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Abstract 1 

Skill learning involves the formation of stable motor patterns. In musical and athletic 2 

training, however, these stable motor habits can also impede the attainment of higher 3 

levels of performance. We developed an experimental paradigm to induce a specific 4 

motor pattern in the context of a discrete sequence production task and to investigate 5 

how these habits affect performance over a 3-week training period. Participants initially 6 

practiced small segments of 2 to 3 finger movements (“chunks”) and then learned 7 

longer sequences composed of these chunks. This initial training induced a persistent 8 

temporal pattern during execution, with shorter inter-press-intervals within a chunk and 9 

longer ones at chunk boundaries. This pattern remained stable during the subsequent 10 

10 days of training, in which participants were asked to produce the sequence as fast as 11 

possible from memory. The habit was also preserved when the sequences were directly 12 

displayed, removing the need for memory recall. We were able to induce chunking 13 

patterns that were either beneficial or detrimental to performance by taking into 14 

consideration the biomechanical constraints of the sequences. While we observed an 15 

overall reduction in the detrimental effect of the disadvantageous chunking instructions 16 

with training, our results show that the degree to which these detrimental chunk 17 

structures were maintained, was predictive of lower levels of final performance. In sum, 18 

we were able to induce beneficial and detrimental motor habits in a motor sequence 19 

production task and show that these initial instructions influenced performance 20 

outcomes over a prolonged period of time. 21 

  22 
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Significance Statement 23 

A habit is defined as an automatized action that resists modification once sufficiently 24 

established. Preventing bad habits, while reinforcing good habits, is a key objective 25 

when teaching new motor skills. While habit formation is an integral part of motor skill 26 

acquisition, previous research has focused on habit formation in terms of action 27 

selection. In this paper, we examine habit formation in terms of motor skill execution, 28 

after the action has been selected. We were able to induce beneficial or detrimental 29 

motor habits in the production of motor sequences. Habits were stable over a prolonged 30 

training period. Our results demonstrate how cognitive instruction can lead to persistent 31 

motor habits and we explore how these habits are potentially modified with training. 32 

  33 
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Introduction 34 

What does it take to become an expert at a motor skill such as playing the piano? 35 

Clearly, practice is key. Some have proposed that 10,000 hours of training are 36 

necessary to develop a high level of performance (Ericsson et al., 1993; Hayes, 2013). 37 

However, simply practicing for many hours may not lead to expert performance, as 38 

numerous examples have shown (Haith and Krakauer, 2018). This is sometimes 39 

attributed to the formation of habits: automatic (Hélie, Waldschmidt, & Ashby, 2010; 40 

Moors & De Houwer, 2006) and highly entrenched behavioral patterns that resist 41 

change through retraining (Ashby et al., 2003; Jager, 2003; Seger and Spiering, 2011; 42 

Graybiel and Grafton, 2015; Hardwick et al., 2019).  43 

Animal models have been integral to the study of habit formation and its neural 44 

underpinnings (Jog et al., 1999; Wickens et al., 2007; Smith and Graybiel, 2014, 2016; 45 

Robbins and Costa, 2017). However, the majority of animal experiments investigating 46 

habit formation have focused on habits in the context of action selection – i.e. choosing 47 

what action to perform. In contrast, in this paper we address the question of habits in 48 

motor performance – i.e. habits that influence how to perform a chosen action. For 49 

example, a tennis player could be influenced by a habitual pattern in action selection, 50 

whereby she always chooses a forehand over a backhand to return a serve. At the 51 

same time, she could be influenced by a motor habit, whereby she executes the 52 

forehand without rotating her hips.  53 

Critical to the definition of a habit is that the behavior is maintained even though it 54 

is no longer adaptive (Adams, 1982; Dickinson, 1985; Dezfouli and Balleine, 2012). 55 

Most experiments, therefore, demonstrate the existence of a habit by teaching subjects 56 
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a behavior under one reward contingency and show its persistence when the reward 57 

contingency switches (Ashby et al., 2003; Smith and Graybiel, 2013a).  58 

To investigate the influence of habit formation on motor skill learning we used a 59 

discrete sequence production task (DSP) in which participants performed an explicitly 60 

learned series of finger presses as fast as possible (Verwey, 2001; Abrahamse et al., 61 

2013). Learning in this task depends on both cognitive and motor processes 62 

(Diedrichsen & Kornysheva, 2015; Wong, Lindquist, Haith, & Krakauer, 2015). Initial 63 

performance relies on forming a declarative memory of the sequence that can be 64 

sculpted through explicit instructions (de Kleine & Verwey, 2009; Verwey, Abrahamse, & 65 

Jiménez, 2009) and potentially can constrain subsequent motor optimization (Bo and 66 

Seidler, 2009; Seidler et al., 2012). We tested the hypothesis that the initial instruction 67 

causes the formation of a motor habit which influences the learning of execution-related 68 

skills in subsequent motor training.  69 

We instructed participants to memorize long sequences of finger presses by first 70 

practicing a set of smaller 2-3 digit “chunks” on an isometric keyboard-like device 71 

(Miller, 1956; Verwey, 1996; Verwey and Dronkert, 1996; Halford et al., 1998; Wymbs et 72 

al., 2012). Two different chunk sets were used. Participants were then trained on seven 73 

11-digit sequences. Each sequence was subdivided into chunks (depending on chunk 74 

set) so that boundaries between chunks were either aligned or misaligned with 75 

biomechanically easy or difficult finger transitions. This manipulation influenced initial 76 

performance with sequences learned using the aligned chunk structure being performed 77 

faster. After the introduction phase, participants had to recall the sequences from 78 

memory and practiced them over the course of 3 weeks. 79 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2020. ; https://doi.org/10.1101/338749doi: bioRxiv preprint 

https://doi.org/10.1101/338749
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

We investigated three questions: First, do the initial instructions lead to a stable 80 

motor performance pattern and how long does it persist? Second, to what degree are 81 

these patterns maintained even if they are detrimental to performance? Finally, what 82 

learning-related changes are involved in overcoming motor habits? 83 

Methods 84 

Participants 85 

Forty participants who reported no neurological conditions were recruited for the study 86 

(30 females; ages: 19 to 33). Thirty-two of them were randomly assigned to learn the 87 

sequences with one of the two chunk sets (Figure 1) and the remaining eight 88 

participants were assigned to a control group. All participants were right-handed based 89 

on the Edinburgh Handedness Inventory and completed informed consent. On average, 90 

participants had received 4.68 ( 5.55) years of musical training, with 55% percent 91 

reported having more than 6 months of experience playing the piano. While participants 92 

with piano experience performed the sequences faster than participants with no 93 

experience and the number of practice years correlated with execution speed (MT), the 94 

amount of participants’ prior musical experience did not have a qualitative influence on 95 

participants’ chunking behavior. The study protocol was approved by the ethics board of 96 

the University of Western Ontario. 97 

Apparatus 98 

A custom-built five-finger keyboard was used. The keys were not depressible but were 99 

equipped with a force transducer (FSG-15N1A, Sensing and Control, Honeywell) 100 

underneath each key which measured participants’ isometric force production with a 101 
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repeatability of <0.02 N and a dynamic range of 16 N (Wiestler and Diedrichsen, 2013; 102 

