP 

(N=8,978), in part because they computationally assign taxonomies to sequences from 

environmental microbiome surveys [64, 68], most of the sequences in these databases 

are of partial length 16S rRNA genes. While these databases are appropriate in many 

cases, we needed to make a database of FL16S sequences with species-level 

taxonomic information.  
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To classify CCS reads (including centroid OTUs and MED node representatives) based 

on bacterial taxonomy to the species level and also provide confidence values at each 

taxonomic level, we trained a utax classifier on a custom-built database of FL16S gene 

sequences downloaded from NCBI (16S rRNA Microbial Database, Additional File 1). 

Most FL16S sequences available at NCBI (N=17,764) could be associated with a 

taxonomic ID (txid) using the gid accession number, allowing us to extract, parse, and 

configure sequences in the database to create a utax-compatible Linnaean hierarchy 

that included 11,055 distinctly named species spanning 367 bacterial families 

(Additional File 1). The number of distinct families present in this NCBI database was 

367, whereas RDP had 366, Silva had 302, and Greengenes had 514. We recognize 

that other researchers may not prioritize species-level taxonomic assignments and 

instead favor high breadth. To that end—because MCSMRT is based on the UPARSE 

pipeline—any correctly formatted database may be used in place of our custom one.  

UPARSE-formatted databases for Greengenes, Silva, and RDP are available and may 

be found at [69]. 

We next generated and compared the accuracy of utax classifiers built from full-length 

or partial V3-V5 16S rRNA genes by classifying the database sequences themselves. In 

this context, incorrect classification could arise in particular due to distinct named 

species with highly similar sequences. The full-length classifier gave an incorrect label 

only 1.0% of the time (N=173 mistakes), compared to 13.2% of the time using the 

truncated classifier (N=2295 mistakes). Indeed, when the two classifiers disagreed, the 

full-length call was much more frequently correct (2x2 contingency table: 15,081 both 

correct, 2,137 only full-length correct, 15 only truncated correct, and 158 neither 
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correct). Furthermore, species-level confidence values were higher 81.3% of the time 

using the full-length classifier (mean 81.7%, median 92.7%) compared to the truncated 

classifier (mean 71.1%, median 82.7%). These results show the value of using full-

length compared to partial 16S gene sequences for accurate taxonomic assignment. 

The assignment made for each CCS read is associated with confidence values at each 

taxonomic level, and low values could arise for several reasons aside from the quality of 

the sequence data. In particular, sequences labeled as a distinctly named species could 

have other equally good matches, or nearly so. In order to determine what species 

might end up assigned to a particular centroid OTU read, we clustered the NCBI 

database sequences (17,776 in total, 99.1% unique) at the same threshold level (97% 

identity), thereby grouping species belonging to the same “database OTU” (dbOTU). 

Since uclust relies on abundant unique sequences to initiate centroids and also drops 

putative chimeric sequences during clustering, we instead applied hierarchical 

clustering (average linkage, using pairwise percent identity values from all-by-all blast, 

and separating dbOTU clusters at a 3% difference level).  This method is unaffected by 

the order of the sequences and included all database entries.  

Hierarchical clustering of NCBI sequences resulted in 6,065 dbOTU, of which 66.9% of 

clusters had a single species (93.2% had a single genus), whereas 14.6% of clusters 

had the same species split over more than one dbOTU (Additional File 4). Some 

dbOTUs consisted of many species. For example, the top three most species-rich 

dbOTUs collectively contained 453 distinctly named Streptomyces species indicating 

that 16S rRNA clustering at 3% divergence poorly discriminates among named species 

in this genus [70]. These results reflect the variability with which different bacterial taxa 
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are named compared to how they group based on divergence in their 16S rRNA [50, 51] 

(S9 Figure, Additional File 3). Collectively, clustering the FL16S gene sequences from 

NCBI indicated that assignments of individual CCS reads, OTU centroids, or MED node 

representatives will result in high-confidence species-level classification for high quality 

FL16S gene sequences; imprecision due to distinct species belonging to the same 

dbOTU will affect about a third of 16S rRNA sequences in the database, but these can 

be flagged by low confidence values from the utax classifier and by cross-referencing to 

dbOTU clusters to identify other possible “nearly best hits”. 

 

Nearly all reads collected from reagent controls failed filtering and classification 

steps. In advance of the studies described above, we pre-screened multiple PCR 

reagents and DNA polymerases to identify those that produced no observable 

amplification when using reagent controls. In addition, seven negative control reagent 

samples were sequenced in parallel with mock community and sinonasal samples. After 

demultiplexing, these controls produced a total of only 54 reads. Of these, only 3 reads 

passed the filtering criteria described above. Taxonomic classification on all 54 reads 

returned only 5 reads with >10% bacterial domain-level confidence values (all 5 gave 

100% confidence). These 5 reads had genus-level classification as Finegoldia (95.3% 

confidence), Propionibacterium (16.6%), Streptococcus (22.7%) and two as 

Staphylococcus (0.8%). Four of these reads had 0% species-level confidence, while 

Finegoldia magna had 94% species-level confidence. These results demonstrate that 

our laboratory and bioinformatics methods produce extremely low levels of 

contamination from off-target bacterial nucleic acids generated from our reagents. 
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Further consideration of controlling for contaminants would require direct empirical 

measurements of 16S copy number in each sample [71].  

BEI mock community composition 

OTU classification: The 19 distinguishable OTUs in the BEI mock community were 

readily identified and accurately classified (Table 3). All but 3 of the centroid OTU—

including 3 distinct Streptococcus species—were correctly classified to the species 

level. The 3 discrepancies were, however, reflected by low confidence values assigned 

by utax, as well as by clustering of discrepant taxa into the same dbOTU. 

Table 3 Taxonomic classification of BEI* 
Centroids Full-Length Centroids v3-v5 Clustered from v3-v5 truncated reads 

