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The accurate prediction of RNA secondary structure from primary sequence has had enormous
impact on research from the past forty years. While many algorithms are available to make these
predictions, the inclusion of non-nested loops, termed pseudoknots, still poses challenges. Here,
we describe a new method to compute the entire free energy landscape of secondary structures
of RNA resulting from a primary RNA sequence, by combining a polymer physics model for the
entropy of pseudoknots with exhaustive enumeration of the set of possible structures. Our polymer
physics model can address arbitrarily complex pseudoknots and has only two free loop entropy
parameters that correspond to concrete physical quantities, over an order of magnitude fewer than
even the sparsest state-of-the-art algorithms. Our model outperforms previously published methods
in predicting pseudoknots, while performing on par with current methods in the prediction of non-
pseudoknotted structures. For RNA sequences of ∼ 45 nucleotides, or ∼ 90 with minimal heuristics,
the complete enumeration of possible secondary structures can be accomplished quickly despite the
NP-complete nature of the problem.

RNA molecules play physiological roles that extend far
beyond translation. In human cells, most RNA molecules
are not translated [1]. Non-coding RNAs interact func-
tionally with mRNA [2], DNA [3], and proteins [4], and
can be as large as > 200 nucleotides (ntds) [5, 6]. How-
ever, a substantial fraction are < 40 ntds in length, in-
cluding miRNAs and siRNAs, which serve as regulators
for the translation of mRNA [2, 7], and piRNAs which
form RNA-protein complexes to regulate the germlines
of mammals [8]. The in vitro evolution of RNA, espe-
cially through SELEX [9–11], has led to an explosion of
applications for short RNA molecules, due their ability
to tightly and specifically bind to a remarkable range of
target ligands [12].

Overwhelmingly, the properties of short non-coding
RNA molecules are tied to their three-dimensional, or
tertiary, structures [5, 13–16]. Such structures are formed
because of the energetic favorability of bonds between
complementary nucleotides (primarily A to U, C to G,
and G to U). However, these bonds impose an en-
tropic cost; therefore, the conformations most frequently
adopted balance the energetic gain of maximal base-
pairing with the entropic cost of structural constraints.
In equilibrium, the RNA adopts each possible structure
with Boltzmann weighted probabilities.

Because of the relevance of RNA structure to func-
tion [17, 18], current research aims to predict the min-
imum free energy structures given the sequence. Algo-
rithms typically predict “secondary structure”, a list of
the base pairings [19]. The early Pipas-McMahon RNA
structure prediction algorithm sought to completely enu-
merate and evaluate the free energy of all possible sec-
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ondary structures, thereby constructing the entire energy
landscape [20]. This NP-complete approach was quickly
supplanted by dynamic programming, which has since
dominated RNA structure prediction [21–25]. These
algorithms efficiently consider an enormous number of
structures without explicitly generating them, by itera-
tively finding the optimal structure for subsequences [26].

However, such algorithms have difficulty predicting
RNA secondary structures that include pseudoknots, i.e.
structural elements with at least two non-nested base
pairs (see Fig. S1A for an example) that make up roughly
1.4% of base pairs [26] and are overrepresented in func-
tionally important regions [27] of RNA. Pseudoknots are
disallowed from the most popular RNA structure predic-
tion algorithms (e.g. Refs. [28–30]) due to computational
cost; indeed, structural prediction including all pseudo-
knots has been shown to be NP-complete [31–33]. Sig-
nificant advances have been made with heuristics, which
do not guarantee finding the minimum free energy struc-
ture [34–38], and by disallowing all but a narrow class of
pseudoknots [39–46].

A major challenge for predicting pseudoknotted struc-
tures is the relative lack of experimental data [47]. Thus,
up until recently, theoretical approaches have largely
been limited to simple H-type pseudoknots [39, 45, 48,
49]. A recent strategy uses machine-learning of large
experimental datasets [45, 50, 51]. Although these ap-
proaches can be useful, they come with the disadvantages
of compounding possible experimental errors, and often
using an enormous number of parameters which can ham-
per generalizability. A sketch of a theoretical description
of pseudoknot entropies based on polymer physics was
developed by Isambert and Siggia [34, 52]; however, their
derivations have not been published.

In this study, we demonstrate that for short RNA se-
quences, it is possible to exactly solve for the probabil-
ity that the RNA will fold into any given structure, in-
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FIG. 1: Schematic overview of the algorithm. Given an RNA sequence, the algorithm first enumerates all potential stems
(sequences of base pairs) which can form. It then searches for all possible combinations of stems, such that no nucleotide is
paired with more than one other, thus forming all possible secondary structures. For each structure, it calculates the free
energy, which is comprised of a bond energy term and an entropy term. The histogram of free energies for the sequence shown
is plotted with an arrow pointing to the Minimum Free Energy (MFE). Given the entire free energy landscape, the algorithm
calculates the probability of any arbitrary secondary structure of forming in equilibrium. Finally, we coarse grain over similar
structures described by the same topology (described in Section III), arriving at a probability distribution for every possible
topology forming in equilibrium.

cluding those with pseudoknots. Complete enumeration
of the RNA structure landscape is feasible even for bi-
ologically relevant RNA sequences (Section I). Our ap-
proach combines a method based on the work of Isambert
and Siggia (Section II) with a novel graph-theoretical
depiction of the RNA (Section III) to exactly calculate
the entropy of each structure, treating both pseudoknot-
ted and non-pseudoknotted RNA structures equivalently.
The entropies of structures of arbitrary complexity can
be analytically computed with just two experimentally
derived physical parameters: the persistence length of
single-stranded RNA, and the volume within which two
RNA nucelotides are considered bound. This represents
an enormous parameter reduction compared to state-
of-the-art algorithms like the Cao-Chen or Dirks-Pierce
models, which have 258 and 11 parameters, respectively,
for H-type pseudoknots alone, and ∼ 18 parameters for
non-pseudoknotted loops [51]. We test our model pre-
dictions on molecules from the RNAStrand [53], Pseu-
doBase++ [54], and CompraRNA [55] databases and find
good agreement with experimental results (Section IV).
Although we fit our entropy model to data from non-
pseudoknotted structures, we find that our model outper-
forms previously published methods in predicting pseu-
doknots, while performing on par with current methods
in the prediction of non-pseudoknotted structures.

I. ENUMERATING RNA STRUCTURES

The Pipas-McMahon algorithm [20] first enumerates
all possible secondary structures for a given sequence
(sans pseudoknots), and then evaluates the free energy
for each, to construct the entire free energy landscape
for non-pseudoknotted structures. A major shortcom-
ing is the significant computer time required for long se-
quences. However, the exponential increase in computer
power over the past forty years, coupled with increased
appreciation for the physiological and engineering rele-
vance of short RNA strands suggest revisiting this ap-
proach. In this section, we describe the process by which
we exhaustively enumerate the secondary structures into
which an arbitrary given sequence can fold. We first num-
ber the nucleotide sequence from 1 to N from the 5’ end.
We define an N×N symmetric matrix B which describes
which nucleotides can bind to each other: Bi,j = 1 if nu-
cleotides i and j can bind to make base pair i · j (i.e.
they belong to the set {(A,U), (C,G), (G,U)}), and 0
otherwise.