Wiestler et al., 2014; Yokoi et al., 2017). The measured force at each key was digitally 103 

sampled at 200 Hz.  104 

Discrete sequence production task 105 

We used a discrete sequence production task (DSP) in which participants 106 

executed sequences of 2, 3, or 11 keypresses as fast as possible while keeping their 107 

error rate under 15%. Each trial started with the visual presentation of the sequence to 108 

be executed and was completed once the participants pressed the amount of presented 109 

numbers. Each block consisted of 28 trials. A trial was deemed erroneous if participants 110 

pressed a wrong key anywhere within the sequence. No pause between presses was 111 

required and thus some co-articulation between fingers emerged with faster execution. 112 

A keypress was registered when the measured force first exceeded 3N. A key release 113 

was marked when the force measured at the same key first fell below 1.5N. To prevent 114 

participants from pressing more than 2 keys at once, we implemented a constraint such 115 

that in order for a key to be registered as depressed the key previously registered as 116 

depressed had to be released. 117 

The magnitude of the force applied to each key was represented by 5 lines on an 118 

LCD monitor, with the height of the line representing the force at the corresponding key. 119 

A white asterisk (memory-guided conditions) or a digit (cued condition) for each finger 120 

press was presented above the lines. Immediately after the keypress threshold was 121 

reached, participants received visual and auditory feedback. If the correct key was 122 

pressed, the color of the cue changed from white to green and a sound was presented. 123 
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If the incorrect key was pressed, the cue turned red and a lower-pitch sound was 124 

presented. 125 

After each trial participants received points based on their accuracy and 126 

movement time (MT; the time between the first keypress and last key release). Correct 127 

sequences performed faster than the MT threshold (see below) were rewarded with 1 128 

point. MTs that were 20% faster than the threshold were rewarded with 3 points. 129 

Incorrect presses or MTs exceeding the threshold resulted in 0 points. At the end of 130 

each block, participants received feedback on their error rate, median MT, points 131 

obtained during the block, and total points obtained during the session. In order to 132 

motivate participants to continue to improve their performance, we adjusted the MT 133 

threshold by lowering it by 500 ms after each block in which the participants performed 134 

with an error rate of 15% or lower and had a median MT faster than the current 135 

threshold. This manipulation resulted in an approximately stable overall error rate of 136 

14.6%, SD: 2.6%. On 27% of trials, participants received 1 point, on 34% of trials 3 137 

points.  138 

Biomechanical baseline study 139 

To design the chunks and sequences for the main experiment, we conducted a 140 

separate study to determine the influence of biomechanical constraints on finger 141 

transition speed. 7 participants (5 females, ages: 21-27) participated in this 3-day study. 142 

Participants executed all possible two-finger transitions (e.g. 25) and three-finger 143 

transitions (e.g. 125), each 8 times per day. Each sequence was presented twice in a 144 

row. Each day, participants completed 8 blocks with 150 trials each. The setup and 145 

motivational structure were the same as reported above. We found that on our device, 146 
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transitions between two adjacent fingers (e.g. 12) could be performed faster than two 147 

repeated presses of the same finger (e.g. 55; t(6) = 13.965, p = 8.404e-06; Fig. 1). Given 148 

that the 2-3 press sequences hardly taxed the cognitive system, these results can be 149 

taken as a characterization of the biomechanical constraints of our specific task. To 150 

press the same finger twice, the force applied to the key had to first exceed the press 151 

threshold, then go below the release threshold and then cross the press threshold 152 

again. This rapid alternation of forces takes time to produce. In contrast, for two 153 

adjacent fingers, the second finger press can be initiated (have already reached the 154 

press threshold) before the previous finger is released, making it easier to rapidly 155 

produce this force pattern. Even though participants improved their overall speed from 156 

157 ms on the first day to 114 ms on the third day, the 5x5 pattern of relative inter-press 157 

interval (IPI) was stable both across participants (average correlation r = 0.689) and 158 

days (r = 0.894).  159 

 160 

 

Figure 1. Two-finger transition execution speed. 

Biomechanical data from an independent dataset in which participants performed all 

possible combinations of 2 and 3-digit transitions. Matrix indicates the median inter-press 

interval (IPI) to produce the transition between pairs of keypresses. Indicated values are 

means over n=7 participants. 
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Experimental design 161 

To experimentally impose a particular way of chunking, we instructed participants in the 162 

experimental group to memorize and perform a set of 2-3 keypress chunks (Fig. 2a). 163 

These chunks were later combined to form the training sequences (Fig. 2b). Our goal 164 

was to impose beneficial or detrimental motor habits on participants’ performance. For 165 

this, we used the finding from the biomechanical baseline study that finger repetitions 166 

are performed slower than presses of adjacent fingers. We designed sequences such 167 

that they would include both fast transitions (runs e.g. 123) and slow finger repetitions 168 

(e.g. 113). Depending on which chunk structure was instructed, these transitions would 169 

either fall on a chunk boundary or lie within a chunk. In the “aligned” chunk structure we 170 

aligned the boundaries such that they fell on difficult finger transitions, which were 171 

executed slowly for biomechanical reasons. The time required to perform these difficult 172 

finger transitions can therefore simultaneously be used to recall the next chunk, which 173 

should benefit overall performance. Using this chunk structure, the 3-digit “runs” (i.e. 174 

123) which are performed quickly were kept intact (not broken up by a chunk transition). 175 

We predicted that learning the sequence using this chunk structure would be beneficial 176 

to performance speed (Fig. 2c). In the misaligned chunk structure, we placed chunk 177 

boundaries in a way that divided up biomechanically easy finger transitions such as 178 

runs, thereby breaking up parts of the sequence that could otherwise be performed very 179 

quickly. We hypothesized that this would hinder overall performance (Fig. 2c). All 180 

participants practiced the same 7 sequences (Fig. 2b). Half of the participants were 181 

instructed with the aligned chunk structure for the first 3 sequences, and the misaligned 182 

chunk structure for the next 3 sequences (Fig. 2d). For the other half of the participants, 183 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2020. ; https://doi.org/10.1101/338749doi: bioRxiv preprint 

https://doi.org/10.1101/338749
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

the assignment of sequences to aligned and misaligned was reversed. The last 184 

sequence served as a control sequence and was chunked, such that either instruction 185 

should lead to similarly beneficial performance. The counterbalanced design (Fig. 2d) 186 

allowed us to draw strong inferences about whether participants’ performance was 187 

dictated by biomechanical demands (which were identical across participants) or 188 

whether it was affected by the chunk structure imposed during the induction phase 189 