Genus_Species Genus 
Conf 

Species 
Conf 

Genus_Species Genus Conf Species 
Conf 

Genus_Species Genus 
Conf 

Species 
Conf 

A. baumannii 0.9796 0.9392 A. baumannii 0.8784 0.4225 A. baumannii 0.8784 0.4225 

A. odontolyticus 0.9897 0.9392 A. odontolyticus 0.9728 0.6189 A. odontolyticus 0.9728 0.6189 

B. anthracis 0.9876 0.494 B. cereus 0.963 0.4225 B. cereus 0.963 0.3114 

B. vulgatus 0.993 0.9438 B. vulgatus 0.9847 0.897 B. vulgatus 0.9847 0.897 

C. beijerinckii 0.989 0.7194 C. roseum 0.9669 0.4225 C. roseum 0.965 0.3114 

D. radiodurans 0.9935 0.9438 D. radiodurans 1 0.897 D. radiodurans 0.9994 0.897 

E. faecalis 0.9862 0.9392 E. faecalis 0.8784 0.8265 E. faecalis 0.8784 0.8265 

S. flexneri 0.6878 0.494 S. flexneri 0.6661 0.4225 S. flexneri 0.6072 0.3114 

H. pylori 0.9918 0.9346 H. pylori 0.9787 0.9022 H. pylori 0.9787 0.9022 

L. gasseri 0.9928 0.7194 L. gasseri 0.9728 0.4225 L. gasseri 0.9728 0.4225 

L. monocytogenes 0.989 0.7194 L. ivanovii 0.961 0.4225 L. ivanovii 0.961 0.3114 

N. meningitidis 0.973 0.9346 N. meningitidis 0.9533 0.6189 N. meningitidis 0.9533 0.6189 

P. acnes 0.973 0.9575 P. acnes 0.9669 0.9099 P. acnes 0.965 0.9099 
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P. aeruginosa 0.973 0.9346 P. aeruginosa 0.9329 0.6189 P. aeruginosa 0.9329 0.6189 

R. sphaeroides 0.973 0.5993 R. sphaeroides 0.9228 0.4225 R. sphaeroides 0.9228 0.3114 

NA NA NA NA NA NA S. aureus 0.1509 0.0089 

S. epidermidis 0.9869 0.7194 S. epidermidis 0.6661 0.4225 S. epidermidis 0.6661 0.3114 

S. agalactiae 0.9897 0.9483 S. agalactiae 0.9728 0.8996 S. agalactiae 0.9728 0.8996 

S. mutans 0.9918 0.9529 S. mutans 0.9768 0.8996 S. mutans 0.9768 0.8996 

S. pneumoniae 0.9904 0.494 S. pneumoniae 0.9768 0.4225 S. pneumoniae 0.9768 0.4225 

*Classification results from the BEI mock community. The performance of FL16S 
centroid OTU assignments compared to those truncated to V3-V5. The last two columns 
indicate the top 20 most abundant OTU from truncating to V3-V5 prior to clustering.   

 

All 19 centroid OTUs were correctly classified to the family level, with one genus-level 

discrepancy: classification of Escherichia coli as Shigella flexneri. This incorrect 

assignment is not a surprise; indeed, the matching dbOTU contained 54 sequences that 

were assigned to Escherichia, Shigella, Citrobacter, and Salmonella, all genera known 

to have low levels of divergence among their 16S rRNA genes[72, 73]. Two species-

level assignments were incorrect: (a) Bacillus cereus was classified as Bacillus 

anthracis; these two differ by only 2 nucleotides in their 16S genes and share the same 

dbOTU with 8 other Bacillus species; and (b) S. aureus and S. epidermidis—whose 16S 

genes differ by 23 nucleotides—were collapsed into a single OTU, with the centroid 

called S. epidermidis (the matched dbOTU consisted of 39 additional staphylococci, 

though see below). Species-level confidence values were 0.49 and 0.71 respectively. 

By contrast, only one correctly classified OTU, Streptococcus pneumoniae, had a 

species-level confidence value <0.50 and this species shared the same dbOTU with 13 

additional Streptococcus species.  
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Truncation of CCS reads prior to clustering considerably worsened classification; in 

addition to increasing the number of total OTU, CCS reads truncated to their V3-V5 

region prior to clustering resulted in seven misclassified OTU among the top 20 most 

abundant OTU (Table 3). To isolate the effects of truncation on classification alone, 

rather than both clustering and classification, we also truncated the 19 centroid OTU to 

their V3-V5 region and classified these using a utax classifier built from a database of 

sequences also truncated to V3-V5. This showed reduced species-level confidence 

values but also more miscalled taxa (Table 3). These results show that use of FL16S 

gene sequences provides substantially improved taxonomic identification of centroid 

OTU compared to truncated 16S rRNA sequences, to the extent that bacterial 

nomenclature allows. 

For comparison, we used the Greengenes v13_8 database to classify closed-reference 

OTU identified by QIIME2. The resulting classifications were typically at higher 

taxonomic levels and more often incorrect.  For example, using V3-V5 sequence, 5 of 

the top 19 most abundant closed-reference OTUs had species level annotation (S. 

agalactiae, L. seeligeri, C. paraputrificum, S. saprophyticus), but only one of these 

matched a species in the BEI community (S. agalactiae). Greengenes classification with 

FL16S made only two classifications to the species level, both incorrect (S. 

saprophyticus and Alkanindiges illinoisensis). Often classifications were to much higher 

levels (e.g. family Planococcaceae or even the domain bacteria). Taxonomy results 

using QIIME2 are reported in S5 Table, S6 Table, S7 Table, and S8 Table in 

Additional file 2. 
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Relative abundance and sequencing error: The abundance of each OTU was 

estimated by assigning all filtered CCS reads (with no EE threshold) to a centroid OTU 

with a maximum of 3% divergence for a hit to be counted. The twenty bacterial species 

in the BEI mock community were expected to have equimolar abundances of their 16S 

rRNA genes, and for most species, we detected a roughly even mock community 

composition for most species (S10 Figure, Additional File 3). Several were outliers: (a) 

the two Staphylococcus species were binned together as S. epidermidis (as described 

above); (b) Bacteroides vulgatus and Helicobacter pylori were overrepresented, 

especially at high PCR cycle number; and (c) five species were found at lower than 

expected abundances across PCR conditions.  

We next evaluated the impact of (a) chimeric sequences on relative abundance 

measurements and (b) “true” substitution errors.  First, all CCS reads were run through 

uclust with no filters other than requiring >4 CCS passes to identify likely CHIM1 

chimeras, and then all CCS reads were aligned to the 16S reference sequences from 

the BEI community to determine their likely source.  This again found relatively even 

abundances for each taxon with the exception of those mentioned above. Increased 

cycle number also increased the variance among taxa in their relative abundances, but 

the inclusion of chimeric reads had little effect (S11 Figure, Additional File 3).  

Second, the number of base mismatches (excluding gap characters) was calculated 

between each non-chimeric read and its most similar reference sequence, estimating 

the number of “true” substitution errors made during sequencing (though intragenomic 

variation in 16S rRNA gene sequences [74] also contributes to putative substitution 

errors). This analysis indicates that the AccuPrime polymerase made fewer errors than 
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GoTaq polymerase but that errors made by either polymerase were insufficient to inflate 

OTU numbers when using full-length sequence (S12 Figure, Additional File 3).  Initial 

analysis of the number of errors from the E. coli reads suggested that the single 

reference FL16S copy may not have been correct (almost no reads were an exact 

match) (S12A Figure).  