Next, we search for all possible stems (strings of con-
secutive base pairs) that could form. We define a param-
eter m to be the minimum allowed stem length (m ≥ 1;
m = 1 throughout unless otherwise specified). We
also impose the physical constraint that hairpins (single-
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stranded region connecting one end of a stem) have a
minimum length of 3 nucleotides. We include not only
the longest possible stems that can form, but all con-
tiguous subsets of those stems [56, 57]. We denote the
number of stems found by Nstems.

We next define the Nstems ×Nstems symmetric com-
patibility matrix C, where Cp,q = 1 if a structure could
be made with both stems p and q (Cq,q = 1 ∀ q). We
impose the constraint that each nucleotide may be paired
with, at most, one other nucleotide by setting Cp,q = 0
if stems p and q share at least one nucleotide.

Finally, we explicitly enumerate the remaining possible
secondary structures by identifying all compatible com-
binations of stems. Starting from a single stem s1, we
consider stems s2 where 1 ≤ s1 < s2 ≤ Nstems and add
the first stem for which Cs1,s2 = 1. Then, we repeat the
process, adding the first stem s3 > s2 compatible with
both s1 and s2, and so forth, continuing until we can add
no more stems. We add the resulting structure, com-
posed of say M stems, to the list of possible structures,
then remove the last stem added (to obtain the structure
composed of stems s1, s2, ... , sM−1) and continue the
process. This algorithm returns all possible secondary
structures resulting from the primary sequence.

The algorithm described here was implemented
in MatLab and all code is available on the GitHub
repository https://github.com/ofer-kimchi/
RNA-FE-Landscape.

Having completely enumerated the possible secondary
structures, we calculate the probabilities that the RNA
will fold into each of them by calculating their free ener-
gies.

II. CALCULATING FREE ENERGIES

The probability of the RNA sequence folding into a
given equilibrium structure σ is given by the Boltzmann
factor

p(σ) = exp (−βFσ)/Z (1)

where β = 1/kBT (T is the temperature and kB is Boltz-
mann’s constant), and the partition function, Z, is de-
fined such that the probability distribution is normalized:∑
σ p(σ) = 1. Here Fσ, the free energy of structure σ,

is a function of the energy Eσ and entropy Sσ of the
structure:

∆F = ∆E − T∆S (2)

where we drop the subscripts for notational convenience
and introduce ∆s to signify that free energies are mea-
sured with respect to the free chain. We separate the free
energy calculation into the free energy of stems and the
free energy of loops.

A. Calculating bond energies

We make the simplifying assumption that the energy
∆E in Eq. (2) is determined solely by the base pairs
in the structure, ignoring higher order corrections to
the energy. Thus, each stem, s, contributes an energy
∆Es such that ∆E =

∑
s ∆Es. To calculate the terms

∆Es, we consider nearest-neighbor interactions among
base pairs [58]. Previous work has shown it reasonable
to include (whenever appropriate) the contribution of
unpaired nucleotides on both sides of each stem in the
nearest-neighbor terms for the first and last base pairs
of the stem [25]. Specifically, we used tabulated parame-
ters for ∆H from Refs. [50, 59, 60], well documented by
Turner and Mathews in the Nearest Neighbor Database
[61]. Our entropy model (described below) was used in
place of the entropies of hairpin, bulge, internal, and
multibranch loops and we set the enthalpy terms of these
loops (aside from nearest-neighbor interactions) to zero;
we did not consider mismatch-mediated coaxial stack-
ing, symmetry penalties or penalties for specific closures
of stems; and we implemented coaxial stacking terms in
place of terminal mismatches or dangling ends whenever
possible in multibranch loops.

B. Calculating entropies

Entropies are calculated as being comprised of two
independent parts: the entropic cost of forming stems
and the entropic cost of forming loops, such that ∆S =
∆Sloops +

∑
stems ∆Sstem.

The entropies of stems represent the entropy lost when
an RNA forms base pairs. This entropy is considered in
the same fashion as the energetic parameters (each ener-
getic parameter has an accompanying entropic parame-
ter). Therefore, as for the energies, the entropic param-
eters consider pairwise RNA base pair interactions, and
∆Sstem thus depends on the specific nucleotides compris-
ing the stem. In contrast, we make the approximation
that ∆Sloops is independent of the identities of the nu-
cleotides comprising the single-stranded regions.

III. CALCULATING LOOP ENTROPIES: RNA
FEYNMAN DIAGRAMS

We model single-stranded regions comprised of x un-
paired nucleotides (ntds) as a random walk of (x + 1)/b
steps, where b ≈ 2.4 ntds is the Kuhn length of single
stranded RNA [34, 62]. Since the entropic cost of form-
ing base pairs has already been considered in ∆Sstem, for
the purposes of calculating ∆Sloops we consider stems
as rigid rods. This approximation is justified because of
the extremely long persistence length of double-stranded
RNA (∼ 200 ntds [63]) compared to both single-stranded
RNA and the length of any stem we consider.
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FIG. 2: vs estimated from experimental data. Experi-
mental estimates for the free energy of hairpin loops of length
s from Table 1 of Ref. [64] were converted to entropy esti-
mates (blue points and error bars) by assuming ∆H = 0 as in
Ref. [25]. These data were fit to Eq. (6), yielding an estimate
of vs = 0.0201 ± 0.0036 ntds3.

The entropy of a single-stranded region of length si
is given by kB logωi(si), where ωi(si) is the number of
ways of arranging the region consistent with the topol-
ogy of the overall structure. Defining Ω(s) as the total
number of conformations a random walk of length s can
take, for a free chain, ω = Ω. For structures which in-
clude constraints, ω(si) = Ω(si)× p(si), where p(si) is
the probability that the random walk of length si will
yield a conformation consistent with the topology of the
overall structure being considered. Since free energies are
measured relative to the free chain, factors of Ω cancel
out in equations for ∆Sloops (see further discussion in
Section S3). The entropy of the single-stranded regions
in a given structure is thus given by

∆Sloops =
∑
i

kB log p(si), (3)

where si is the number of nucleotides in the ith single-
stranded region. The sum is generally over non-
independent terms; we will describe how to address these
sums via a Feynman diagram-like approach in this sec-
tion.

As demonstrated in Eq. (3), the physics of the situa-
tion are held in p(s), which is best calculated by consider-
ing the end-to-end vector of the random walk undergone
by the single-stranded RNA, as

p(s) =

∫
~R consistent with overall structure

Ps(~R)d~R, (4)

where we define Ps(~R)d~R as the probability of a random

walk of length s to have end-to-end vector ~R:

Ps(~R) =

(
3

2πsb

)3/2

exp

(
−3R2

2sb

)
. (5)

We have assumed s� b in order to arrive at the Gaussian
formula above through the central limit theorem. The
mean of the Gaussian is zero by symmetry. In order to
find the variance we first consider a single step of length
b in three dimensions which has variance in the x, y, and
z coordinates of b2/3 by symmetry. For a random walk
of N = s/b steps, by independence of subsequent steps,
the total variance is equal to Nb2/3 = sb/3, leading to
Eq. (5).