(which was different between the two chunk sets). 190 
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 191 

 

Figure 2. Experimental design. (a) Each participant learned 11 chunks associated with the 

chunk cues (A-K) from one of the chunk sets. (b) The seven 11-digit sequences that 

participants trained on. The vertical lines (not shown to the participants) indicate the chunk 

boundaries induced in training through the chunk set. Sequences were trained with an aligned 

(red) or misaligned (blue) chunk structure. (c) Example sequence containing a 3-digit run and 

two-digit repetitions. In the aligned structure, the chunk boundaries fell between repetitions, in 

the misaligned structure the chunk boundary broke up the run. (d) We counterbalanced 

across participants which sequences were practiced with which chunk structures. (e) 

Experimental timeline depicting the training at each stage. In the induction phase participants 

memorized chunks and sequences. In the optimization phase participants trained to perform 

these sequences as fast as possible from memory. In the last week of training, half of the 

participants were directly cued with the sequence, while the others performed the sequences 

from memory. 
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Every participant completed 15 training sessions in total (Figure 2e): one session 192 

per day across a 3-week period. Each session lasted approximately 1 hour, excluding 193 

the two initial sessions and the last session which each took 2 hours. Participants 194 

completed at least 10 blocks of 28 trials per training day. Each block comprised 4 195 

repetitions of each of the 7 sequences.  196 

Days 1-4: Chunk induction & initial sequence learning 197 

Experimental group: On Day 1 the participants were pre-trained on one of the chunk 198 

sets (Fig. 2a). Each chunk was associated with a letter of the alphabet (A-K). 199 

Participants were explicitly told to learn this association. Each letter A-K was presented 200 

twice in succession. In half of the blocks, on the first trial of each pair, the numbers 201 

corresponding to the finger presses accompanied the letter on the screen, while on the 202 

second trial participants had to recall the presses solely based on the letter (numbers 203 

were replaced with stars). This trial order was reversed on every second block. To 204 

ensure that participants had memorized the chunks we added speeded recall blocks at 205 

the end of days 1 and 2. At the end of the first day, participants could reliably produce 206 

the chunks from memory with an average accuracy of 92.7%. 207 

On day 2 participants trained on the seven 11-press sequences. Each sequence 208 

was associated with a symbol (e.g. $; suppl. Fig. 2b). Each symbol was presented twice 209 

in succession and participants had to perform the sequences from memory using the 210 

symbol cue on one trial or with the help of the chunk letters on the next trial. We tested 211 

participants’ sequence knowledge with a self-paced recall block at the end of days 2-4 212 

(The first two participants did not perform the recall blocks). At the end of day 4, 213 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2020. ; https://doi.org/10.1101/338749doi: bioRxiv preprint 

https://doi.org/10.1101/338749
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

participants were able to recall all sequences from memory using the sequence cues 214 

with an accuracy of 93.1%. 215 

Control group: The control group did not receive any chunk training but instead trained 216 

directly on the seven 11-press sequences. On day 1 they were presented with the 11 217 

digits corresponding to the 11-press sequences. We matched the amount of training 218 

across groups by ensuring that all participants were required to produce the same 219 

overall number of finger presses. On day 1, the control participants were not aware that 220 

they would have to memorize the sequences later on. On days 2-4 they were instructed 221 

to memorize the sequences using the same symbolic sequence cues as the 222 

experimental groups and their memory was tested using recall blocks at the end of each 223 

day (Day 4: 90.2% accuracy). The rest of the experimental design was identical for all 224 

groups. 225 

Days 5-10: Optimization - Memory Recall 226 

On days 5-10 participants practiced exclusively on the eleven-press sequences using 227 

the symbolic cues. Chunks were no longer cued. Each sequence cue was presented 228 

twice in succession and participants had to recall the sequence from memory on both 229 

trials. 230 

Days 11-14: Optimization - Memory recall or cued presentation 231 

On the last four days of training half of the experimental participants performed the 232 

sequences from memory (as on days 5-10), while for the other half and for the control 233 

participants we removed the symbolic sequence cue and instead visually presented 234 

participants with the complete set of 11 digits that corresponded to the sequences (Fig. 235 
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2e). Participants completed an additional generalization test on day 15. The results of 236 

this test are not reported in this article. 237 

Statistical Analysis 238 

We recorded and analyzed the force measured at each key. For each trial, we 239 

calculated movement time (MT, time between the first press and last release) and inter-240 

press-intervals (IPIs; time between force peaks of two consecutive presses). All 241 

analyses were performed using custom-written code in MATLAB (The MathWorks). We 242 

excluded from our analyses trials that contained one or more incorrect presses, as well 243 

as trials with an MT or a press with an IPI three standard deviations above the mean 244 

calculated across all days and participants. The data were analyzed using mixed-effects 245 

analysis of variance (mixed ANOVA), Pearson’s correlation and paired and one-sample 246 

t-tests. All t-tests were two-sided. A probability threshold of p<0.05 for the rejection of 247 

the null hypothesis was used for all statistical tests. For the regression analyses as well 248 

as for calculating the MT difference between the sequences with misaligned and aligned 249 

instruction we subtracted the mean performance for each participant and day (across 250 

sequences) to normalize and remove the large part of the variance due to interindividual 251 

performance differences.  252 

Probabilistic model for estimating chunk structure 253 

To estimate participants’ chunking behavior from IPIs, we used an extended version of 254 

a Bayesian model of chunking behavior, developed by Acuna et al. (2014). The 255 

algorithm uses a Hidden Markov Model to estimate the posterior probability that a 256 

specific chunk structure is present on a given trial. Here we used only the IPIs on 257 
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correct trials, but not the error probability as in the original publication, as the probability 258 

of errors did not relate systematically to the imposed chunk structure early in learning.  259 

As we had 10 digit transitions, each of which could either coincide with a chunk 260 

boundary or not, we had to consider 210-1= 1023 possible chunk structures. Between 261 

trials, the hidden Markov process could either preserve the same chunk structure with 262 

probability p or switch to any other chunk structure with probability (1-p)/1022. The IPIs 263 

were modeled as a Gaussian random variable, with a different mean and variance 264 

depending on whether the keypress transition was within or between chunks. 265 

In contrast to Acuna et al., in which learning effects were removed in a 266 

preprocessing step using a single exponential, we modeled learning within our model 267 

using two separate exponential terms for the IPI mean. This captured the faster 268 

reduction in the between- compared to the within-chunk intervals (Fig. 3a). The 269 

inclusion of separate learning curves for within- and between-chunk IPIs allowed us to 270 

estimate participants’ chunk structure independently of changes in the overall 271 

performance speed (Fig. 5a). This is an important advance over previous methods that 272 

used a constant cutoff value to distinguish between within- and between-chunk 273 

intervals. For these methods, faster performance would automatically decrease the 274 

number of chunk boundaries detected. To confirm that our algorithm did not show this 275 

bias, we simulated artificial data using parameter estimates for individual participants. 276 