To further examine sequencing error, we investigated sequence variation in FL16S CCS 

reads collected from our E. coli K12 MG1655 monoculture positive control samples. We 

first obtained a finished circular assembly of our lab’s strain by shotgun sequencing on 

the PacBio RSII, and we identified and extracted seven FL16S genes (two were 

identical, but the other all differed slightly). This allowed us to obtain more confident 

estimates of the true error rate in individual CCS reads by globally aligning all 8028 

reads to their closest matching FL16S copy from the genome (S13 Figure, Additional 

File 3). Reads with EE≤1 had considerably lower “true” error rates (mean mismatches = 

3.0, mean gaps =0.8), compared to those with EE>1 (mean mismatches = 5.5, mean 

gaps = 6.0), illustrating an especially dramatic loss of error due to gaps after EE filtering.  

Additionally, we used MED to identify ASVs from multiple alignments of E. coli positive 

controls.  The resulting MED node representatives were aligned with the 16S genes 

identified from our whole genome assembly, and an approximate ML tree shows that 

ASVs correctly segregated with individual genomic 16S copies (S13B Figure, 

Additional File 3). 

Independent analyses of the same BEI mock community by Illumina MiSeq for V3-V5 

have previously found the same taxa elevated or depleted, suggesting that these taxa 

actually are at unequal concentrations in this mock community [75, 76]. The primers we 
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used have perfect identity with all BEI bacterial strains’ reference 16S rRNA gene 

sequences and are distinct from the Illumina-based analyses, so the compositional 

biases seen are not likely to be due to primer choice or PCR conditions [62]. 

Discriminating among closely related sequences: Because using FL16S should 

increase the number of taxonomically and phylogenetically informative sites, we 

reasoned that species whose 16S genes differ by less than the OTU clustering 

threshold would be more easily separated with full-length versus truncated 16S gene 

sequences. Although the two clinically important Staphylococcus species in the BEI 

mock community belonged to the same dbOTU (along with 40 other staphylococcal 

species, and 2 additional genera) and were not separated during de novo OTU 

clustering, they were readily distinguishable in several ways:   

First, direct classification of primer-matched CCS reads from the BEI mock community 

identified only S. aureus and S epidermidis among those classified to the staphylococci 

(1649 from S. aureus and 2501 from S. epidermidis; using unfiltered CCS reads yielded 

0.71% classified to 5 additional staphylococcal species in 32 reads). Thus, direct 

taxonomic classification correctly identified both species in roughly equal proportions.  

Second, we applied MED to identify ASVs for all primer-match CCS reads with EE≤1 

that had been assigned to the Staphylococcus OTU, and the MED node representatives 

were taxonomically classified. MED reduced 3171 CCS reads to 48 nodes (ASVs), and 

representative sequences from each ASV were used to build phylogenetic trees, also 

including all NCBI entries for the staphylococci (Figure 4). The results with FL16S 

sequences show that S. epidermidis and S. aureus and clearly separated from the other 
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staphylococci, as expected, and node representatives classified as each species 

formed clear monophyletic groups (Figure 4A). By contrast, building trees from ASVs 

identified from the V3-V5 truncated reads did not clearly distinguish among 

staphylococcal species, and although in this case the node representatives were 

correctly classified, NCBI entries of other species were intermixed with those of the two 

expected species (Figure 4B).  

These results show that distinguishing among closely related organisms—even when 

sequence differences are insufficient to separate these into distinct OTUs—is strongly 

facilitated by use of FL16S gene sequences, and especially powerful when combined 

with an ASV detection method. 

Figure 4 – Approximate maximum likelihood phylogenetic tree reconstruction of 
staphylococcal 16S sequences representing the ASV nodes identified by MED, along 
with staphylococcal NCBI database entries (midpoint rooting). Each filled tip symbol 
represents a single MED node, and its size represents the number of reads belonging to 
that node. Unfilled symbols indicate NCBI database entries. Color indicates the 
taxonomic assignment for the two expected species with others indicated with grey. A. 
Using FL16S (48 MED node representatives) B. Using truncated V3-V5 16S (33 MED 
node representatives). 

 

CAMI mock community composition 

OTU classification: Because a curated set of FL16S gene sequences was not 

available for the 280 unique bacterial species present in the CAMI mock community, we 

first cross-referenced the the expected bacterial composition (S2 Table, Additional File 

2) with the FL16S gene sequences in the NCBI database, finding one or more full-

length sequences for all but 3 species, for which a taxonomy was available but not a 
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corresponding 16S rRNA gene sequence (Mameliella alba, Fusobacterium naviforme 

and Promicromonospora flava). In addition, 11 species names used by CAMI and NCBI 

were synonyms, due to revisions in species names (particularly members of the 

Clostridiales family, S9 Table, Additional File 2). By cross-referencing the expected 

species with the NCBI dbOTUs, we found the 280 CAMI species would cluster into 253 

OTUs at the 3% divergence level, each associated with a distinct dbOTU (except the 

three missing species). For example, 5 species from the genus Prauserella 

(aidingensis, alba, flava, halophila, salsuginis) existed in the CAMI community, and 

although there was an instance of each of those species in the NCBI database, none of 

these NCBI 16S sequences differed from each other by greater than 3%.  Therefore, 

the expectation was a single OTU associated with the genus Prauserella, which was 

indeed the result. Most of these expected clusters had three or fewer named species in 

their corresponding dbOTU (84.4% of CAMI clusters), but they collectively comprised 

586 distinct species calls in the NCBI database. This clustering allowed us to cross-

reference the centroid OTUs to members of the CAMI community and identify 

ambiguities in the extant taxonomic classification (S9 Table, Additional File 2). 

FL16S gene sequencing by PacBio had exceptionally high specificity and sensitivity for 

identifying the bacterial constituents within the complex CAMI mock community (Figure 

5). The ~16K filtered CCS reads (final yield from one PacBio SMRTcell) clustered into 

227 OTUs (using 6,878 reads at EE ≤1) with 216 unique species names. Of these, 192 

centroid assignments perfectly matched up with an expected cluster in the CAMI 

community, thus giving 89% exact species-level matches with the centroid OTU. 
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Nineteen more centroids could be connected to CAMI-defined clusters, either via a 

dbOTU (13 centroids) or a correct genus-level assignment (6 centroids).  

 

Figure 5 - CAMI mock community composition. Observed count versus expected 
relative abundance, based on matching centroid OTU assignments with expected 
species composition. 
 

