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Abstract 

Translation of mRNAs into protein is a key cellular process. Ribosome binding sites and stop codons 

provide signals to initiate and terminate translation, while stable secondary mRNA structures can 

induce translational recoding events. Fluorescent proteins, commonly used to characterize such 

elements, require the modification of a part’s natural context and allow only a few parameters to be 

monitored concurrently. Here, we develop a methodology that combines ribosome profiling (Ribo-

seq) with quantitative RNA sequencing (RNA-seq) to enable the high-throughput characterization of 

genetic parts controlling translation in absolute units. We simultaneously measure 743 translation 

initiation rates and 754 termination efficiencies across the Escherichia coli transcriptome, in addition 

to translational frameshifting induced at a stable RNA pseudoknot structure. By analyzing the 

transcriptional and translational response, we discover that sequestered ribosomes at the 

pseudoknot causes a σ32-mediated stress response, codon-specific pausing, and drop in translation 

initiation rates across the cell. Our work demonstrates the power of integrating global approaches to 

give a comprehensive and quantitative understanding of gene regulation and burden in living cells. 
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Introduction 

Gene expression is a multi-step process involving the transcription of DNA into messenger RNA 

(mRNA) and the translation of mRNAs into protein. To fully understand how a cell functions and 

adapts to changing environments and adverse conditions (e.g., disease or chronic stress), 

quantitative methods to precisely observe these processes are required 1. Gene regulatory networks 

(also known as “genetic circuits”) control where and when these processes take place and underpin 

many important cellular phenotypes. Recently, there has been growing interest in building synthetic 

genetic circuits to understand the function of natural gene regulatory networks through precise 

perturbations and/or creating systems de novo 2,3. 

In synthetic biology, genetic circuits are designed to control gene expression in a desired 

way 4. Circuits have been built to implement a range of digital 5,6 and analog functions 7, and have 

been integrated with endogenous pathways to control cellular behaviors 8,9. The construction of a 

genetic circuit requires the assembly of many DNA-encoded parts that control the initiation and 

termination of transcription and translation. A major challenge is predicting how a part will behave 

when assembled with many others 10. The sequences of surrounding parts 11, interactions with other 

circuit components or the host cell 10,12–14, and the general physiological state of the cell 15,16 can all 

alter a part’s behavior. Although biophysical models have been refined to capture some contextual 

effects 17–19, and new types of part created to insulate against these factors 6,7,20–23, we have yet to 

reach a point where large and robust genetic circuits can be reliably built on our first attempt. 

Fluorescent proteins and probes are commonly used to characterize the function of genetic 

parts 24,25 and debug the failure of genetic circuits 26. When used for characterization, the part of 

interest is generally placed into a new genetic backbone (often a plasmid) where its behavior is 

directly linked to the expression of one or more fluorescent proteins 27. When debugging a circuit 

failure, it is not possible to extract the part of interest as its behavior in the context of the circuit is 

required. For circuits where transcription rate (i.e. RNAP flux) is used as a common signal between 

components 28, debugging plasmids containing a promoter responsive to the signal of interest have 

been used to track the propagation of signals and reveal the root causes of failures 26. Alternatively, 

any genes whose expression is controlled by the part of interest can be tagged by fusion to a 

fluorescent protein 29. Such modifications allow for a direct readout of protein level but come at the 

cost of alterations to the circuit. This is problematic as there is no guarantee the fluorescent tag itself 

will not affect a part’s function 30,31. 

The past decade has seen tremendous advances in sequencing technologies. This has 

resulted in continuously falling costs and a growing range of information that can be captured 32. 

Sequencing methods exist to measure chromosomal architecture 33, RNA secondary structure 34, 
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DNA and RNA abundance 35, and translation efficiency 36. New developments have expanded the 

capabilities even further towards more quantitve measurements of transcription and protein 

synthesis rates with native elongating transcript sequencing (NET-seq) 37 and ribosome profiling 

(Ribo-seq) 38,39. Ribo-seq provides position-specific information on the translating ribosomes through 

sequencing of ribosome-protected fragments (RPFs; approximately 25–28 nt) which allows genome-

wide protein synthesis rates to be inferred with accuracy similar to quantitative proteomics 38. 

Sequencing technologies offer several advantages over fluorescent probes for 

characterization and debugging genetic parts and circuits. First, they do not require any modification 

of the circuit DNA. Second, they provide a more direct measurement of the processes being 

controlled (e.g. the RNAs synthesized during transcription), and third, they capture information 

regarding the host response and the indirect effects that this may have on a part’s function. 