We simulated sequences that switched between 4 different chunk structures, each of 277 

which contained 4 chunks. Even though IPIs decreased by about 300 ms with learning, 278 

the estimated average number of chunks remained stable across the entire simulated 279 

experiment (average distance to single chunk: 3.35 ~ 4 chunks and 3 boundaries).  280 
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We used an Expectation-Maximization algorithm to simultaneously estimate the 281 

posterior probability of each chunk structure for each trial, as well as the 9 parameters 282 

of the model: 3 parameters each for the exponential curve for the within- and between-283 

chunk IPIs, 1 variance parameter for each, and the transition probability p (for 284 

implementation details, see https://github.com/jdiedrichsen/chunk_inference. 285 

As a preprocessing step, we regressed the IPIs for each subject against the 286 

average biomechanical profile, which was estimated as the average IPI profile for all 287 

possible 2-digit presses from our biomechanical baseline experiment (Fig. 1). The fitted 288 

values were removed from the IPIs. Removing temporal regularities that could be 289 

modeled with biomechanics alone should result in chunking estimates that more closely 290 

reflect cognitive and learning influences. Qualitatively comparable results were also 291 

obtained using the raw IPIs, without biomechanical factors removed.   292 

Expected distance 293 

We quantified how much participants changed their chunking behavior over time by 294 

calculating the expected distance between their estimated chunk structure and a 295 

reference chunk structure. We defined the distance between two chunk structures, d(i,j), 296 

as how many of the 10 keypress transitions would have to change from a chunk 297 

boundary to a non-boundary (and vice versa) to transform one structure into the other 298 

(for an example, see Fig. 5b). A distance of 0 would indicate no change. The average 299 

distance between two randomly chosen chunk structures is 5. Because chunk 300 

structures produced by participants on each trial were estimates, we calculated the 301 

expected distance. For this, we first calculated a 1023 X 1023 matrix containing the 302 

distances between any chunk structure i, and chunk structure j. From the posterior 303 
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probability distribution, we could then derive how likely each of these chunk structure 304 

changes was, p(i,j). The expected value of the distance was then calculated as  305 

𝐸(𝑑) = ∑ ∑ 𝑝(𝑖, 𝑗)𝑑(𝑖, 𝑗)1023
𝑗=1

1023
𝑖=1 .  306 

Data availability 307 

The datasets generated and analyzed during the current study will be made available 308 

upon publication. 309 

Results 310 

Over 15 days we trained 32 participants to produce sequences of 11 isometric 311 

keypresses from memory on a keyboard-like device. Participants were rewarded with 312 

points for executing sequences as fast as possible while keeping the proportion of 313 

incorrect keypresses in each block of trials below 15%. We maintained the participants’ 314 

motivation by gradually decreasing the movement time (MT) threshold at which they 315 

received points.  316 

 We manipulated how participants memorized the sequences by splitting the 317 

sequences into several chunks, each composed of 2-3 keypresses. The aim was to test 318 

whether the different ways of chunking (hereafter “chunk structures”) imposed through 319 

the chunk training in the induction phase (Methods, Fig. 2b) would affect performance 320 

optimization in the subsequent two weeks of training. Each sequence could be chunked 321 

in an aligned or misaligned fashion, predicted to lead to beneficial or detrimental 322 

performance respectively (Methods, Fig. 2c). All participants practiced the same 7 323 

sequences but differed in the chunking instructions they received for each sequence.  324 
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Chunk induction induces a stable motor pattern 325 

To assess whether the imposed chunk structures influenced participants’ motor 326 

behavior, we examined inter-press time intervals (IPIs). An increased IPI is commonly 327 

taken as a sign of a chunk boundary, as the cognitive processes (memory recall, action 328 

selection) involved in switching from one chunk to another require additional time 329 

(Verwey, 1999; Verwey et al., 2010). Hence, we would expect our participants to exhibit 330 

shorter IPIs between keypresses that belonged to a chunk imposed during day 1 331 

(within-chunk IPIs) and larger IPIs for the boundaries between chunks (between-chunk 332 

IPIs). For this analysis, we pooled the data from all sequences irrespective of instruction 333 

(misaligned vs. aligned). We indeed found significantly longer between-chunk IPIs 334 

compared to within-chunk IPIs in the first few days of training (Fig. 3a: days 2-4: t(31) = 335 

7.728, p = 5.098e-09), suggesting that our manipulation was successful in inducing a 336 

temporally specific pattern of keypresses.  337 

In the optimization phase, we ceased to cue sequences using the alphabetic 338 

letters associated with the chunks. Instead, participants were asked to recall the entire 339 

11-keypress sequences from memory in response to symbolic sequence cues (e.g. “$”). 340 

Across days 5-10, the within and between-chunk IPIs were still significantly different 341 

from each other; t(31) = 7.165, p = 2.351e-08 (Fig. 3a). This difference cannot be 342 

attributed to biomechanical difficulty of the finger transitions, as the within-chunk IPIs for 343 

one half of the participants were the between-chunk IPIs for the other half and vice 344 

versa (Fig. 2b). IPIs that were within-chunk for all participants (e.g. the first and last IPI 345 

of a sequence) were excluded from this analysis. In summary, even though after day 4 346 

we cued the sequences only with symbols, participants persisted in performing the 347 
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sequences consistent with the chunk structures that we experimentally imposed early in 348 

training. 349 

 

In the last four days of training, we tested whether the persistence of the imposed 350 

chunk structure reflected a motor habit or whether it reflected memory recall. Half of the 351 

participants continued to perform the sequences from memory, while the other half were 352 

cued using the numbers that indicated the necessary keypresses (Fig. 2e), therefore 353 

removing any memory recall demands. Both the memory (t(15) = 4.865, p = 2.059e-04, 354 

Fig. 3b) and the cued subgroup (t(15) = 3.403, p = 0.004) showed a significant difference 355 

 