Of the 5 remaining OTUs detected by PacBio that did not belong to a CAMI cluster, 2 

could be accounted for with family-level matches to CAMI clusters (the 

Rhodobacteraceae Mameliella alba, absent from the NCBI database, was classified as 

Paracoccus versutus, and Promicromonospora flava was identified as Isoptericola 

variabilis). This left only 3 “false positive” OTUs, which accounted for a total of 7 CCS 

reads.  Two of these misidentifications were species belonging to families represented 

in the CAMI community—the Rhizobiaceaen Agrobacterium larrymoorei (1 CCS read) 

and the Lachnospiraceaen Moryella indoligenes (5 CCS reads)—and one was not 

represented (the Moraxellaeceaen Acinetobacter septicus had a single CCS read).  

Forty expected CAMI clusters were not identified among the centroid OTU (i.e. “false 

negatives”). This was, at least in part, due to under-sampling: The relative abundance of 

16S rRNA genes for most CAMI species was expected to be very low (some well below 

our limit of detection), and all missing CAMI members had expected abundances of 

<1% (Figure 5).  Another potential reason for failure to detect specific taxa would be 

failed amplification due to variation from our universal primers from CAMI community 

members. Since we derived four independent sequencing libraries from the CAMI 

community, each library effectively represented an experimental rarefaction, allowing us 
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to ask how sensitivity was affected in single libraries compared to the total.  On 

average, 20 OTUs were missing from individual libraries (with an average of 3,822 

reads each) that had been captured when the four datasets were combined. Thus, with 

a single SMRTcell, we detected 84.2% of taxa present with 95% species-perfect 

identification, and nearly every single OTU identified by FL16S gene sequencing could 

be attributed to a member of the CAMI community. By contrast, truncating CCS reads 

(or their centroid OTUs) to the V3-V5 region was less accurate and showed lower 

species-level confidence values, as seen above for the database sequences 

themselves (see above and S10 Table, Additional File 2). 

 

Relative abundances in the CAMI mock community: The expected relative 

abundance of each species in the CAMI mock community was accurately reflected by 

the number of reads assigned to each CAMI centroid OTU by usearch (Figure 5, S9 

Table, Additional File 2). The expected relative concentration of each species’ 16S 

rRNA genes in the CAMI community was calculated using: (a) the genome size 

estimated by from de novo assembly of shotgun sequence collected from each CAMI 

accession [77] (S9 Table, Additional File 2), and (b) an estimate of 16S rRNA gene 

copy number using rrnDB [78]. For CAMI species missing from the rrnDB, the lowest 

Linnaean rank with members of the database was determined, and the average 16S 

rRNA copy number of all species under that rank was used (S9 Table, Additional File 

2). Remarkably, we observed a strong linear fit between observed and expected 

abundances (Figure 5, R2 = 0.63), showing that we not only accurately identified the 

species present by centroid OTU, but also accurately quantified their relative 
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abundances, despite the low expected relative abundance of most species’ 16S rRNA 

genes.  

 

Phylogenetic discrimination of species in the same genus within the CAMI 

community: Because the CAMI mock community included 45 multi-species genera (9 

with >3 species), we next asked whether FL16S reads discriminated among species in 

the same genus better than truncated V3-V5 reads. We collected all filtered CCS reads 

that had been classified to a given multi-species genus and produced phylogenetic 

trees from multiple sequence alignments of each genus-specific read set (39 multi-

species genera with at least 5 filtered CCS reads).  

Using these genus-level trees, we next assessed whether the utax-assigned species 

labels for each read formed monophyletic clades using MonoPhy [79] (S11 Table, 

Additional File 2). For most genera—where the species were sufficiently diverged—

trees built from either FL16S or V3-V5 truncated reads performed comparably: For 28 of 

39 genera, all assigned species labels were monophyletic using either FL16S or V3-V5 

reads. Examples of well-resolved genera with either marker gene length included 

Clostridium and Desulfovibrio (S14 Figure, Additional File 3). Five more genera were 

non-monophyletic for an equal number of species using either marker gene length; 

some of this is likely due to poorly resolved species nomenclature. Examples include 

the genera Azotobacter and Nonlabens (S15 Figure, Additional File 3). For the 

remaining six multi-species genera, phylogenies built from FL16S reads showed higher 

monophyletic grouping of species-level classifications than trees built from V3-V5 
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truncated reads. Two prominent examples were closely related species within the 

Algoriphagus and Salegentibacter (S16 Figure, Additional File 3). In Algorophagus, A. 

yeojeoni appears polyphyletic for V3-V5 only, and in Salegentibacter, S. salegens fails 

to resolve from S. salinarum. These results further demonstrate the utility of increasing 

the length of marker gene sequencing to capture more informative sites, thus improving 

phylogenetic resolution of distinct but closely-related members of microbial 

communities.  

 

The composition of the human sinonasal bacterial microbiome 

Rhinosinusitis effects 16% of the US population [80] and accounts for 1 in 5 antibiotic 

prescriptions to adults in the US in the outpatient setting, making it the most common 

diagnosis for outpatient antibiotic use in the U.S. [81].  Thus, a more complete 

understanding of the resident microbial community of the upper respiratory track is 

paramount to improved therapeutic interventions and reduction of inappropriate 

antibiotic prescriptions. Thus, we applied our bacterial microbiome profiling method to 

the human sinonasal cavity. We obtained samples from 12 subjects undergoing pituitary 

gland adenoma removal, utilizing the sinonasal cavity as a surgical corridor for access 

to the gland. None of the total 12 patients examined had objective or subjective findings 

of infectious or inflammatory disorders of their sinonasal complex. In creating a surgical 

corridor for access to the skull base, 6 distinct anatomical locations within the sinonasal 

cavity were sampled by both swab and biopsy (Figure 6, Table 4, S12 Table, 

Additional File 2).   
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Figure 6 - Schematic diagrams in the sagittal and coronal planes of the human 
sinonasal cavity. Surgical access to the sella turcica (pituitary) is shown by the shaded 
arrow.  Sites of sampling for microbiome analysis: deep nasal vestibule swab, deep to 
the vibrissae past the squamous mucosal epithelial junction (A), head of inferior 
turbinate swab (B), middle meatus swab (C), uncinate process biopsy (D), maxillary 
sinus swab (E) and biopsy (F), ethmoid sinus swab (G) and biopsy (H), superior meatus 
swab (I) and biopsy (J), and sphenoid sinus swab (K) and biopsy (L). Figure adapted 
from “Atlas of Endoscopic Sinus and Skull Base Surgery,” ed. Palmer, J.N., Chiu, A.G., 
Adappa N.D. Elsevier, Philadelphia (2013). 
 