As described in Section S5 of the supplement, we can
systematically consider higher order corrections to Eq.
(5) while maintaining its Gaussian nature. Eq. (5) is ac-
curate for non-self-avoiding random walks; self-avoiding
random walks cannot be treated analytically in this way.
However, for sufficiently short walks, the probability of
self-interaction is low. While the accuracy of the assump-
tion s� b does not always hold in the problems consid-
ered, we ultimately find very good agreement between
results using Eq. (5) and experiment, and that correc-
tions to Eq. (5) as described in Section S5 are negligible.

In order to demonstrate how Eqs. 3 - 5 are applied, we
first consider the simple hairpin loop. Following Jacobson
and Stockmayer [65], we allow that base pairing can occur
as long as the two nucleotides are within a small volume
vs = 4π

∫ rs
0
R2dR of one another, where rs roughly cor-

responds to the bond length.1 We assume that rs is small

enough that for all |~R| ≤ rs, Ps(~R) ≈ Ps(~0). Therefore,
Eqs. 3 - 5 yield

∆Sclosed-net-0 = kB

[
log (vs) +

3

2
log

(
3

2πsb

)]
. (6)

We have called the LHS of the equation Sclosed-net-0 (the
zero references the lack of stems enclosed by the loop)
following [34, 52] (rather than, say, Shairpin) to empha-
size that this formula is applicable to hairpin loops, bulge
loops, internal loops, and multiloops – all of which can be
thought of as closed loops of RNA. Aside from the appro-
priate inclusion of vs terms to account for the finite and
variable width of RNA stems, RNA stems are treated as
having negligible width by performing the approximation

Ps(|~R| < rs) ≈ Ps(0).
We estimate vs by fitting experimental measurements

of the entropy of hairpin loops of variable lengths to
Eq. (6). Although Eq. (6) implies that the entropy
of a hairpin should increase monotonically as a function

1 More generally, we can define a probability q(~R) of a nucleotide

at the origin being base paired with a nucleotide a vector ~R away.
Then, vs is defined as vs =

∫
d~R q(~R) and rs is the value of |~R|

for which q(~R) is non-negligible.
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FIG. 3: RNA Feynman Diagrams. (A): The Canoni-
cal Pseudoknot An instance of the canonical H-type pseu-
doknot. Bold lines represent the RNA backbone; thin lines
represent Hydrogen bonds. The entropy of this structure can
be calculated by converting it to a graph format as shown
in RHS of panel. The nodes of the graph represent the first
and last base pairs of each stem, and two types of edges rep-
resent single- and double-stranded RNA. The graph directly
represents the integral in Eq. (7). (B): Graph Decompo-
sition. The entropy of a sample RNA structure (top left)
can be computed by converting the structure to a graph as
defined in the text (top right). The graph directly represents
the integrals necessary to compute the entropy. Separable in-
tegrals are represented by graphs which can be disconnected
by the removal of any one edge (bottom right). Thus, once
appropriate factors of vs are included (one for each stem in
the original structure), the entropy of the structure in ques-
tion is given by (bottom left) the sum of four closed-nets-0
(originating from the three hairpins and multiloop) and one
open-net-0.

of its length, the experimental measurements are non-
monotonic, and their nonmonotonicity exceeds the er-
ror bars [64]. This non-monotonicity may be due to en-
thalpic effects [66] which were neglected in our analysis
following Ref. [25]. Nevertheless, Fig. 2 shows that Eq.
(6) gives a reasonable fit to the experimental data with
vs = 0.0201 ± 0.0036 ntds3.2 If one ignores all angular

2 A more precise definition of vs might include a dependence on the
closing base pairs of the hairpin loop; we expect that the penal-
ties placed on specific closing base pairs and first mismatches in

dependences of bond formation, this leads to a naive un-
derestimate of the length of a hydrogen bond of 0.56 Å,
which nonetheless is well within an order of magnitude
of the true length of hydrogen bonds.

Finally, we consider pseudoknots. To calculate the en-
tropy of a pseudoknot of arbitrary complexity we invent
a novel graph formulation inspired by Feynman diagrams
from quantum field theory. First, the RNA structure be-
ing considered is translated into a graph. Nodes are used
to represent the two end points of a stem, and two types
of edges represent single- and double-stranded RNA.

Defined in this way, the graph of the RNA structure
directly represents the integrals necessary to compute
its entropy. The positions of the nodes are integrated
over all of space, while the constraints of the struc-
ture are included in the integrand: a double-stranded
edge of length l between nodes i and j leads to a term
vsδ(|~ri−~rj |−l)/4πl2, and a single-stranded edge of length
s between these nodes leads to a term Ps(~ri − ~rj) in the
integrand. Note that two bonded nucleotides in isolation
are considered a stem of length l→ 0.

As a concrete example, we consider the canonical H-
type pseudoknot, an instance of which is shown in Fig.
3A (LHS). As we described, its conformational entropy
can be calculated by translating the structure into a
graph (Fig. 3A RHS), where each node represents the
edge of a stem; blue edges represent regions of double-
stranded RNA of length li; red edges represent regions
of single-stranded RNA of length si. For example, here,
s3 = 5 ntds, and l1 = 3 ntds. We set the origin of our co-
ordinate system to node 0 and call the distance between
node i and the origin ri. Integrating over the possible
placements of nodes 1-3 (while including the constraints
of the structure in the integrand as described previously)
we obtain the following Gaussian integral formulation of
the entropy:

e∆S/kB = v2
s

∫
d~r1

∫
d~r2

∫
d~r3

δ(|~r1| − l1)

4πl21
×

δ(|~r3 − ~r2| − l2)

4πl22
Ps1(~r3 − ~r1)Ps2(~r2 − ~r1)Ps3(~r2) (7)

where using the assumption s � b, we allow the inte-
grals to extend over all of space. A more comprehensive
derivation of this formula, including the origin of the vs
terms, can be found in Section S4. This integral can be
calculated analytically (Sec. S5) [34].