Furthermore, for large multi-component circuits or synthetic genomes, sequencing is the only way of 

gaining a comprehensive view of the system’s behavior, offering a scalable approach which goes 

beyond the limited numbers of fluorescent probes that can be measured simultaneously. Recently, 

RNA-seq has been used to characterize every transcriptional component in a large logic circuit 

composed of 46 genetic parts 40. While successful in demonstrating the ability to characterize 

genetic part function, observe internal transcriptional states, and find the root cause of circuit 

failures, the use of RNA-seq alone restricts the method to purely transcriptional elements and does 

not allow for quantification of this process in physically meaningful units. 

Here, we address these limitations by combining Ribo-seq with a modified version of RNA-

seq to quantitatively characterize genetic parts controlling transcription and translation at a 

nucleotide resolution. By supplementing this sequencing data with other experimentally measured 

cell parameters, we are able to generate transcription and translation profiles that capture the local 

flux of RNA polymerases and ribosomes governing these processes in absolute units. We apply our 

method to Escherichia coli and demonstrate how local changes in these profiles can be interpreted 

using biophysical models to measure the absolute performance of many types of genetic part. 

Finally, we demonstrate how genome-wide shifts in transcription and translation can be used to 

dissect the burden synthetic genetic constructs place on their host cell and the role that allocation of 

shared cellular resources such as ribosomes play. 

 

Results 

Generating transcription and translation profiles in absolute units 

To enable quantification of both transcription and translation in absolute units, we modified the RNA-

seq protocol and extended the Ribo-seq protocol with quantitative cell measures (red elements in 
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Figure 1A). For RNA-seq, we introduced RNA spike-ins to our samples at known molar 

concentrations before fragmentation (left panel, Figure 1A). These RNAs span a wide range of 

lengths (250–2000 nt) and share no homology with the transcriptome of the cells being studied. 

Using the RNA spike-ins as a standard, numbers of mapped reads are converted to absolute 

molecule counts and then further normalized by cell counts to give absolute transcript copy numbers 

per cell 41,42 (Materials and Methods). These conversion factors are also used with a previously 

described method 40 to generate transcription profiles that capture RNA polymerase flux (in RNAP/s 

units) across the genome. 

For Ribo-seq, we use direct ligation of the adaptors to the RPFs 43 to allow for the capture of 

low-abundance transcripts 44 and complemented this protocol with additional measurements of 

cellular properties such as growth rate, cell count, and protein mass (right panel, Figure 1A). To 

generate the translation profile, we start by first calculating an RPF profile C(x) that captures the 

number of RPFs mapping to nucleotide x. Each RPF read in the Ribo-seq data set is mapped to 

reference sequences of all transcripts. For each mapped read, we consider the physical constraints 

of how a transcript is shielded by a ribosome and estimate the nucleotide corresponding to the 

central position of the codon in the P site (Materials and Methods). The value of C(x) at this point is 

incremented by one and the remaining reads processed in the same way. Because each ribosome 

translates at a relatively constant speed 38,45, the number of RPFs mapping to a nucleotide is 

proportional to the overall translation rate (i.e. ribosome flux). Given that each RPF corresponds to a 

single ribosome, and assuming that each translating ribosome produces a single protein, then the 

number of RPFs mapping within a gene fi as a fraction of the total ft equals the proportion of the 

proteome corresponding to that gene. By measuring the total mass of a cell’s proteome mt and 

calculating the mass of each encoded protein mi, we can then calculate the protein copy number per 

cell of gene i as  𝑛" =
$%&'
$'&%

. This can be converted to a total number of amino acids 𝑎) = ∑ 𝑛"𝑎"" , 

where ai is the number of amino acids in gene i. Because each amino acid is attached to the peptide 

chain by a ribosome translocating from the A to P site, a single RPF read captures at/ft translocating 

ribosomes. Furthermore, as the cells are in exponential phase growth, the proteome will be 

duplicated after each doubling time td (in seconds), and therefore the ribosome flux (in ribosomes/s 

units) passing through a single footprint is given by 𝑟$ =
,'
$')-

. We finally multiply C(x) by rf and 

normalize by the transcript copy number m(x) from the RNA-seq data to generate the translation 

profile, 

𝑅(𝑥) =
2	456(7)
&(7)

.             (1) 
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An additional factor of three is required because translation profiles are defined at a nucleotide 

resolution and ribosomes translocate three nucleotides (a codon) at a time when attaching an amino 

acid. 