Figure 3. Within- vs. between-chunk inter-press intervals (IPIs). (a) Time 

course of IPIs that were within an instructed chunk (dashed line), or on the 

boundary between chunks (solid line). Asterisks indicate significant 

differences between average within- and between-chunk IPIs in the 

corresponding week (separated by dashed lines). Shaded area denotes 

between-subject standard error. (b) Difference of between- and within-chunk 

IPIs in the last week of training, split by whether participants had to recall the 

sequences from memory or were cued with the sequence numbers. Violin 

plots indicate distribution of individual participants, white circles indicate 

means.  
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between the within- and between-chunk IPIs and there was no reliable difference 356 

between the two subgroups in this effect (t(30) = -0.749, p = 0.460). Thus, removing the 357 

requirement for memory recall did not abolish chunking. Because none of the 358 

subsequent analyses showed any significant difference between the two subgroups, we 359 

will report their combined results for the remainder of the article. Overall, these results 360 

suggest the explicit chunk training early in learning established a stable performance 361 

pattern that outlasted 10 days of subsequent practice.  362 

Misaligned chunk structure impairs performance 363 

To show that the initial instruction led to the emergence of a motor habit, we needed to 364 

not only show that this initial instruction induced a stable temporal pattern of IPIs, but 365 

also that this pattern was maintained even when it leads to slower execution speeds 366 

than other patterns. We therefore designed chunk structures that were predicted to be 367 

either beneficial or detrimental to performance (aligned vs. misaligned respectively) 368 

based on their biomechanical constraints (see Methods). Each participant learned 3 of 369 

the 7 sequences with a misaligned chunk structure and 3 sequences with an aligned 370 

chunk structure, with the assignment counterbalanced across participants (Fig. 2d). This 371 

counterbalanced design allowed us to compare execution speed between aligned and 372 

misaligned sequences for each participant. 373 

To test our prediction that training with the misaligned chunk structure would lead 374 

to poorer performance, we measured participants’ movement time (MT) by estimating 375 

the time between the first finger press and the last finger release. In the induction 376 

phase, sequences instructed with the misaligned chunk structure were performed 377 

slower than the sequences instructed with the aligned chunk structure (Fig. 4a) one-378 
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sample t-test: t(31) = 2.693, p = 0.006). Hence, we were not only able to manipulate how 379 

participants performed a sequence, but also how well they could perform it. 380 

Examining what factors influenced the difference in speed we observed, we 381 

found that on average a within-chunk finger run led to an advantage of 28.6 ms and a 382 

within-chunk repetition cost 16 ms. An additional factor that influenced participants' 383 

speed was whether the 2-digit chunk was placed in the beginning (misaligned) or the 384 

end of the sequence (aligned), which led to an advantage of 24.7 ms. The difference in 385 

MT found in the first week was maintained in the second week of training (days 5-10: 386 

t(31) = 2.313, p = 0.014). Importantly, this shows that the stable pattern of IPIs indeed 387 

constitutes a motor habit. This speed difference was no longer statistically reliable in the 388 

last four days of training (days 11-14: t(31) = 0.764, p = 0.225). This suggests that 389 

participants were able to overcome the “bad” habit of a misaligned chunk structure to 390 

some degree. 391 
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Misaligned chunk structure is changed more rapidly 392 

To investigate how participants overcame the detrimental influence of the misaligned 393 

chunk structure, we first separated the IPI analysis (Fig. 3a) by whether the intervals 394 

came from sequences that were instructed using an aligned or misaligned structure. 395 

While the difference between within- and between-chunk IPIs for sequences 396 

constructed using aligned chunk structures was stable over the entire training period, 397 

the difference was absent for misaligned chunk structures in the last four days of 398 

training (Fig. 4b). The three-way day x within/between x aligned/misaligned interaction 399 

was significant (F(12,372) = 19.790, p = 1e-16). Thus, in the last four days of training 400 

 

Figure 4. Change in chunk structure and performance for aligned and 

misaligned instructed sequences. (a) Differences in movement time (MT) 

between sequences instructed with an aligned or misaligned chunk structure. 

Asterisk indicates a significant difference from 0 (no difference). (b) Within- or 

between-chunk IPIs across training days, separated by whether they were in the 

aligned or misaligned instructed sequences. Error bars denote between-subject 

standard error. 
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participants diverged from the misaligned chunk structure while maintaining the aligned 401 

chunk structure.  402 

A disadvantage of this analysis, however, is that we cannot discern how 403 

participants restructured their chunking and whether they completely abandoned the 404 

misaligned chunk structure. For a clearer understanding of how participants changed 405 

their chunk structure, we used a model-based approach to analyze our IPI data.  406 

Bayesian model of chunk behavior 407 

We used a Bayesian model to estimate the probability of each possible chunk structure 408 

given the observed series of IPIs on a trial-by-trial basis (Acuna et al., 2014). The state 409 

variable in this Hidden Markov Model represents which of the 1023 possible chunk 410 

structures is present on each trial. Using an expectation-maximization (EM) algorithm 411 

(Dempster et al., 1977; Welch, 2003), we simultaneously estimated the 9 free 412 

parameters of the model (for details see Methods), and the posterior probability for each 413 

possible chunk structure on each trial. We accounted for the effects of biomechanical 414 

difficulty by regressing out the patterns of IPIs across finger transitions predicted from 415 

our biomechanical dataset (Fig. 1) before modeling. Importantly, our model could 416 

capture separate learning-related changes to the within- and between-chunk intervals 417 

(Fig. 5a). Our method, therefore, allowed us to estimate participants’ chunk structure 418 

independently of the overall speed of performance.  419 

Figure 5b shows two examples of individual participants and sequences. In the 420 

first panel, the participant chunked the sequence according to the initial instructions at 421 

first, then inserted 1 or 2 additional chunk boundaries, and at the end of training 422 
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performed the sequence as a single chunk. In comparison, the other participant 423 

maintained the instructed chunk structure for most of the training period.  424 

 

 

Figure 5. Probabilistic chunking model fitted to example participant data. (a) 

The change of within- and between-chunk IPIs were modeled using two separate 

exponential functions across training. The density plot shows individual IPIs, with the 

color indicating the probability of a between- (pink) or within-chunk interval (blue). (b) 

Posterior probability for two example participants (for one sequence per participant) 

over the course of the experiment. Only the 4 most likely chunk structures out of the 

1023 possible structures are shown. The color scale indicates the posterior probability 

of a given chunk structure for each trial - with yellow indicating higher probabilities. 

The dashed vertical lines indicate the boundaries between training phases (Days 2-4; 

5-10 & 11-14). The black box (left) indicates the chunk boundaries as white lines 

within the 11-press sequence (max. 10 boundaries) for the chosen chunk structures. 