Graphs that can be disconnected by the removal of any
one edge correspond to separable integrals, and thus to
distinct motifs in the RNA structure. The decomposi-
tion of a structure into its component graphs is depicted
in Fig. 3B for a classical cloverleaf RNA. The RNA in

e.g. Refs. [64] and [25] play a similar role, though such penalties
were not included here.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 4, 2018. ; https://doi.org/10.1101/338921doi: bioRxiv preprint 

https://doi.org/10.1101/338921


6

FIG. 4: Summary statistics for comparison to other prediction tools. To assess the relative success of our algorithm, we
compare its performance to that of 14 other current prediction tools: RNAFold [29, 67], ViennaRNA (Andronescu parameters)
[68], Mfold [28], CONTRAFold [69], PPfold [70], CentroidFold [71], ContextFold [72], HotKnots (Dirks-Pierce parameters),
HotKnots (Rivas-Eddy parameters), HotKnots (Cao-Chen parameters) [51], ProbKnot [37], pknots [39], RNAPKplex [29, 67],
and ILM [35]. We measure sensitivity, PPV, the fraction of topologies predicted correctly by the MFE structure, the average
per-base topology accuracy (defined in the main text), and the proportion of the time the MFE structure contains a pseudoknot.
We separate the results for sequences which form into pseudoknots and those which don’t. Error bars show the standard error.
Despite the fact that our algorithm requires only two parameters to describe the entropy of any arbitrary secondary structure (at
least an order of magnitude – and often several – fewer than the other algorithms tested against), and that the parameters were
trained on non-pseudoknotted structures, our algorithm outperforms the other algorithms tested in predicting pseudoknotted
structures, and performs on par with them in predicting non-pseudoknotted structures. See main text for further discussion.

question decomposes into four instances of closed-net-0
(originating from the three hairpins and multiloop) and
one instance of an open-net-0, or free chain (which by
definition does not affect the entropy). As shown in the
figure, once appropriate factors of vs are included in the
integrals (one for each stem) the stems can be treated
as having negligible width; thus, nodes which can be re-
moved without changing the topology can be removed
in the graph decomposition process. See Section S4 for
further discussion.

In Fig. S2 we display all possible graphs of up to two
stems and their respective RNA structures. As in Fig.
3, single-stranded edges are displayed with red; double-
stranded with blue. For each graph, the integral formu-
lation of its entropy is displayed in the figure alongside
what it evaluates to.

IV. COMPARISON WITH PUBLISHED TOOLS

We use experimentally determined structures to com-
pare the predictions of our model with other current
methods; results are shown in Fig. 4. For sequences

of length ≤ 80 ntds from the RNAStrand [53], Pseu-
doBase++ [54], and CompraRNA [55] databases (186
non-pseudoknotted structures with 58 different topolo-
gies; 235 pseudoknotted structures with 52 different
topologies) which had a sequence dissimilarity ≥ 0.2 (us-
ing Jukes-Cantor) we measured the number of base pairs
correctly predicted by our algorithm’s MFE structure
compared to fourteen other current algorithms. Seven
of these cannot predict pseudoknots and serve as useful
benchmarks for the non-pseudoknotted results, (detailed
methods in Section S1).

While the entropy model presented here can give an
integral expression for arbitrarily complex pseudoknots,
the integral may need to be solved numerically for suf-
ficiently complex structures. For this large-scale com-
parison we disallowed pseudoknots more complex than
those displayed in Fig. S2, and our algorithm therefore
did not require any numerical integration. We similarly
disallowed parallel stems which can be stable in neutral
and acidic pH conditions [73]. We also set the minimum
stem length for each sequence (m) to the minimum value
it could take such that the total number of possible stems
is less than Nmax

stems = 150. These choices were all made to
speed up computation time; each sequence took between
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several seconds and ∼ an hour to run on a MacBook
Pro 2012 laptop. Details of the computation time of our
algorithm can be found in Fig. S4.

While these practical constraints were chosen to speed
up the computation time, they also led to errors in the al-
gorithm’s predictions. 64 of the tested pseudoknots were
topologically more complex than any of those presented
in Fig. S2. Furthermore, 33 of the non-pseudoknotted
sequences tested (and 8 of the pseudoknotted) include
base pairs outside of those allowed by the algorithm (A·U,
G·C, and G·U). Removing such structures from our com-
parison analysis leads to our algorithm performing even
better compared to current tools (see Fig. S3).

Further errors were due to our choice of m, which
was not optimized and was too high compared to the
length of the shortest stem in the experimental struc-
ture for 58 non-pseudoknotted cases and 54 pseudoknot-
ted. By changing Nmax

stems from 150 to 200, these num-
bers decreased to 46 for both pseudoknotted and non-
pseudoknotted sequences, but the results for Nmax

stems =
200 were practically identical to the results of Fig. 4 (see
full results in Supplementary Table 1). For Nmax

stems = 200,
the computation time was increased significantly (to∼ 17
hours for one sequence).

The sensitivity (TP/TP + FN) and PPV (TP/TP +
FP ) of our algorithm were measured to be 0.80 and 0.75
for the non-pseudoknotted cases, and 0.75 and 0.76 for
the pseudoknotted cases, respectively. Our algorithm
outperformed all other prediction tools tested for the pre-
diction of pseudoknots, and on par with other tools in the
prediction of non-pseudoknotted sequences. The full re-
sults can be found in Supplementary Table S1.

While sensitivity and PPV are the most common met-
rics used to establish the success of an RNA prediction
algorithm [74], we sought to develop a test that measures
success on the scale of the full RNA, rather than on the
scale of individual base pairs. To this end, we measured
how frequently each algorithm was able to correctly pre-
dict the topology of the experimentally measured struc-
ture, where the topology of a structure is defined by its
graph (Section III). We found for our algorithm that
the experimental topology is within the top 1, 5, and 10
topologies at frequencies of (49%, 65%, and 70%) for non-
pseudoknotted structures, and (34%, 59%, and 62%) for
pseudoknotted, demonstrating a sharp increase between
top 1 and top 5, and a plateau between top 5 and top 10.

Considering whether an algorithm correctly predicts
the full topology can lead to errors arising from small
variations in structure. For example, the opening of a
single bond on the edge of a stem can lead to a different
topology as we’ve defined it, if that stem includes one of
the ends of the molecule. In order to arrive at a per-base
measure of topology, we consider for each bond along the
RNA backbone to which of the minimal graphs of Fig.
S2 it belongs. For example, the bond between the sec-
ond and third nucleotides of Fig. 3A belong to a stem
of an open-net-2a graph. We then measure for each se-
quence the fraction of correct per-base topology predic-

FIG. 5: Probability of folding into a pseudoknot. The
predicted probability of each of the 421 sequences tested fold-
ing into a pseudoknot is presented. Of these sequences, 186
were experimentally found not to form pseudoknots (blue)
and 235 were found to form pseudoknots (red). Our algo-
rithm successfully predicts pseudoknots forming in the latter
category far more frequently than in the former. For figure
clarity, a lower bound of pseudoknot probability was set at
2 × 10−10.

tions made by each algorithm’s predicted MFE structure.
We find that our algorithm averages an 76% per-base
topology prediction accuracy for non-pseudoknotted se-
quences, and a 49% accuracy for pseudoknotted.

Finally, we compare how frequently each algorithm
predicts an MFE structure containing a pseudoknot.
Our algorithm correctly predicted 174/235 pseudoknots
among the pseudoknotted cases, far more than any other
algorithm tested. However, it also erroneously pre-
dicted 35/186 incorrect pseudoknots among the non-
pseudoknotted cases. We have found that the proba-
bility of predicting pseudoknots can be significantly de-
creased with minor changes in the Turner parameters
energy function, and these parameters may need to be
re-examined in order to be used most effectively with the
entropy model presented here.