Importantly, because both the transcription and translation profiles are given in absolute units 

(RNAP/s and ribosomes/s, respectively), they can be directly compared across samples without any 

further normalization. 

 

Characterizing genetic parts controlling translation 

Genetic parts controlling translation alter the ribosome flux along a transcript. These changes are 

captured by the translation profiles. We developed biophysical models to interpret these signals and 

quantify the performance of RBSs, stop codons and translational recoding (or ribosome 

frameshifting) at stable secondary structures. 

In prokaryotes, RBSs support translation initiation and cause a jump in the translation profile 

after the start codon of the associated gene due to an increased ribosome flux originating at that 

location (Figure 1B). If initiation is rate-limiting 38, then the translation initiation rate of an RBS (in 

ribosomes/s units) is given by the absolute increase in ribosome flux after the RBS, 

𝛿𝑅 = 	∑ 9(")
(7:;7<)

7:
"=7< − ∑ 9(")

?
7@
"=7@;? 	.           (2) 

In this equation, x0 is the start point of the RBS, and xs and xe are the start and end point of the 

coding region associated with this RBS, respectively (Figure 1B). A window of n = 30 nt (10 codons) 

is used to average fluctuations in the translation profile upstream of the RBS, which is equal to the 

approximate length of a ribosome’s footprint on a transcript. If the transcription start site (TSS) of the 

promoter expressing this transcript falls in the upstream window then the start point (x0 – n) is 

adjusted to the TSS to ensure incoming ribosome flux is not underestimated. A similar change is 

made if the coding sequence is in an operon structure and the end of an upstream gene falls in this 

window. In this case, the start point is adjusted to 9 nt (3 codons) downstream of the overlapping 

gene’s stop codon. 

In eukaryotes, genes are generally monocistronic with translation initiation occurring through 

scanning of the 5’ untranslated region (5’-UTR) by the 43S preinitiation complex until a suitable start 

codon is found. This allows a translation-competent 80S ribosome to assemble and translation 

elongation to begin 46. In this case, no ribosome flux is generated by upstream genes. Therefore, 

when calculating the initiation rate of a 5’-UTR, the second term in Equation 2 is set to zero (i.e. 

∑ 9(")
?

7@
"=7@;? = 0).  
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Ribosomes terminate translation and disassociate from a transcript when a stop codon (TAA, 

TAG or TGA) is encountered. This leads to a drop in the translation profile at these points (Figure 
1C). Although this process is typically efficient, ribosomes can sometimes read through a stop codon 

and continue translating downstream 47. The termination efficiency of a stop codon (i.e. the fraction 

of ribosomes terminating) is given by 

𝑇C = 1 −
∑ 9(") ?⁄FGHI
%JFG

∑ 9(") (7K;7<)⁄F@
%JF<

 ,            (3) 

where x0 and x1 are the start and end nucleotide of the stop codon, respectively, xs is the start of the 

coding region associated to this stop codon, and n = 30 nt (10 codons) is the window used to 

average fluctuations in the translation profile downstream of the stop codon (Figure 1C). If 

additional stop codons are present in the downstream window, the end point of this window is 

adjusted to ensure that the termination efficiency of only the (first) stop codon of interest is 

measured. A similar adjustment is made if the end of a transcript generated by an upstream 

promoter ends within this window. 

 Translation requires the conversion of triplets of nucleotides (a codon) into one of the 

proteinogenic amino acids. Because every nucleotide can be either in the first, second or third 

position of a codon, three reading frames can be defined for every transcript. A single sequence can 

therefore encode three different proteins. Although synthetic biology approaches rarely use multiple 

reading frames, natural systems exploit this feature in many different ways 48–51. In our 

characterization workflow, the RPFs used to generate the translation profiles are aligned to the 

middle nucleotide of the codon in the ribosomal P site, providing the frame of translation. Although 

the flexible nature of RNA hampers accuracy, if there are sufficient numbers of RPFs, the major 

frame along a transcript can be determined 52,53.  