 
Table 4 Codes used for Swab/Biopsy sites 

Swabs Biopsies 
Code Site Code Site 
A Nasal Vestibule B Head of Inferior Turbinate Tissue 
C Middle Meatus D Uncinate Process Tissue 
E Maxillary Sinus F Maxillary Sinus Tissue 
G Ethmoid Culture (Deep to 

Ethmoid Bulla) 
H Ethmoid Tissue (Deep to Ethmoid 

Bulla) 
I Superior Meatus J Sphenoethmoidal Recess Tissue 
K Sphenoid L Sphenoid Tissue 

 
 

To determine the bacterial constituents of the human sinonasal microbiome and the 

extent to which it varies among healthy individuals and among distinct sinonasal sites, 

we sequenced FL16S amplicons by PacBio from paired swabs and biopsies at the 6 

anatomical sites from the 12 subjects (S12 Table, Additional File 2, 122 specimens 

total across 12 individuals). No filtered CCS reads were generated from 23 samples, 

primarily from the maxillary sinus (both swabs and biopsies), suggesting little 

colonization of this site by bacteria (Figure 6), and significantly fewer reads were 

collected from biopsy samples than from swab samples, potentially indicating lower 

overall bacterial load compared with the mucosal surface (S3 Figure, Additional File 

3). Filtering, clustering at an EE ≤1, taxonomic assignment, and counts per OTU per 
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sample were conducted as above (counting all filtered CCS reads against all non-

chimera centroid OTU sequences via usearch). Complete information about counts per 

OTU per sample, as well as the taxonomic assignments of each centroid OTU are in 

S13 Table, S14 Table and S15 Table, Additional File 2, and the results for all three 

communities have been incorporated into individual phyloseq objects in Additional File 

5 (BEI), Additional File 6 (CAMI), and Additional File 7 (sino-nasal)[82].  

The overall diversity of the sinonasal microbiomes collected here were relatively low. 

Across all specimens, clustering resulted in a total of 300 OTU (plus 6 centroids that 

were removed before classification by the CHIM2 filter), and the corresponding centroid 

OTU sequences were classified to 271 named species comprising 150 genera.  

Although 300 OTU were detected overall, the top 20 OTU comprised 96.7% of reads 

(Figure 7), and only 61 OTU had >50 read counts summed across all >460K primer-

match CCS reads. As previously seen, the dominant taxa in the sinonasal microbiome 

were Staphylococcus (OTU_2; see below) and Propionibacterium acnes (OTU_1), 

which together comprised 65.2% of all read counts [35]. Three of the top 20 OTU (and 7 

in total) were classified as Anaerococcus octavius, which suggests high variation among 

16S rRNA genes within this species (S17 Figure, Additional File 3).  

Figure 7 – Composition of the sinonasal community. Multiple dots indicate that more 
than one OTU was classified as the same species. A. Overall relative abundance of the 
top 20 most abundant species. B. Number of species observed in 10 or more samples.  
 

We next investigated the relationship between species-level confidence values for each 

centroid and how many species are shared in the same dbOTU (S18 Figure, 
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Additional File 3). This analysis identified several OTU whose centroid assignment 

belonged to a dbOTU with only 1 or 2 species. These may represent other novel or 

poorly described species, or alternatively some may represent problems with the 

taxonomy assignments in the NCBI database.  

MED analysis of filtered CCS reads that had been assigned to the high abundance 

staphylococcal OTU (whose centroid was assigned to S. epidermidis) further 

distinguished among distinct staphylococcal species within the human sinonasal 

samples, and this was improved when using FL16S compared to V3-V5 reads (Figure 

8). The presence within the sinonasal communities of additional close relatives to S. 

aureus and S. epidermidis clarified how V3-V5 truncated reads likely made some 

erroneous assignments, compared to FL16S. For example, examination of the trees in 

Figure 8 suggests that the V3-V5 ASVs for S. capitus and S. cohnii are likely 

misclassified S. epidermidis sequences, and also that the S. hominis ASV detected with 

FL16S reads was likely misclassified as S. lugdunensis with the V3-V5 reads.  

 
 
Figure 8 – Phylogenetic trees of ASVs (MED node representatives) from the human 
sinonasal community belonging to the Staphylococcus OTU, along with staphylococcus 
NCBI database entries. A. FL16S reads and B. V3-V5 truncated reads, as in Figure 4. 
Only species detected in one or both dataset are given a non-grey tip color. 
  
 

Variation in sinonasal microbial communities among subjects and anatomical 

sites 
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Considerable variation in microbial composition was seen among sinonasal specimens, 

ranging from 3 to 56 OTU per sample and from 50 to 108 per subject. The “core” 

sinonasal microbiome consisted of 11 OTU that were present across all 12 subjects, 

whereas most taxa were found in only a few individuals (Figure 7B). For subsequent 

analyses of microbial diversity, absolute counts were normalized to relative abundances 

after first removing low yield samples and rare taxa, though results were qualitatively 

similar even with no filtering.  We set a minimum sample size of 500 read counts, 

reducing the number of samples from 122 to 108 (the number of reads collected per 

sample was highly variable, ranging from 0 to 17,548, mean 3,842 ± 3,229). We also set 

a minimum OTU size of 50 read counts across the whole set of samples, reducing the 

number of taxa to only 59 OTU across the dataset. Though rare taxa may play 

important roles in the sinonasal microbiome, as has been shown in other environments 

[6], in the absence of dense longitudinal sampling, we could not tell whether these were 

resident to the sinonasal passages, transients, or contaminants.  

Overall, the taxonomic profiles across samples were distinctly more similar within-

subjects than within-site, as illustrated by hierarchical clustering and NMDS ordination 

of samples (Figure 9, Figure 10A). This suggests that though the bacterial composition 

varies at distinct sub-anatomical sites, differences in microbial composition among 

individuals is much higher.  

Figure 9 – Heatmap of human sinonasal microbiome from 12 subjects. Columns 
are subjects; rows are species. OTU counts were summed by species-level centroid 
classification, samples with <500 reads were excluded, then species with <0.2% relative 
abundance in all samples were dropped.  Remaining OTU counts were converted to 
relative abundances and then log-transformed after adding a pseudocount (1 / # of 
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reads in sample) before hierarchical clustering, showing strong clustering by subject 
(horizontal colored strip, with different colors indicating the sample’s subject)  
 
Figure 10 – Diversity of the human sinonasal microbiome by patient, site, and 
type. A. NMDS ordination of log-transformed Euclidean distance matrix of relative OTU 
abundances in human sinonasal specimens. Some clustering is observed by patient 
(color), little to no clustering by site (size) or type (shape). B. Box-plot of the variation in 
diversity among sites. The x-axis has all the sites used in the sinonasal community 
sequencing and the y-axis represents the diversity. Coloring is based on the sample 
type, swab or biopsy. C. OTU richness and Shannon’s effective number of OTU. Box-
plot of number of OTUs observed in each patient. The colors are based sample type, 
swab or biopsy. D. Box-plot of Shannon’s effective number of species observed in each 
patient. The colors are based sample type, swab or biopsy.  
 