Our algorithm also provides the probability of folding
into a pseudoknotted structure for each sequence. These
data for the 421 sequences tested are presented in Fig.
5. Each datapoint represents a different sequence and
the total probability calculated of that sequence folding
into a pseudoknotted structure. For figure clarity, a lower
bound of pseudoknot probability was set at 2× 10−10.

The algorithm’s predictions for the six longest RNA
molecules less than 89 ntds in length from the Pseu-
dobase++ database are presented in Fig. 6. We consid-
ered only those sequences whose structure was directly
supported by experiments and which could be decom-
posed into the minimal topologies shown in Fig. S2. We
display the experimental structure (green background)
alongside the MFE predicted structure (light blue back-
ground) and the top six predicted topologies (out of sev-
eral hundred, depending on the sequence; dark blue)
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FIG. 6: Comparison to experiments for long sequences. Six long sequences were chosen from the Pseudobase++
database as described in the main text. The sequences are derived from (starting from the top left and moving across):
tobacco mosaic virus [75–77], Bacillus subtilis, [78], tobacco mild green mosaic virus [76, 79], Bacilis subtilis [80], Giardiavirus
[81], and Visna-Maedi virus [82]. We show the experimental structure (green background) and the MFE predicted structure
(light blue background) plotted using the PseudoViewer software [83]. We also display the top six topologies (out of several
hundred, depending on the particular sequence) and their respective predicted probabilities, with the topology corresponding
to the experimental structure highlighted in purple. Overall, our results demonstrate successful predictions even for these long
pseudoknotted sequences, especially in terms of the predicted topology.

where the experimental topology is highlighted (purple).
RNA secondary structure was plotted using the Pseu-
doViewer package [83]. Our results demonstrate success-
ful predictions even for long pseudoknotted sequences,
especially in terms of the predicted topology. Detailed
methods are provided in Section S1.

V. DISCUSSION AND CONCLUSIONS

The accurate prediction of the ensemble of secondary
structures explored by an RNA or DNA molecule has
played a major role in shaping modern molecular biology
and DNA nanotechnology over the past several decades.
In this work, we showed that the modern ubiquity of ex-
tremely powerful computers can be used alongside novel
polymer physics techniques to completely enumerate the
free energy landscape of an RNA molecule including com-
plex pseudoknots. This NP-complete algorithm can be
used to tackle even relatively long (∼ 90 ntds) RNA
sequences, and aside from the enumeration procedure
(which is relatively fast for long sequences; see Fig. S4)

is easily parallelizable.

Remarkably, the entropy model discussed in this work
requires only two parameters – orders of magnitude fewer
than other current algorithms – corresponding to clearly
measurable physical quantities. Despite this, and despite
the fact that all parameters used in our model were de-
rived using experiments on non-pseudoknotted RNA, our
algorithm is more successful in predicting pseudoknot-
ted structures than any of the other algorithms tested,
and on par with all predictors tested in predicting non-
pseudoknotted structures. Although we have not done so
in this work, we expect that our results can be even fur-
ther improved by optimizing the energy function given
the entropy model presented here. The success of our
algorithm is particularly notable given that the entropy
model developed in this work can be used to address any
RNA secondary structure regardless of complexity.

The algorithm presented here can also be easily gen-
eralized to probe multiple interacting strands (see dis-
cussion in supplement). The sequences considered can
be any combination of DNA and RNA; their identities
affects the energy parameters of the model which have
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been previously tabulated, and to a lesser extent the two
entropy parameters (b and vs).

Our finding that the integral formulation of the entropy
of arbitrary complex RNA secondary structures can be
represented graphically is reminiscent of Feynman dia-
grams in quantum field theory. The topologies defined
by these graphs can also serve as useful biological con-
structs to group similar RNA structures together. The
depiction of RNA structure as a graph has played an im-
portant role in the prediction of RNA secondary structure
[84–87], as well as in the search for novel RNAs [88, 89],
and the description of similarity between RNA structures
[90–93] which is especially useful in the study of the ef-
fects of mutations [94, 95]. A common approach among
these graphical depictions of RNA has been to represent
loops (e.g. hairpins, internal loops, etc.) as verticies and
stems as edges [88, 92, 93]. However, this depiction of
RNA does not always distinguish between pseudoknot-
ted and non-pseudoknotted structures [88]. Other ap-
proaches have represented each nucleotide as a separate
node and bonds (either hydrogen or covalent) as edges

[89, 91]; while useful in many contexts (for example, sec-
ondary structure visualization), this approach does not
have the benefit of coarse-graining to group similar struc-
tures as the same graph [90]. Our approach, described in
Section III, can be viewed as a middle ground and may
be useful in the contexts described previously.
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[85] Michaël Bon and Henri Orland. TT2NE: A novel algo-
rithm to predict RNA secondary structures with pseu-
doknots. Nucleic Acids Research, 39(14), 2011.

[86] Henri Orland and A. Zee. RNA folding and large N ma-
trix theory. Nuclear Physics B, 620(3):456–476, 2002.

[87] Jizhen Zhao, Russell L. Malmberg, and Liming Cai.
Rapid ab initio prediction of RNA pseudoknots via
graph tree decomposition. Journal of Mathematical Bi-
ology, 56(1-2):145–159, 2008.

[88] Hin Hark Gan, Samuela Pasquali, and Tamar Schlick.
Exploring the repertoire of RNA secondary motifs us-
ing graph theory; implications for RNA design. Nucleic
Acids Research, 31(11):2926–2943, 2003.

[89] Christian Laing and Tamar Schlick. Computational ap-
proaches to RNA structure prediction, analysis, and de-
sign. Current Opinion in Structural Biology, 21(3):306–
318, 2011.

[90] C. Haslinger and P. F. Stadler. RNA structures with
pseudo-knots: Graph-theoretical, combinatorial, and
statistical properties. Bulletin of Mathematical Biology,
61(3):437–467, 1999.
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Supporting Information

The supporting information is divided into several sec-
tions. In Section S1 we detail the methods used to com-
pare our algorithm’s performance to other current mod-
els. In Section S2 we discuss how our algorithm can be
easily generalized to probe multiple interacting strands
including any combination of DNA and RNA. In Section
S3 we give a further discussion of the Ω(s) term defined
in Section II. In Section S4 and Fig. S1 we provide a
more complete derivation of Eq. (7). In Section S5, we
show how to analytically calculate the integrals in Eq.
(7). In Section S6 we derive the higher-order corrections
to Eq. (5).

In Fig. S2 we display all possible graphs of up to two
stems and their respective RNA structures along with the
integral formulation of their entropies and their evaluated
forms. In Fig. S3 we discuss how our algorithm compares
to state-of-the-art prediction tools (the analogue of Fig.
4) when restricting ourselves to structures allowed by the
chosen constraints on our algorithm. Finally, in Fig. S4
we show how our algorithm’s properties scale with the
length of the sequence for random sequences between 10
and 21 ntds in length.