To characterize genetic parts that cause translational recoding through ribosomal 

frameshifting, two approaches can be used (Figure 1D). First, the major frame of translation can be 

estimated by separately summing all RPFs for each reading frame in the region before and after the 

expected point of frameshifting and summarizing these as a fraction of all RPFs in these regions 

(Figure 1D). Strong frameshifting will cause the fraction of RPFs to shift from the original frame to a 

new one when comparing the regions. Second, the frameshifting efficiency can be calculated from 

the translation profile using, 

𝐹C = 1 −
∑ 9(") (7:;7G)⁄F:
%JFG
∑ 9(") (7K;7<)⁄F@
%JF<

 ,            (4) 

where x0 is the nucleotide at the start of the region where frameshifting occurs, and x1 is the end 

nucleotide of the stop codon for the first coding sequence (Figure 1D). 
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Measuring genome-wide translation initiation and termination in Escherichia coli 

We applied our method to Escherichia coli cells harboring a lacZ gene whose expression is induced 

using isopropyl β-D-1-thiogalactopyranoside (IPTG) (Figure 2A). After induction for 10 min, lacZ 

expression reached 14% of the total cellular protein mass (Supplementary Table S1). Samples 

from non-induced and induced cells were subjected to our combined sequencing workflow. 

Sequencing yielded between 41–199 million reads per sample (Supplementary Table S2) with a 

high correlation between biological replicates (R2 > 0.96; Supplementary Figure S1). 

Transcription and translation profiles were generated from this data and used to measure 

translation initiation rates of RBSs and termination efficiencies of stop codons across the genome. 

To remove the bias due to the RPF enrichment in the 5’-end of coding regions 39 (Figure 2B), xs was 

adjusted to 51 bp (17 codons) downstream of the start codon when estimating average ribosome 

flux across a coding region in Equations 2 and 3. To verify that this correction gave translation rates 

that were constant across each gene (a necessary condition for our models), we compared the 

number of RPFs mapping to the first and second half of each coding region. If ribosomes traverse 

the whole coding sequence at a constant speed, then the two halves of a transcript should have a 

near identical numbers. As required, we found a high correlation between both halves for non-

induced and induced cells (Supplementary Figure S2). 

 We characterized chromosomal RBSs in E. coli by assuming that each covered a region 

spanning from the start codon to 15 bp upstream. The measured translation initiation rates varied 

over two orders of magnitude with a median initiation rate of 0.1 ribosomes/s (Figure 2C; 

Supplementary Data S1). This closely matches previously measured rates for single genes 54. A 

few RBSs mostly related to stress response functions (tabA, hdeA, uspA, uspG), the ribosomal 

subunit protein L31 (rpmE), and some unknown genes (ydiH, yjdM, yjfN, ybeD), reached much 

higher rates of up to 2.45 ribosomes/s. 

For estimating termination efficiency at the stop codons, we considered 9 nt (3 codons) up 

and downstream of the stop codon to ensure local fluctuations in the translation profile due to 

termination did not affect our measurements (Figure 2B). Our analysis showed a median 

termination efficiency across the genome of 0.987, with 339 stop codons (45% of all those 

measured) having termination efficiencies >0.99 (Figure 2D; Supplementary Data S2). 

Similar performance for both RBSs (R2 = 0.84) and terminators (R2 = 0.52) was found 

between non-induced and induced conditions (Figures 2E and 2F; Supplementary Data S1 and 
S2). 
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Quantifying transcription and translation of a synthetic genetic construct 

The quantitative measurements produced by our methodology allow both transcription and 

translation to be monitored simultaneously. To demonstrate this capability, we focused on the LacZ 

expression construct and quantified the inducible promoter and terminator controlling transcription, 

and the RBS and stop codon controlling translation. 

The transcription and translation profiles clearly show the beginning and end of both the 

transcript produced and protein coding region, with sharp increases and decreases at the relevant 

points (Figure 3A). Induction causes a large increase in the number of lacZ transcripts from 0.18 to 

110 copies per cell. This is directly observed in the transcription profile, while the translation profile 

remains stable across conditions. Analysis of the profiles shows that the Ptac promoter has a 

transcription initiation rate of 0.0009 RNAP/s in the absence and 0.73 RNAP/s in the presence of 

IPTG (1 mM) (Figure 3B). The RBS for the lacZ gene has consistent translation initiation rates of 

between 0.21 and 0.35 ribosomes/s. Similarly, both the transcriptional terminator and stop codon 

showed similar efficiencies of 0.93–0.95 and 0.9–0.93, respectively. This is as expected given that 

both these processes act independently per transcript. 