 

Because many OTU were only found in a subset of specimens, we next examined 

differences in the overall diversity of the samples with respect to subject, anatomical 

site, and whether obtained by swab or biopsy.  Instead of using OTU richness (i.e. the 

total number of OTUs in each sample), we calculated Shannon’s diversity index (which 

accounts for the relative abundance of distinct OTUs). Analysis-of-variance (ANOVA) of 

Shannon’s diversity found that, by far, the most important factor accounting for variation 

in Shannon’s diversity was the subject the sample had come from (Figure 10B, p < 2e-

16). Sample type (swab versus biopsy) showed no significant effect (p=0.116). 

Furthermore, although anatomical site was a significant contributor to the variance, no 

obvious trends were seen; variation among subjects was much higher (Figure 10C, 

p=0.0082). Swab/biopsy pairs from the same site and subject were extremely similar 

(p=0.96), indicating no major shift in bacterial composition between the mucosal layer 

and the tissue immediately beneath, though the latter likely had fewer bacteria overall.  

These findings were robust to changing the filters used, to using genus- or species-level 

classifications, and to reformulating the ANOVA model with different factor orders and 
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interaction terms. Furthermore, these results were not an artifact of undersampling in 

some samples, since there was no correlation between within-sample Shannon’s 

diversity and sample read count (S19 Figure, Additional File 3). A distinct test that 

accounts for undersampled rare taxa may be more appropriate (via the breakaway 

package for R [83]), but due to the relatively low diversity of individual samples, we were 

unable to apply this test due to a requirement of seeing 6 consecutive frequency 

classes was not met in any sample). Overall, these results suggest some underlying 

community structure in the sinonasal cavity, though much of this effect is hidden by the 

much larger differences in overall microbial composition among subjects.  

Finally, to examine whether bacteria might partition differently within the sinonasal 

cavity, we performed ANOVA on transformed relative abundance measurements for 

each OTU. Only a single OTU showed a significant effect by anatomical site 

(Propiniobacterium acnes, p=0.009 after Benjamini-Hochsberg FDR correction), and 

none showed variation by swab versus biopsy. Interestingly, P. acnes was least 

abundant relative to other bacteria in the nasal vestibule (site AB) the largest and most 

aerated part of the sinonasal cavity, whereas its abundance often made up a major 

component of the bacterial signature at other less accessible sites (Figure 10D). 

 

Discussion 

We report a novel high specificity pan-bacterial molecular diagnostic pipeline for 

profiling the bacterial composition of microbiome samples, applying amplification and 

sequencing of full-length 16S rRNA genes (FL16S) with the Pacific Biosciences 
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(PacBio) platform. We exploit circular consensus sequencing (CCS), in which we obtain 

>10 passes on average of each single molecule sequenced, resulting in CCS reads with 

exceptionally high quality. This single molecule correction system is not possible on 

other modern DNA sequencers [19, 84]. Notably, our MCSMRT software is modular and 

can easily provide inputs to well-established and commonly used downstream 

microbiome analysis pipelines (namely QIIME and Mothur) at several points before or 

after OTU clustering, ASV detection, taxonomic assignment, and abundance 

calculations.  

Previous applications of PacBio to sequencing the 16S rRNA gene were initially 

hampered by higher error rates and insufficient polymerase processivity to leverage 

circular consensus sequencing [19, 20]. Subsequent improvements in PacBio 

sequencing chemistry have mostly overcome this [21, 22], and more recent efforts have 

shown the value of FL16S sequencing by PacBio for and identified the major 

considerations needed for handling PacBio instead of Illumina 16S reads [23-25]. This 

work extends and improves upon previous efforts in several ways: 

(1) We provide the flexible MCSMRT pipeline to handle processing, clustering, and 

taxonomic assignment of PacBio 16S reads after first identifying and implementing a 

series of stringent filters that eliminate many sources of sequencing artifacts, in 

particular we show that using only the highest fidelity consensus reads for OTU 

clustering (those with a cumulative expected error, EE, of ≤ 1) effectively eliminates 

over-calling the number of OTU, which has been a pervasive problem in methods using 

shorter partial 16S sequences [56], comparable to recent observations using PacBio 

sequencing of the same BEI mock community as we use here [24].   
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(2) We generated new PacBio FL16S datasets for pipeline development and 

benchmarking, including monoculture controls from two species, low and high 

complexity mock communities, and hundreds of samples from the human sinonasal 

microbiome. 

(3) Because taxonomic assignments remain especially important in the study of human-

associated bacteria, we developed a species-level taxonomic classifier for FL16S. 

To assign taxonomy and confidence values CCS reads, we created a custom-built 

database constructed from all available FL16S sequences at NCBI, since many 

commonly used 16S rRNA gene databases lack species-level classifications or lack 

FL16S genes for many taxa. This allowed us to use a uniform Linneaen hierarchy build 

a classifier that defined FL16S gene sequences to the species level along with 

associated confidence values. Our analysis showed improved accuracy and higher 

confidence when using FL16S sequences compared to partial sequences, which are 

typical when using short-read Illumina MiSeq 16S survey methods that normally capture 

only up to ~500 nt using paired-end sequencing (e.g.[63]). 

(4) We investigated the use of minimum entropy decomposition (MED) to detect 

amplicon sequence variants (ASVs) as a way of distinguishing among closely related 

organisms [45, 85]. This found that decomposing OTUs into ASVs improved 

identification of closely-related species, although the number of ASVs detected 

exceeded that expected within the BEI mock community.  Some of this could be 

attributable to intragenomic variation among 16S rRNA gene copies, as seen with our E. 

coli monoculture positive controls, but we also suspect inflated ASV counts due to the 

particular error profile of CCS reads, which is still biased towards short indel variants, as 
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well as the aggregated effect of true indel variation over the full length of the 16S rRNA 

gene across bacterial diversity. Future work to improve ASV detection from FL16S CCS 

reads via MED and/or DADA2 remains ongoing. 

We tested our experimental and bioinformatics pipeline on two distinct “mock 

communities”, showing that use of high-quality CCS reads from FL16S genes has 

exceptional precision and accuracy at identifying and quantifying the bacteria in 

complex mixtures. Most impressively, we correctly identified most species in the more 

complex CAMI community, making only 3 false identifications represented by only 5 

CCS reads.  Remarkably, we also accurately measured the relative abundance of most 

species in this complex CAMI community, indicating that our pipeline not only has high 

taxonomic specificity but high accuracy for quantitative measures of species abundance 

in complex microbial communities.  Underlining the accuracy and precision of our 

experimental and bioinformatics procedures, 99.81% of filtered reads from monoclonal 

positive control samples were correctly classified to the species level, and 7 

independent negative controls yielded almost no reads that passed our filters. 