S1. DETAILED METHODS FOR COMPARISON
WITH OTHER PREDICTION TOOLS

In order to compare the sensitivity and PPV of differ-
ent prediction tools, we considered the base pairs present
in the experimental structure and in each algorithm’s
MFE structure. Base pairs present in both were la-
beled as true positives (TP ), base pairs present in the
predicted algorithm were labeled as false positives (FP )
and those present in the experimental structure but not
the predicted MFE structure were labeled as false neg-
atives (FN). In order to compare different metrics we
use the summary statistics of sensitivity (TP/TP +FN)
and PPV (TP/TP + FP ). PPV is a more useful metric
for RNA structure prediction algorithms than specificity
because the definition of true negatives is unclear when
considering base pairs.

The sequences tested were downloaded from the
Pseudobase++, RNAStrand, and CompraRNA PDB
databases. We constrained database searches to return
results only for sequences of length ≤ 80 ntds. We fur-
ther restricted the search of the RNAStrand database to
only include sequences where all nucleotides were known,
and to not include fragments, multiple strands, or dupli-
cates. We removed all sequences that had hairpins of un-
der 3 ntds. Finally, we compared the sequence similarity
of the sequences derived and kept only sequences with
≥ 0.2 Jukes-Cantor sequence dissimilary measured us-
ing the MatLab command seqpdist. The Jukes-Cantor
distance between two sequences is defined as

dJC = −3

4
log

(
1− 4p

3

)
(S1)

where p is the fraction of sites which differ between the
sequences after they have been aligned. By imposing
dJC ≥ 0.2 we impose a constraint that p > 0.17.

We assumed T = 300K for all predictions.

In order to speed up computation for longer sequences,
we set the parameter m describing the minimum number
of consecutive base pairs in a stem to the minimum value
it can take such that the total number of possible stems
is less than 150. This latter parameter was chosen arbi-
trarily and is likely not optimized; however, changing it
to 200 had no significant effect (see data in Supplemen-
tary Table 1). This resulted in m = 1 for 22% sequences,
m = 2 for 33% of sequences, m = 3 for 23%, m = 4 for
20%, and m = 5 for nine sequences. Changing the max-
imum total number of possible stems to 200 resulted in
m = 1 for 34% sequences, m = 2 for 29% of sequences,
m = 3 for 22%, m = 4 for 15%, and m = 5 for one
sequence.

Our algorithm can enumerate and calculate the en-
tropies of both parallel and antiparallel stems. (An an-
tiparallel stem is a list of consecutive base pairs of the
form [i · j, (i+1) · (j−1), (i+2) · (j−2)...], while a paral-
lel stem has the form [i·j, (i+1)·(j+1), (i+2)·(j+2)...].)
Parallel stems are disallowed in non-pseudoknotted struc-
tures, and are stabilized at certain pH levels. We disal-
lowed parallel stems in our calculations.

As part of the enumeration procedure, we created a
compatibility matrix Cp,q detailing the compatibility of
structures p and q (structures p and q are compatible if
they do not share any nucleotides). In practice, since
there are some structures whose entropies we have not
analytically derived, we found it useful to also construct
three- and four-dimensional matrices C3 and C4 which
define three- and four-way compatibility, in order to ex-
clude most such structures at this stage.

In order to compare topologies, we measure whether
the eigenvalue spectra of the two matrices defining the
bonds between each node are equal (two matrices are
needed because there are two types of bonds). This
method is guaranteed to correctly identify graph isomor-
phisms in all cases but may have false positives. We
have found no evidence of false positives in all cases
tested (compared against the MatLab isisomorphic
command).

For the analysis in Fig. 6 we also set m > 1 to speed
up computation. Starting from the top left and going
across, we set m = (4, 3, 3, 4, 4, 4). We also disallowed
parallel stems in order to speed up the computation.
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S2. PROBING MULTIPLE INTERACTING
STRANDS

The algorithm presented here can also be easily gener-
alized to probe multiple interacting strands, using only
one further parameter which has been previously studied
to define the free energy cost of forming a duplex [96, 97].
Following Ref. [28] we concatenate the two (or more)
sequences, separated by a number of inert nucleotides
which serve as a placeholder and which are removed be-
fore free energy calculations are implemented.

The algorithm described here can be equally well-
applied to DNA strands by using the parameter sets from
the SantaLucia laboratory [98–102]. In addition, our al-
gorithm can probe DNA-RNA bonds using the parameter
sets from Refs. [103, 104], and interpolating between the
DNA and RNA cases for those parameters that have not
yet been tabulated from experimental data. The inclu-
sion of DNA strands may require slight modification to
the two entropy parameters (b and vs) which are based
on data from RNA experiments.

S3. DISCUSSION OF Ω(s)

In Section II, we defined a parameter Ω(s) to be the
total number of conformations a random walk of length
s can take. Ω(s) has the property that Ω(s1)Ω(s2) =
Ω(s1 + s2).

For a free chain of length s, ~R can take on any value,

as long as R ≡ |~R| ≤ s. Taking the limit s � b (so
that the integral extends over all of space), and using the

normalization of Ps(~R), we find Sfree = kB log Ω(s), as
expected from the definition of Ω(s). Therefore, in order
to calculate changes in free energy compared to Sfree, we
simply omit Ω(s) terms from our formulae.

To be more precise, this argument directly demon-
strates only why Ω(s) terms should cancel out for non-
base-paired RNA. However, it motivates us to consider
the experimentally measured entropy of each base pair
as being multiplied by a factor of Ω(2) for the two nu-
cleotides comprising it. Including such terms, all fac-
tors of Ω drop out of expressions representing physical
results. We therefore can compute expressions for ∆S,
the difference in entropy between a given structure and
a free chain, by omitting factors of Ω from the relevant
formulae.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 4, 2018. ; https://doi.org/10.1101/338921doi: bioRxiv preprint 

https://doi.org/10.1101/338921


15

S4. DERIVING EQ. 7

In this section we more fully detail the steps leading
to Eq. (7), the entropy of the RNA structure depicted in
Fig. S1A.

We start by treating each nucleotide as its own node,
subject to the constraint that the distance between nu-

cleotides is given by a = 0.33 nm. Writing such an ex-
pression is cumbersome, but because of the property
of Ps(~r) that

∫
Px(~r1)Py(~r2 − ~r1)d~r1 = Px+y(~r2), we can

simply integrate over all nodes not at the edges of stems.