The first row indicates the instructed chunk structure (arrow). The other three rows 

illustrate other chunk structures that were highly probable at some point during the 

experiment. The distance measure expresses how many chunks need to be added or 

removed to transform one structure (in this case the instructed chunk structure) into 

the other.  
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To characterize changes in chunk structure over training we defined a metric that 425 

quantified the difference between any two chunking structures. The metric is based on 426 

counting the number of chunk boundaries that differ, in other words, the number of 427 

chunks that would need to be split or merged to transform one chunk structure into the 428 

other (Fig. 5b - distance). We then used this measure to calculate, on each trial, the 429 

distance between the chunk structure estimated for the participant and three reference 430 

structures of interest: (1) the aligned-, (2) misaligned, and (3) a structure that consisted 431 

of a single chunk. These distances defined a coordinate system that enabled us to 432 

visualize changes in chunk structure over training. We then projected participants’ 433 

estimated chunk structures into this space (Fig. 6a). On the horizontal axis is the 434 

expected distance of participants’ chunk structure to the single-chunk structure. Given 435 

our definition of distance, this measure simply counts the number of chunk boundaries. 436 

The vertical axis indicates how close the estimated chunk structure is to the aligned and 437 

misaligned chunk structure, respectively. 438 
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 439 

 

Figure 6. Changes in chunk structure with learning. (a) The average chunk 

structure over 13 days of practice for aligned (red) and misaligned (blue) instructed 

sequences for the experimental participants. The results of the control group are 

shown in green. The horizontal axis represents the distance to the single-chunk 

structure, i.e. the number of chunk boundaries. The vertical axis shows the distance to 

the aligned or misaligned chunk structure. The crosses indicate the positions of the 

three reference structures (aligned, misaligned and single). Ellipses denote the 

between-subject standard error. (b) Average distance of participants’ chunk structure 

to the instructed chunk structure. (c) Distance to the single chunk structure across 

days. (d) Day-by-day changes in chunk structure. (e) Trial-by-trial changes in chunk 

structures within each day. Error bars indicate between-subject standard error. 
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Participants abandoned the misaligned faster than aligned chunk structure  440 

Using this modeling approach, we probed how much participants diverged from the 441 

initial instructions and whether they diverged from the misaligned chunk structure to a 442 

greater degree as already suggested by our IPI analysis. Participants slowly changed 443 

their chunk structure for both aligned and misaligned instructed sequences with training. 444 

The average distance to the instructed chunk structure increased systematically over 445 

time (repeated measures ANOVA, effect of day, F(12,372) = 7.055, p < 1e-16, Fig. 6b).  446 

Consistent with our IPI analysis (Fig. 4b), we observed that participants 447 

abandoned the instructed misaligned chunk structure to a greater degree than the 448 

aligned chunk structure (Day x Instruction interaction: F(12,372) = 5.610, p < 1e-16). In the 449 

last four days of training, sequences with the misaligned chunk structure were more 450 

dissimilar to the instructed chunk structure than sequences with an aligned chunk 451 

structure: t(31) = 2.294, p = 0.029 (Fig. 6b). Additionally, we found a significant Day x 452 

Instruction interaction (F(12,372) = 2.215, p = 0.011) for the distance to a single chunk 453 

(Fig. 6c), suggesting a stronger tendency towards performing a sequence as a single 454 

chunk when trained on the misaligned chunk structure. Together these results indicate 455 

that participants changed their chunking behavior more readily for sequences that were 456 

trained using the misaligned chunk structure than when trained using the aligned chunk 457 

structure. 458 

 Despite the divergence from the misaligned chunk structure with training, our 459 

analysis also revealed that participants did not overcome the influence of the instruction 460 

completely. In the third week, sequences trained with a misaligned chunk structure were 461 

still performed using a chunk structure that was closer to the misaligned structure than 462 
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to the aligned structure (t(31) = 6.962, p < 1e-16). This shows that training with a 463 

misaligned chunk structure had a lasting influence on participants’ motor behavior. 464 

Movement towards a single chunk structure 465 

Previous literature has suggested that with training, participants group smaller chunks 466 

together to form new larger chunks (Verwey, 1996; Sakai et al., 2003; Kuriyama et al., 467 

2004; Verstynen et al., 2012; Wymbs et al., 2012; Song and Cohen, 2014; Ramkumar 468 

et al., 2016), a process that may help to improve performance (Verwey, 1999, 2001; 469 

Verwey et al., 2010; Abrahamse et al., 2013; Verwey and Wright, 2014; Ramkumar et 470 

al., 2016). However, in nearly all previous studies the estimated number of chunks is 471 

biased by the overall movement speed. As verified by simulations (see Methods), our 472 

probabilistic model was able to disambiguate the two factors. We estimated the number 473 

of chunk boundaries for each participant averaged across sequences (the neutral 474 

sequence was excluded). On the 2nd day, participants separated sequences into more 475 

chunks than the 4 chunks we instructed (Fig. 6c, t(31) = 4.224, p = 0.0002). This 476 

tendency continued on day 3, on which participants tended to subdivide the sequences 477 

into even smaller chunks (day 2 vs. 3: t(31) = 2.023, p = 0.052). After day three the 478 

number of chunk boundaries decreased as shown by a significant effect of day in a 479 

repeated measures ANOVA (F(11,341) = 11.710, p < 1e-16). However, even in the last 480 

phase of training, participants performed the sequences with an average of 2.9 chunk 481 

boundaries (we instructed 3 chunk boundaries). Thus, while there was a clear tendency 482 

towards merging chunks after an initial increase, participants did not perform the 483 

sequence as a single chunk, even after 3 weeks of practice. 484 
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Chunk structure crystallizes with training 485 

Would longer training allow participants to completely overcome the influence of the 486 

instruction and to perform all sequences as a single chunk? Although experiments with 487 

longer training are necessary to provide a definitive answer, our data indicate that this 488 

process, if occurring, may take a very long time. The amount of change in the chunk 489 

structure for each sequence reduced dramatically in the last week of training, 490 

suggesting that a stable motor habit formed. This phenomenon is akin to the 491 

development of an invariant temporal and spectral structure in bird-song, a process that 492 

has been termed “crystallization” (Brainard and Doupe, 2002). As a measure of 493 

crystallization, we calculated the distance between the chunk structures from one day to 494 

the next (Fig. 6d) and within each day from one trial to the next (Fig. 6e). The analysis 495 

was performed separately for each sequence and participant. Overall, both the day-to-496 

day distance (F(11,330) = 18.794, p < 1e-16) and the trial-by-trial distance decreased 497 

significantly across training days  (F(12,456) = 13.245, p < 1e-16). Therefore, participants 498 

appeared to settle onto a stable pattern in the last week. Consequently, additional 499 

training would likely only lead to slow changes in their chunk pattern.  500 

In summary, our analyses provide a clear representation of how chunking 501 

changes with learning. Firstly, participants diverged from the instructions over time with 502 

a quicker deviation from the misaligned chunk structure. Secondly, in line with previous 503 

research (Verwey, 1996; Sakai et al., 2003; Kuriyama et al., 2004; Verstynen et al., 504 