Following validation of our pipeline using complex mock communities, we applied 

MCSMRT to the human sinonasal microbiome, finding that the community has a 

relatively low complexity (with 61 OTU at a frequency of >0.1% across samples); 

Staphylococcus  species and Propionibacterium acnes dominated across subjects and 

anatomical sites [35]. Nevertheless, although microbial composition varied much more 

substantially among subjects than among anatomical sites in the same subject, we 

nevertheless observed trends in the overall diversity of different sites, with the easily 

accessible swabs just deep to the nasal vestibule overall reflecting the majority of the 
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healthy sinonasal cavity with the least diverse and least dominated by P. acnes. 

Importantly, we find that swab and biopsy sampling at the same site in the same subject 

have highly correlated microbial composition, indicating that invasive biopsy sampling is 

not needed. The large differences among the sinonasal microbiomes among healthy 

subjects will be of interest in future studies that examine links between sinonasal 

disease states (particularly chronic rhinosinusitis), bacterial composition, and the innate 

immune response [86-93]. Our results also show improved discrimination among closely 

related Staphylococcus species when using FL16S compared to the V3-V5 region 

alone. 

PacBio  remains more expensive than Illumina per read, though the price has dropped 

considerably since the introduction of the Sequel instrument and is expected to drop 

further when higher yield SMRTcells are released. Thus, we expect that the cost trade-

off for higher specificity with PacBio (taxonomic and phylogenetic resolution) over higher 

sensitivity with Illumina (high yields) will rapidly decrease. Our use of primers targeting 

all nine variable regions maximized specificity, but it may also have narrowed the overall 

breadth of bacterial diversity we could capture [94, 95], so future studies will investigate 

primer combinations that maximize both breadth and specificity.  

Our results and others show that increasing the length of marker gene sequencing 

improves the taxonomic and phylogenetic resolution, and we expect that further 

improvements to sequence processing and analysis will greatly enhance methods that 

use ASV detection. We further expect that CCS analysis can expand the scope of other 

marker-based taxonomic and phylogenetic classification schemes, for example, through 

joint single-molecule sequencing of eukaryotic ITS and 18S rRNA genes from fungi to 
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enrich and extend marker-based databases [96]. Beyond marker gene surveys, 

metagenomic shotgun sequencing efforts have shown the massive potential for 

simultaneous profiling of functional gene content and high resolution phylogenetic and 

taxonomic binning. Although these approaches often remain prohibitively expensive for 

profiling many host-associated microbiota and may be less amenable to use in clinical 

diagnostics, we note that metagenomics shotgun assembly and downstream analysis 

could potentially be greatly enhanced by use of high-quality CCS reads. 

 

Methods 

Data Availability 

MCSMRT https://github.com/jpearl01/mcsmrt,  

16S database 

https://drive.google.com/file/d/1UaWvDnVfGOOtL3ld4BOtl5v7H5igB0To/view 

All Sequencing Data as Biosamples (see Additional File 2, Table S4 and S8) 

https://www.ncbi.nlm.nih.gov/sra/ 

OTU Tables, Sample Info, and Trees in Phyloseq objects, see Additional File 5, 6, 7 

 

Ethics statement: Patients were recruited from the Division of Rhinology of the 

Department of Otorhinolaryngology - Head and Neck Surgery at the University of 

Pennsylvania with full approval of the Institutional Review Board (Protocol 800614).   

Informed consent was obtained during the pre-operative clinic visit or in the pre-

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2018. ; https://doi.org/10.1101/338731doi: bioRxiv preprint 

https://github.com/jpearl01/mcsmrt
https://drive.google.com/file/d/1UaWvDnVfGOOtL3ld4BOtl5v7H5igB0To/view
https://www.ncbi.nlm.nih.gov/sra/
https://doi.org/10.1101/338731
http://creativecommons.org/licenses/by/4.0/


 46 

operative waiting room.  Selection criteria for recruitment were patients undergoing 

sinonasal surgery for non-rhinologic disease entities, e.g. pituitary pathology or other 

cranial base pathologies. 

Sinonasal sample collection: Sinonasal samples were obtained from patients 

undergoing sinonasal surgery for non-inflammatory and non-infectious indications 

(predominately pituitary tumors or other skull base neoplastic process) who had not 

received antibiotics in the preceding 8 weeks.  The Institutional Review Board at The 

University of Pennsylvania School of Medicine provided full study approval and 

informed consent was obtained pre-operatively from all patients.  Sinonasal specimens 

were collected as both swabs (S) (BD ESwab collection and transport system) and 

Tissue (T) (placed in MP lysing matrix tubes). Multiple locations in the sinonasal cavity 

were sampled including the nasal vestibule (S), inferior turbinate head (T), uncinate 

process (T), middle meatus (S), maxillary sinus (S)(T), ethmoid sinus (S)(T), superior 

meatus (S), superior turbinate (T), and sphenoid sinus (S)(T) for a maximum of 12 

specimens per patient.  

DNA extractions: Total DNA was isolated from all samples (swabs and biopsies) using 

DNeasy Blood & Tissue Kit (Qiagen) according to the manufacturers recommendations 

with slight modifications. Biopsy material was incubated overnight at 56°C with 570 µl 

ATL lysis buffer with 30 µl Proteinase K in a Lysing Matrix E tube (MP Biomedicals 

LLC), homogenized by SPEX 1600 MiniG (Fisher Sci.) for 10min. at 1500 Hz, and 

centrifuged 1min x 13000 rpm. Swab tubes were treated similarly but initially vortexed 

for 1min. and spun for 10 seconds and incubated for only 5 min. at 56 °C prior to 

homogenization. DNA was eluted with 200 µl of the Elution Buffer. DNA quality, and 
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quantity were analyzed by agarose gel electrophoresis and Nanodrop 2000 

spectrophotometry. 

Control DNA samples: The BEI mock community was obtained through BEI 

Resources, NIAID, NIH as part of the Human Microbiome Project 

(www.beiresources.org):  We used genomic DNA from Microbial Mock Community B 

(Even, Low Concentration), v5.1L, for 16S RNA Gene Sequencing, HM-782D. The 

complex CAMI mock community was obtained from the JGI, which had been 

constructed for the CAMI (Critical Assessment of Metagenomic Interpretation) Hosts 

Community Challenge for Assessing Metagenomes. Human DNA was isolated from the 

U937 lymphoblast lung cell line as an off-target control template. 