The full expression for the entropy of this graph is thus
given by

e∆S/kB =

∫
d ~r0′

∫
d~r1

∫
d ~r1′

∫
d~r2

∫
d ~r2′

∫
d~r3

∫
d ~r3′ q( ~r0′) q(~r2 − ~r2′)×

δ3(|~r1| − l1) δ3(|~r1 − ( ~r1′ − ~r0′)|) δ3(|~r3 − ~r2| − l2) δ3(|~r3 − ~r2 − ( ~r3′ − ~r2′)|) Ps1(~r3 − ~r1) Ps2(~r2 − ~r1′) Ps3( ~r2′ − ~r0′)

which is depicted graphically in Fig. S1B.
We are using δ3(|x| − a) to signify

δ3(|~x| − a) =
δ(|~x| − a)

4πa2
;

∫
d~x δ3(|~x| − a) = 1.

δ3(|x| − a), like Ps(~r), has units of inverse volume.
Vectors are defined relative to the origin where node

0 is placed (i.e. |~r0| = 0). There is no integration over
~r0 because such an integral would cancel out with the
corresponding term in Sfree, and thus disappear in the
formula for ∆S.

One can check that introducing a new node represent-
ing any nucleotide in the structure (say a node on the
edge between nodes 0 and 3) does not affect the result.
q(~r) is defined as the probability of a nucleotide located

a vector ~r from the origin to be bonded to a nucleotide
located at the origin (assuming the two nucleotides are
complementary). If following Ref. [65] we wish to include
an upper bound for the bond length, rs, q(~r) becomes a
Heaviside Θ function. Integration over q leads to the
definition of vs: vs =

∫
d~rq(~r).

Only two factors of q are present, as opposed to one
factor for each base pair in the structure, because we
take the entropy of stems into account separately. For
this expression, we treat stems as rigid rods; while the
rods have variable and finite width (corresponding to the
property that nucleotides do not need to be at a precise
separation in order to bond), they cannot be thicker on
one end than the other, since including such possibilities
would overcount the entropy of the stem. Our expression
thereby has the property that it is invariant if we also
integrate over two nodes representing two arbitrary base
pairs (say, one on the stem between node 0 and node 1,
and one between nodes 0′ and 1′). The choice of which
bonded nodes on each stem to put in the argument of
q is arbitrary, but there is only one bonded node (and
therefore one q term) for each stem.

We make progress by assuming that because of the q
terms and delta functions, nodes representing nucleotides
which are bonded are located close enough that the vec-
tor ~r between them can be approximated as having zero
length within the context of the terms Ps(~r).

We therefore approximate our formula as

e∆S/kB =

∫
d ~r0′

∫
d~r1

∫
d ~r1′

∫
d~r2

∫
d ~r2′

∫
d~r3

∫
d ~r3′ q( ~r0′) q(~r2 − ~r2′)δ

3(|~r1 − ( ~r1′ − ~r0′)|)×

δ3(|~r3 − ~r2 − ( ~r3′ − ~r2′)|) δ3(|~r1| − l1) δ3(|~r3 − ~r2| − l2) Ps1(~r3 − ~r1) Ps2(~r2 − ~r1) Ps3(~r2)

By employing transformations as in Section S5 (e.g.
~r′ ≡ ~r1′ − ~r0′), the four integrals over the primed nodes
become two integrals over delta functions (which give
unity) and two over the q terms. The latter two become
two factors of vs, and we arrive at Eq. (7).
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FIG. S1: A preliminary description of an H-type pseudoknot. A: An instance of the canonical H-type pseudoknot,
reprinted from Fig. 3. B: A preliminary version of the graph representing its entropy. In Sec. S4 we demonstrate that this
graph is equivalent to that shown in Fig. 3A.
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S5. PERFORMING THE GAUSSIAN
INTEGRALS

The method of performing the Gaussian integrals of
Eq. (7) can be generally applied to the calculation of the

entropies of other pseudoknots, and so we describe it in
detail here.

Eq. (7) is given by

e∆S/kB = v2
s

∫
d~r1

∫
d~r2

∫
d~r3

δ(|~r1| − l1)

4πl21

δ(|~r3 − ~r2| − l2)

4πl22
Ps1(~r3 − ~r1)Ps2(~r2 − ~r1)Ps3(~r2)

We start by utilizing our approximation that the in-
tegrals extend over all of space to rewrite d~r2d~r3 as

d~r2d(~r3 − ~r2), and we rewrite all instances of ~r3 as
(~r3 − ~r2) + ~r2.

e∆S/kB = v2
s

3∏
i=1

(
γ

πsi

)3/2 ∫
d~r1

δ(|~r1| − l1)

4πl21

∫
d~r2

∫
d(~r3 − ~r2)

δ(|~r3 − ~r2| − l2)

4πl22
×

e
γ

[
−
(

( ~r3− ~r2)2

s1

)
−(~r2−~r1)2

(
1
s1

+ 1
s2

)
− r22

s3
− 2

s1
(~r3−~r2)·(~r2−~r1)

]
,

where for notational convenience have defined a param-
eter γ = 3/2b.

To do the (~r3− ~r2) integral, we convert to polar coordi-

nates such that (~r3− ~r2)·(~r2− ~r1) = |~r3− ~r2||~r2− ~r1| cos θ.
Performing the integral yields

e∆S/kB = v2
s

3∏
i=1

(
γ

πsi

)3/2
e−γl

2
2/s1

2

∫
d~r1

δ(|~r1| − l1)

4πl21

∫
d~r2 e

γ

[
− r22

s3
−(~r2−~r1)2

(
1
s1

+ 1
s2

)](
e(2γl2|~r2−~r1|/s1) − e(−2γl2|~r2−~r1|/s1)

2γl2|~r2 − ~r1|/s1

)
.

We now use the same trick from before to rewrite d~r2 as
d(~r2 − ~r1), and rewrite each instance of ~r2 as (~r2 − ~r1) +
~r1. As before, (~r2 − ~r1) · ~r1 becomes |~r2 − ~r1||~r1| cos θ.

Denoting (~r2 − ~r1) as ~r and doing the integral over r1

after performing this transformation yields

e∆S/kB = v2
s

3∏
i=1

(
γ

πsi

)3/2
e
−γ

(
l22
s1

+
l21
s3

)
2

∫ ∞
0

dr r2 e
−γr2

(
1
s1

+ 1
s2

+ 1
s3

)(
e(2γl2r/s1) − e(−2γl2r/s1)

2γl2r/s1

)
×

∫ 1

−1

d cos(θ)e−2γ
l1r
s3

cos(θ).

Finally, we perform the integrals remaining to arrive at
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e∆S/kB =

v2
sγ

2 exp

(
−γ(l

2
1(s1+s2)+l22(s2+s3))
s1s2+s1s3+s2s3

)
2π3l1l2s2

√
s1s2 + s1s3 + s2s3

× sinh

(
2γl1l2s2

s1s2 + s1s3 + s2s3

)

where sinh is the hyperbolic sine function. This formula
is equivalent to the one presented without proof in Ref.
[34].

S6. HIGHER ORDER CORRECTIONS TO
ENTROPY

Eq. (5), which gives the probability of a random walk

of length s to have end-to-end distance ~R, is valid only

in the limit of R � b (where we’ve denoted R ≡ |~R|).
For shorter walks, the Central Limit Theorem no longer
holds. In this section, we show a systematic approach to
deriving higher-order corrections to the probability dis-
tribution given by Eq. (5). The approach taken here is
based on a textbook by Ariel Amir (to be published).