2012; Wymbs et al., 2012; Song and Cohen, 2014; Ramkumar et al., 2016) participants 505 

gradually moved towards performing the sequence as a single chunk by dividing the 506 

sequence into fewer chunks. Nevertheless, they did not completely overcome the initial 507 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2020. ; https://doi.org/10.1101/338749doi: bioRxiv preprint 

https://doi.org/10.1101/338749
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

instruction, nor did they perform the sequences as a single chunk at the end of training. 508 

Considering that the chunk structure crystallized in the last four days of training, these 509 

results demonstrate the formation of a stable motor habit that is still influenced by the 510 

initial instruction.  511 

Spontaneously emerging chunk structures 512 

To investigate how participants might spontaneously chunk the sequences, we tested 513 

an additional control group (N=8), who did not receive any explicit chunk training. 514 

Participants were presented with the sequences in entirety on the first day and were 515 

asked to memorize them without any reference to chunks (see Methods for details). 516 

Even though memorization was more difficult, the control group did not differ 517 

significantly from the experimental groups in terms of their explicit knowledge on day 4 518 

(t(36) = 1.288, p = 0.206), or in their overall MT across training (main effect of group: 519 

F(1,38) = 0.101, p =  0.753; interaction between group and day (F(1,38) = 1.387, p =  520 

0.168). 521 

Similar to the experimental groups, the control group initially subdivided the 522 

sequences into small chunks and then slowly combined them into larger chunks. The 523 

distance to a single chunk structure decreased significantly over days (F(12,84) = 17.977, 524 

p < 1e-16, Fig. 6a), and reached a level that was not statistically different from the 525 

experimental participants on the last day of training (t(38) = -0.940, p = 0.353). 526 

Interestingly, on the first day, the control group performed the sequences closer to the 527 

misaligned chunk structure than to the aligned chunk structure (t(7) = -2.799, p = 0.027). 528 

With training, participants then moved closer to the aligned chunk structure, as indicated 529 

by a significant change in the difference between the distance to the aligned and 530 
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misaligned chunk structure across days (F(12,84) = 5.303, p < 1e-16). The control group 531 

also showed clear crystallization over time (see Figure 6d&e). Compared to the 532 

experimental groups, control participants showed a higher day-to-day and trial-by-trial 533 

change in the beginning of training, which then reduced more quickly (Group x Day 534 

interaction; day-to-day: F(11,330) = 3.780, p = 4.003e-05; trial-by-trial: F(12,456) = 4.254, p = 535 

2.167e-06). In summary, the control group showed similar behavioral patterns to the 536 

experimental participants, indicating that similar processes of habit formation are also at 537 

play in the absence of explicit instructions.  538 

Idiosyncratic chunk structures at the end of training and their importance to 539 

performance 540 

Finally, we analyzed how the final chunk structure that participants adopted for each 541 

sequence influenced their performance after 3 weeks of training. We visualized this 542 

relationship by plotting the chunk structure for each sequence and participant in the 2-543 

dimensional space defined in earlier Fig. 6a, with the corresponding average MT 544 

indicated by the size of the symbol (Fig. 7).  545 

 The first insight is that participants used quite diverse chunk structures. To show 546 

that this is not due to within-subject variability of performance, we compared 547 

participants’ within-subject variation in IPI patterns for each sequence across even and 548 

odd trials (in the last three days of training) to the between-subject variation in IPI 549 

patterns for each sequence. We found that the between-subject variability was much 550 

higher than the within-subject variability (t(31) = 36.130, p < 1e-16). This clearly shows 551 

that participants developed their own, idiosyncratic way of chunking each sequence, 552 

which is not fully dictated by the biomechanical requirements of the sequence. With this 553 
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result in mind, we asked whether these individual differences relate to differences in 554 

final performance. 555 

 556 

Figure 7 suggests, that performance was better for sequences that were closer to the 557 

aligned chunk structure. To statistically test whether this finding holds true within each 558 

individual, we regressed the MT for 6 sequences (last 4 days & excluding the control 559 

sequence) for each participant in the last four days of training against the corresponding 560 

distance to the aligned chunk structure. On average the individual slopes were 561 

 

Figure 7. Relationship between chunking 

and speed (days 11-14). The x-axis indicates 

the distance to a single chunk and the y-axis 

the relative distance to the two instructed 

chunk structures. Each data point indicates 

the average chunk structure and MT of a 

single sequence and participant in the last 

four days of training. The diameter of each 

circle represents the MT with larger circles 

indicating slower performance.  
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significantly greater than 0, both for the experimental (Fig. 8a; t(31) = 2.220, p = 0.017), 562 

and control group (Fig. 8b, t(7) = 2.720, p = 0.015). Thus, finding a better way of 563 

chunking (for the same number of chunk boundaries) improved performance.  564 

Secondly, Fig. 7 also suggests, that performing the sequence with a reduced 565 

number of chunks is beneficial for performance. We regressed the MT for 6 sequences 566 

(last 4 days & excluding the control sequence) against the corresponding distance to 567 

the single chunk structure to (Fig. 8c). The majority of the participants showed a positive 568 

relationship between the number of chunks and MT: a one-sample t-test indicated that 569 

the individual slopes were significantly greater than 0 (t(31) = 6.104, p = 4.560e-07). This 570 

relationship was also found for the control participants (Fig. 8d, t(7) = 3.429, p = 0.006). 571 

Thus, performing the sequences with fewer chunks led to better performance. Note that 572 

for both analyses, the chunk structure can be determined independently from the overall 573 

performance criterion (MT, see Methods). 574 
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Overall, these results suggest that the two optimization processes - joining 575 

chunks and aligning the remaining chunk boundaries with biomechanical constraints - 576 

 

Figure 8. Relationship between the distance to the aligned/single chunk 

structure and MT. (a) Scatterplot between the normalized (per subj.) 

distance to the aligned chunk structure and normalized MT in the last four 

days of practice. A separate regression line is fitted to the 6 sequences for 

each participant. Red dots indicate sequences with aligned instructions, blue 

dots sequences with misaligned chunking instructions. (b) Same as a but for 

the control group. (c&d) same as a & b but for the normalized distance to a 

single chunk. 
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positively influenced participants’ ultimate performance. Sequences for which 577 

participants could not develop a better way of chunking were performed substantially 578 

slower.   579 

Discussion 580 

In this study, we utilized chunking as a tool to investigate the role of motor habits in skill 581 

learning. We influenced the structure of the initial declarative sequence representation 582 

by manipulating how participants memorized them (Park, Wilde, & Shea, 2004). By 583 

experimentally imposing two different chunk structures on the same physical sequence, 584 

we could make causal inferences about the effects of cognitive chunking on motor skill 585 

development. This is an important advance over previous observational studies (Wright 586 

et al., 2010; Wymbs et al., 2012; Ramkumar et al., 2016), which did not experimentally 587 

control how participants chose to chunk sequences.  588 

We report three main results. First, consistent with previous studies (de Kleine & 589 