FL16S rDNA PCR reactions: Amplifications were performed using 1µl total DNA as 

template, universal 16S primers F27 and R1492 with four sets of asymmetric barcodes 

at 0.25 µM (Table S3) [97, 98], and GoTaq Hot Start Master Mix (Promega) or 

AccuPrime Taq High Fidelity Polymerase with 1µl of 10mM dNTP Mix (Fisher Sci.) in 

50µl final volume. Cycling conditions were: 94°C, 3 min; then 22 or 35 cycles of 94°C 30 

sec, 54°C 30 sec, 72°C 2 min; following by 5 min final elongation at 72°C.  PCR 

products were cleaned with AxyPrep™ MagPCR (Corning Life Sciences) according to 

the manufacturer’s protocol and eluted in 40µl of water. Cleaned PCR products were 

quantified using both using Quant-iT™ dsDNA Assay Kit, high sensitivity (Invitrogen) on 

BioTek™ FLx800™ Microplate Fluorescence Reader, and AccuClear Ultra High 

Sesitivity sDNA Quantitation Kit (Biotium). Based on the results, amplicons were 

normalized to the same concentration prior to pooling amplicons with distinct barcodes 

into multiplexed sets of 2-4 samples per pool. 
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Pacific Biosciences circular consensus sequencing: Library construction used 

Pacific Biosciences (PacBio) SMRTbell™ Template Prep Kit V1 on normalized pooled 

PCR products, and sequencing was performed using the PacBio RS II platform using 

protocol “Procedure & Checklist - 2 kb Template Preparation and Sequencing” (part 

number 001-143-835-06). DNA Polymerase Binding Kit P6 V2 was used for sequencing 

primer annealing and polymerase binding. SMRTbell libraries were loaded on 

SMRTcells V3 at final concentration 0.0125 nM using the MagBead kit. DNA 

Sequencing Reagent V4 was used for sequencing on the PacBio RS II instrument, 

which included MagBead loading and stage start. Movie times were 3 hours for all 

SMRTcells. PacBio sequencing runs were set up using RS Remote PacBio software 

and monitored using RS Dashboard software. Sequencing performance and basic 

statistics were collected using SMRT® Analysis Server v2.3.0.  

Pre-Clustering Pipeline: MCSMRT accepts CCS data from the PacBio RSII 

sequencer, and is divided into pre-clustering and clustering steps (Figure 1, Pre-

clustering Pipeline, Additional File 1).  Sequences were generated using the reads of 

insert (ROI) protocol within Pacific Biosciences SMRT® Analysis Server, reads which 

had 4 or fewer CCS passes were removed. To further filter low quality or off target 

sequences, reads failing 3 filters were removed: (a) CCS reads outside the range of 500 

to 2000 bp, (b) those that aligned to the hg19 human genome with bwa v0.7.10-r789, 

and (c) those that did not match both primer sequences with usearch v8.1.1861 [15, 53]. 

Primer sequences were then trimmed, and reads were oriented 5’ to 3’ with respect to 

16S rRNA transcription.  Venn diagrams defining read filtration subsets were created 

using Venny [99]. 
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OTU clustering, taxonomic classification of centroids, and OTU abundances: 

OTUs were generated using the uparse [41] algorithm in the usearch software, using 

parameters tuned for full-length sequence. In short, reads were de-replicated (and the 

number, or size, of identical sequences tracked in the header), then sorted by 

abundance.  OTUs were iteratively created at a threshold of 3% divergence from any 

other existing OTU centroid sequence (i.e. reads within 97% similarity to an existing 

OTU centroid became a member of an existing cluster; otherwise a new OTU was 

formed with that sequence).   

To obtain a database capable of providing a species-level classification of the full-length 

sequences, all sequences annotated as FL16S genes were downloaded from NCBI in 

Oct. 2015, and taxonomies were inferred from each read’s 16S gid identifier via the 

associated txid.  This newly formatted database contained species-level taxonomic 

information for OTU classification (16S rRNA Microbial Database, Additional File 1).  

Representative OTU sequences were assigned a taxonomy using a utax classifier built 

from this database. 

Chimeric sequences were removed during the clustering process based on previously 

seen OTU centroid sequences (CHIM1 filtering), followed by removal of chimeric 

centroid OTU using uchime to filter the final OTU sequences using the RDP ‘gold’ 

sequences [54].    

OTU abundance was determined using usearch for filtered reads prior to the expected 

error threshold, reported as CCS read counts assigned to each centroid OTU. 16S 

rRNA copy number for the BEI community was estimated from provided quality control 
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data, and OTU abundance by 16S rRNA copy number was calculated in R (Table S1, 

Figure 8).  Expected OTU abundances for the CAMI datasets used the rrndb database 

to obtain a predicted 16S rRNA gene copy number for each taxon, using the mean of 

values at the lowest matching taxonomic level. 

Sub-OTU ordination and phylogenetic methods: A 3% divergence cutoff for OTU 

clustering is commonly used in comparing various partial 16S fragments [6, 10, 100, 

101].  To further examine how individual reads were related to one another, mafft [102] 

alignments of individual genus/species sequences (including sequences from both OTU 

and matching NCBI database) were created.  Pairwise distance matrices from the 

alignments were created using ape v4.1 [103] and seqinr v 3.3-6 [104].  2D non-metric 

multidimensional scaling (NMDS) ordinations and neighbor-joining trees used vegan 

v2.4-0 and ggtree v1.8.1 respectively. Data were visualized using ggplot2 v2.2.1 [105-

107].  Additionally, maximum likelihood  trees (FastTree v2.1.8) were calculated and 

visualized with ggtree [108].  

Ecological analyses of the healthy sinonasal microbiome: Measures of ecological 

diversity (number of species observed, Shannon’s diversity index) were calculated for 

each sample using vegan before and after filtering to eliminate samples with <500 CCS 

reads, and OTU with <50 CCS reads across all samples.  Count tables were 

transformed to relative abundances prior to calculating dissimilarity and distance 

matrices by either Bray-Curtis or Euclidean distance metrics. NMDS ordinations of 

samples were generated with vegan, and heatmaps created using the gplots package 

for R.   
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Other Data: Additional miseq data for the same BEI mock community was acquired 

from [62].  Overlapping paired end reads were joined with COPE, changing default 

parameters to allow for longer overlap (up to 250 base pairs) [109].  Reads were then 

imported into MCSMRT and run through default pipeline. 

List of abbreviations 

BEI - Biological and Emerging Infections Resources Program 
CCS – Circular consensus sequence 
CAMI – Critical Assessment of Metagenome Interpretation 
EE – Expected Error  
JGI – Joint Genome Institute 
MCSMRT – Microbiome Classifier using Single Molecule Real-time Sequencing  
NCBI – National Center for Biotechnology Information 
NIAID - National Institute of Allergy and Infectious Diseases 
NMDS – Non-metric Multidimensional Scaling 
nt - nucleotide 
OTU – Operational Taxonomic Unit 
Pacbio – Pacific Biosciences 
ROI – Reads of Insert  
RDP - Ribosomal Database Project 
rrnDB - Ribosomal RNA Operon Copy Number Database 
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