 

Characterizing a synthetic pseudoknot that induces translational recoding 

Pseudoknots (PKs) are stable tertiary structures that regulate gene expression and combined with 

slippery sequences are frequently employed in compact viral genomes to stimulate translation 

recoding and produce multiple protein products from a single gene 48,50,55,56. PK are the most 

common type of structures used to facilitate mostly –1 frameshifting 57 and in much rarer cases 

stimulate +1 frameshifting, e.g., in the eukaryotic antizyme genes 58. PKs consist of a hairpin with an 

additional loop that folds back to stabilize the hairpin via extra base pairing (Figure 4A). In addition 

to stimulating recoding events, PKs regulate translational initiation, where they interfere with the 

RBS through antisense sequences that base pair with the binding site 51,59. PKs located in the 

coding sequence induce –1 programmed frameshifting which is an evolutionary tool to reduce the 

length of sequence needed to encode a biological system and acts as a form of compression. The 

percentage of frameshifting reflects the stoichiometry of the translated proteins (e.g. capsule 

proteins for virus assembly), and helps overcome problems where the stochastic nature of 

transcription and translation make maintenance of specific ratios difficult 49. 

Two elements signal and stimulate frameshifting. The first is a slippery site consisting of a 

heptanucleotide sequence of the form XXXYYYZ which enables out-of-zero-frame paring in the A or 

P site of the ribosome and facilitates recoding events. The second is a PK situated 6–8 nt 

downstream of the slippery site. The distance between the slippery site and the 5’-end of the PK 
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positions the mRNA in the entry channel of the 30S ribosomal subunit, allowing contact with the PK 

and pauses translation to provide an extended time window for frameshifting to occur 48.  

To demonstrate our ability to characterize this process, we created an inducible genetic 

construct (referred to as PK-LacZ) that incorporated a virus-inspired PK structure within its natural 

content (gene10) fused to lacZ in a –1 frame (Figure 4A) 60. A slippery site UUUAAAG preceded the 

PK. Gene10 of bacteriophage T7 produces two proteins, one through translation in the zero frame 

and one through a –1 frameshift; both protein products constitute the bacteriophage capsid 61. 

We generated translation profiles to assess ribosome flux along the entire construct (Figure 
4B). The profiles showed high-levels of translation up to the PK with a major drop of 80–90% at the 

PK to the end of the gene10 coding region, and a further drop of ~97% after this region (Figure 4B). 

To analyze the frameshifting within gene10, we divided the construct into three regions: (1) 

the gene10 gene up to the slippery site, (2) the middle region, which covers the slippery site along 

with the PK up to the gene10 stop codon, and (3) the downstream lacZ gene in a –1 frame. For each 

region, we calculated the fraction of RPFs in each frame as a total of all three possible frames. We 

found that the zero and –1 frames dominate the gene10 and lacZ regions, respectively, with >46% 

of all RPFs being found in these frames (top row, Figure 4C). The middle region saw a greater mix 

of all three, while the lacZ region saw a further drop in the zero-frame. This is likely due to a 

combination of ribosomes that have passed the PK successfully and terminated in zero-frame at the 

end of gene10 and those that have frameshifted. Similar results were found with and without 

induction by IPTG (Figure 4C). An identical analysis of the reading frames from the RNA-seq data 

revealed no specific frame was preferred, with equal fractions of each (bottom row, Figure 4C). This 

suggests the reading frames recovered for the RPFs were not influenced by any sequencing bias. 

We further tested if the major translation frame could be recovered by analyzing the entire genome 

and measuring the fraction of each frame across every gene. The correct zero-frame dominated in 

most cases (Figure 4D). 

Finally, to calculate the efficiency of frameshifting by the PK, we compared the density of 

RPFs per nucleotide for the middle and lacZ regions. Because the PK is known to cause ribosomes 

to stall, the assumption of constant ribosome speed is broken for the gene10 region before the PK. 

Therefore, when calculating the frameshifting efficiency using Equation 4, xs and x0 were set to the 

start and end nucleotide of the middle region, directly downstream of the PK where pausing was not 

expected to occur. We found that the PK caused 2–3% of ribosomes to frameshift, ~3-fold less than 

the 10% reported for the PK in its natural context 49. 

 

Cellular response to a strong synthetic pseudoknot 
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It is known that expression of strong PKs can severely impact cell growth, but the reason for this 

remains unclear 60. We observed a large number of RPF reads within the gene10 region (Figure 
4B). However, because PKs are known to cause ribosomal stalling 48 many of these reads may not 

capture actively translating ribosomes. Such stalling leads to an abundance of partially formed 

protein products and limits availability of translational resources, raising the question as to whether 

expression of the PK-LacZ construct elicits cellular stress by sequestering ribosomes.  