Verwey, 2009; Verwey et al., 2010, 2009; Verwey & Dronkert, 1996), our data 590 

demonstrate that a stable chunking pattern can be induced through cognitive 591 

manipulations during the initial stages of sequence learning. Importantly, participants 592 

did not completely overcome this imposed chunk structure, even after 2 weeks of 593 

additional training. Participants’ chunk structure crystallized towards the end of training, 594 

making it unlikely that the influence of the initial instruction would disappear completely 595 

with longer practice. Finally, the chunking structure remained stable, even when the 596 

task changed from a memory-guided to a stimulus-guided task. Thus, the initial 597 

instruction led to the formation of specific motor patterns that were still clearly 598 

measurable after three weeks of training.  599 
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Second, we tested whether this stable pattern of chunking could be considered a 600 

motor habit. To do so, we designed two different ways of instructing the sequence, one 601 

aligned and the other misaligned with biomechanical influences. This manipulation 602 

either facilitated or impeded performance in the first two weeks of practice. We showed 603 

that participants did not overcome the misaligned structure completely, even though it 604 

was detrimental to their performance. Thus, the stable chunking pattern meets the 605 

requirements (as laid out in our definition) for being called a motor habit. Therefore, we 606 

believe that studying sequential chunking can provide valuable insights into the neural 607 

systems underlying motor habits. Indeed, it has recently been suggested that chunking 608 

plays an integral role in the formation and expression of habits (Dezfouli, Lingawi, & 609 

Balleine, 2014; Graybiel, 2008) and is neurally represented in the dorsal lateral striatum 610 

as action “start and stop signals” (Barnes, Kubota, Hu, Jin, & Graybiel, 2005; Graybiel, 611 

1998; Jin, Tecuapetla, & Costa, 2014; Smith & Graybiel, 2013a, 2014). 612 

Finally, our results also indicate that the motor habit was not completely 613 

immutable. Participants were able to modify the misaligned chunk structure and did so 614 

more rapidly than the aligned chunk structure. As a consequence, the performance 615 

detriment imposed by the misaligned instruction was no longer significant on the group 616 

level in the last week of training.  617 

We identified two ways in which participants overcame the limitation induced by 618 

the bad habit. After initially breaking up the instructed sequences into 5 chunks on 619 

average, participants then joined chunks together, and by doing so, decreasing the 620 

amount of additional time spent on chunk boundaries. While previous research has 621 

suggested that the size of chunks increases with training, these findings were usually 622 
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conflated with the overall speed of the action (Wymbs et al., 2012; Song and Cohen, 623 

2014; Solopchuk et al., 2016). Using a Bayesian model to assess chunk structure 624 

independent of performance, we demonstrated a positive relationship between chunk 625 

concatenation and execution speed, both in the experimental as well as in the control 626 

group that developed a chunking strategy without explicit instructions. However, our 627 

results also indicate that participants did not merge all sequences into a single chunk 628 

after 3 weeks of training, but on average subdivided each sequence into 3-4 chunks. 629 

This suggests that the number of motor actions that can be joined in a single chunk may 630 

be limited (Verwey et al., 2002; Verwey and Eikelboom, 2003; Langan and Seidler, 631 

2011; Ramkumar et al., 2016).   632 

We found that participants also optimized performance by rearranging chunk 633 

boundaries in a biomechanically efficient manner. Consistent with our prediction based 634 

on the difficulty of individual digit transitions, placing chunk boundaries at digit 635 

transitions that take more time to execute and combining finger presses that are 636 

adjacent resulted in faster performance for the full sequence. This optimization process 637 

was also observable in the control group that memorized and practiced sequences on 638 

their own terms.  639 

Conversely, we observed that sequences that were not chunked in line with 640 

these strategies were performed slower. Therefore, if a more beneficial way of chunking 641 

was not found, participants still produced sequences using longer movement times, 642 

suggesting that other learning mechanisms did not fully make up for a persistent motor 643 

habit. Considering that participants’ behavior became highly invariant in the last week of 644 
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practice, we predict that some motor habit will remain and continue to influence 645 

participants’ performance even after prolonged training.  646 

In many motor tasks, there are numerous strategies and processes that can lead 647 

to excellent performance (Verwey et al., 2010; Verstynen et al., 2012). Examining 648 

Figure 7, one can observe that the shortest MTs were achieved anywhere in the space 649 

between the aligned and single chunk structure. Occasionally, good performance was 650 

also reached in other locations in chunk space. Our analysis showed that participants 651 

adopted quite idiosyncratic chunk structures for each sequence at the end of training. 652 

This suggests that there is considerable inter-individual variability in which technique 653 

works best for reaching a high level of performance. Part of these differences may 654 

reflect biomechanical variation across participants, leading to slightly different optimal 655 

solutions. Alternatively, these differences may be learning-related. A number of ways of 656 

chunking may work approximately equally well, such that the cost of changing an 657 

established habit may outweigh the small benefit that could be gained from changing 658 

the structure. A similar observation can be made in sports, where even top-ranked 659 

athletes use slightly different techniques to reach similar levels of performance.  660 

The establishment of a novel experimental paradigm to study motor habit 661 

formation will allow us to explore ways to encourage learners to abandon or change a 662 

current habit. While our attempt at accelerating this process by changing the task from a 663 

memory-based to a stimulus-based task was ultimately not successful, there are many 664 

other techniques that would be possible. In many disciplines, teachers have developed 665 

ways to help students overcome habits. For instance, the Hanon piano exercise helps 666 

students play difficult passages of a musical piece by breaking up learned phrases into 667 
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new chunks to explore different rhythms. Playing a passage slower than intended has 668 

also been suggested to break habits (Chang, 2016). Overall, the general advice from 669 

the diverse literature on learning piano is to diversify training and to practice with careful 670 

awareness to prevent habits from forming (Sadnicka et al., 2017). This suggests that 671 

changes in context and the exploration of novel ways of moving can aid performance 672 

and the abandonment of habits. 673 

While our experimental design enabled us to manipulate participants’ habits in a 674 

laboratory setting, sequence learning only captures a specific aspect of motor skill 675 

acquisition. Nevertheless, similar persistence of habits has been observed in other 676 

motor learning paradigms (Diedrichsen, White, Newman, & Lally, 2010). In bimanual 677 

coordination, for instance, Park, Dijkstra and Sternard (2013) showed that an acquired 678 

pattern stayed remarkably stable even over 8 years of not performing the task.  679 

The current study shows that motor habits can be cognitively induced and can 680 

remain stable for extended time periods, even though they may prevent further 681 

performance gains. Furthermore, the study provides the first insights into potential 682 

learning processes that are involved in overcoming a detrimental habit. Our 683 

experimental paradigm allows the further study of how we can aid the abandonment of 684 

bad habits.  685 

  686 
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