We consider n steps in three dimensions, where each
step is taken to be of length b with equal probabilities
in all directions. Thus, s = nb. The probability distri-
bution for where a walker will be after n = 1 steps is

given by Pn=1(~R) ≡ δ(|R| − b)/4πb2. After two steps,
the probability distribution for where the walker will be
is given by

P2(~R) =

∫
d ~R1P1( ~R1)P1(~R− ~R1). (S2)

The form of Eq. (S2) is that of a convolution of P1(~R)
with itself. In order to iterate many convolutions easily,
we move to Fourier space, since the Fourier transform

of a convolution is the product of Fourier transforms.

Fourier transforming P1(~R) yields its characteristic func-

tion: p̂1(~ω) =
∫ ∫ ∫∞

−∞ d~R P1(~R)ei~ω·
~R, which simplifies

to

p̂1(ω) =
sin(ωb)

ωb
(S3)

which only depends on ω ≡ |~ω|.
In order to iterate n convolutions in real space, we

can simply take the nth power of the Fourier transform,
finding

p̂n(ω) = (sin(ωb)/ωb)
n
. (S4)

Taking the inverse Fourier transform, we find

Pn(~R) =
2

(2π)2

∫ ∞
0

dω ω2

(
sin(ωb)

ωb

)n
sin(ωR)

ωR
. (S5)

At this point, we use our assumption that n is large.
This formula tends to zero for large values of ωb, and
we therefore Taylor expand the sin function for small
ωb. If we take only the first two terms of this series, we
would arrive at Eq. (5); we therefore take the first three
terms to get the first correction to Eq. (5). Higher-order
corrections can be found by simply taking more terms of
the series. Eq. (S5) thus becomes

Pn(~R) =
2

(2π)2

∫ ∞
0

dω ω2e
n log

(
1− (ωb)2

6 +
(ωb)4

120 +O(ωb)6
)

sin(ωR)

ωR

Next, we Taylor expand the logarithm and write the
sin as a sum of exponentials. Since the two terms in
the sum are identical under the exchange ω → −ω, we
combine them into one term by changing the lower limit
of integration to −∞.

Pn(~R) =
1

(2π)2iR

∫ ∞
−∞

dω ωe
−n

[
(ωb)2

6 +
(ωb)4

180 +O(ωb)6
]
+iωR

.

(S6)

If we didn’t have the quartic term, this integral would
be Gaussian and would result in Eq. (5). However, if we
keep this term, the integral is no longer solvable analyt-
ically. We proceed by setting

e
−n

[
(ωb)4

180

]
= 1− n(ωb)4

180
+O(ωb)8. (S7)

As is apparent, the finite truncation of this series re-
sults in corrections of higher order than the truncation
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of the series for sin(ωb) or of the logarithm above.
Using this series expansion, Eq. (S6) becomes a Gaus-

sian integral, which can be solved analytically to yield

Pn(~R) =

(
3

2πsb

)3/2

e

(
− 3R2

2sb

) [
1−

3
(
5s2b2 − 10sbR2 + 3R4

)
20s3b

]
. (S8)

where we’ve replaced n by s/b.

One of the essential properties of Pn(~R) for our for-

malism to function is that
∫
Pn1

(~R1)Pn2
(~R2− ~R1)d~R1 =

Pn1+n2
(~R2). One can check directly that this holds for

Eq. (S8). Keeping only first-order correction terms, and

defining ~R21 = ~R2 − ~R1,

∫
Pn1(~R1)Pn2(~R2 − ~R1)d~R1

=

∫
d~R1

(
32

22πs1s2b2

)3/2

e

[
− 3

2b

(
R2

1
s1

+
~R2
21

s2

)] 1−
3
(
5s2

1b
2 − 10s1bR

2
1 + 3R4

1

)
20s3

1b
−

3
(

5s2
2b

2 − 10s2b ~R
2
21 + 3~R4

21

)
20s3

2b


=

(
3

2π(s1 + s2)b

)3/2

e

(
− 3R2

2
2(s1+s2)b

) [
1−

3
(
5(s1 + s2)2b2 − 10(s1 + s2)bR2

2 + 3R4
2

)
20(s1 + s2)3b

]
= Pn1+n2(~R2).
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FIG. S3: Results only including sequences whose structure our algorithm could have predicted. We consider
only the 153 non-pseudoknotted and 165 pseudoknotted sequences whose structures do not include base pairs or topologies
disallowed by our algorithm. In this case, we predict the correct topology with 49% (47%) accuracy for non-pseudoknotted
(pseudoknotted) structures. This number increases to 62% (82%) and 67% (85%) for top-5 and top-10 accuracy. Surprisingly,
we therefore find that our algorithm actually performs better in predicting the pseudoknotted structures in the databases used
than the non-pseudoknotted structures. The main results are the same for this dataset as for the full dataset plotted in Fig.
4: our algorithm outperforms all 14 algorithms tested against in predicting pseudoknotted structures, and performs on par
with the other algorithms in predicting non-pseudoknotted structures, even though it uses orders of magnitude fewer entropic
parameters than the other algorithms tested against.
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FIG. S4: Scaling of the algorithm properties with length of sequence. We input 100 random sequences for each length
between 10 and 21 nucleotides into the algorithm. (A) Various properties of the results are plotted as a function of the length
of the sequence. Blue circles are datapoints for each of the 100 sequences in each column. Purple points show the mean.
The number of secondary structures grows exponentially with the length of the sequence, as expected due to the NP-complete
nature of the algorithm, though the number of possible stems grows sub-exponentially. The probability of forming a pseudoknot
appears to plateau at around 10%. The number of topologies grows exponentially (we exclude topologies more complex than
those shown in Fig. S2 and the structures leading to them). The green line shows the total number of different topologies
over all 100 sequences of a given length. We disallowed parallel stems for this analysis. (B) The time the algorithm takes to
calculate free energies grows approximately linearly with the number of possible secondary structures. The data is well-fit to a
power law y = axb with parameters a = (3.8 ± 0.3) ∗ 10−4 and b = 1.27 ± 0.01. The time taken to enumerate all the structures
is constant for short sequences (when few structures are enumerated and the algorithm’s overhead is the rate-limiting factor)
and then grows as a power law. For sequences of any substantial length, the algorithm is rate-limited by the time it takes
to compute free energies, rather than the time taken to enumerate structures. (C) For large numbers of stems, the number
of possible secondary structures grows as a power law with the number of possible stems. This sub-exponential behavior is
because some stems cannot coexist in the same structure (if they share any of the same nucleotides or if their coexistence leads
to a topology more complex than those in Fig. S2). The purple line shows a fit to the equation y = axb with R2 = 0.81. The
best-fit values of a and b are found to be a = 0.0129 ± 0.0065 and b = 3.24 ± 0.11.
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