 To better understand the burden that expression of both lacZ and PK-lacZ had on the cell, 

we compared shifts in the transcription (mRNA counts) and translational efficiency 39 of endogenous 

genes after induction by IPTG (Figure 5A; Supplementary Data S3). No major changes were 

observed for the LacZ construct (Figure 5A). In contrast, the PK-LacZ construct caused significant 

shifts in the regulation of 491 genes (Supplementary Data S4). Of these, 341 were transcriptionally 

and 204 translationally regulated, with little overlap (54 genes) between the different types of 

regulation (Figure 5B). Transcriptional regulation mostly acted to reduce gene expression, while 

similar numbers of genes were translationally up and down regulated. Gene ontology (GO) analysis 

revealed a clustering of transcriptionally downregulated genes in categories mostly linked to 

translation, e.g. ribosomal proteins, amino acid biosynthesis, amino acid activation (amino acyl 

synthetases), and genes involved in respiration and catabolism (Supplementary Data S5). 

Transcriptionally upregulated genes were associated with ATP binding, chaperones (ftsH, lon, clpB, 

dnaJK, groLS, htpG), ion binding, proteolytic activities (ftsH, prlC, htpX), and an endoribonuclase 

(ybeY). Interestingly, all of these are under σ32 regulation. Since we do not subject cells to heat 

shock, upregulation of σ32-dependent proteins most likely occurs via DnaK/DnaJ and GroEL/S 

release of σ32 that is already present in the cell upon binding of misfolded proteins from ribosomes 

stalled at the PK. The DnaK/DnaJ and GroEL/S chaperone systems negatively regulates σ32 by 

binding to it. When the ratio of chaperones to misfolded proteins is shifted, the chaperones release 

σ32, which can then bind to the RNA polymerases under its control and induce heat shock genes 
62,63. This is supported by the fact that dnaJ, groL/S, and grpE were transcriptionally upregulated 

during PK induction as well as ftsh, which encodes the protease that degrades σ32. The precise 

mechanism of σ32 upregulation by expressing synthetic constructs is not known, although it has 

been reported to be a general response 64. 

To test whether this stress caused changes in translational dynamics (e.g. ribosome pausing 

at particular codons), we next compared the change in the dwell time of ribosomes at each codon 

(also known as codon occupancy) across the genome after induction 52. Notable increases in 

occupancy were found for the codons AGA, CTA, CCC, TCC, which encode for arginine, leucine, 

proline and serine, respectively (Figure 5C). All of these codons are rarely used in the genome for 
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their cognate amino acid but were found in higher proportions across gene10. For example, the CTA 

codon that codes for leucine is only used by 4% of codons in the genome, while accounted for 8% in 

the gene10 region. When coupled with the strong expression of gene10, the stress induced by this 

abnormal demand on cellular resources would be amplified. 

The broad shifts in cell-wide regulation and changes in codon occupancy suggest that 

expression of PK-lacZ may significantly limit the availability of shared cellular resources. From a 

translational perspective, this would manifest as a cell-wide drop in translation initiation rate as the 

pool of free ribosomes would be reduced 14. To test this hypothesis, we compared the RBS initiation 

rates of endogenous genes before and after induction and found a consistent reduction across all 

genes for both synthetic constructs (Figure 5D; Supplementary Data S1). While relatively small for 

the LacZ construct (18%) where no notable stress was seen, the PK-LacZ construct triggered a 

large (43%) drop in translation initiation rates across the cell (Figure 5D). Analysis of transcriptome 

composition and distribution of engaged ribosomes across these further revealed that the PK-LacZ 

construct made up 40% of all mRNAs and captured 47% of the shared ribosome pool engaged in 

translation (Figure 5E). This would account for the global drop in translation initiation rates and 

agglomeration of the partially translated capsule protein Gene10 by these ribosomes would help 

explain the strong σ32-mediated response. 

 

Discussion 

In this work, we present a new methodology to quantify transcription and translation in living cells at 

a nucleotide resolution. This is based on a sequencing workflow that combines a modified version of 

RNA-seq and Ribo-seq with measures of key cellular parameters, and then use biophysical models 

to interpret this data. We show that our approach is able to simultaneously characterize the 

translation initiation rate of RBSs and termination efficiency of stop codons across the E. coli 

transcriptome: in addition, we measure the precise behavior of the genetic parts controlling 

transcription and translation in a synthetic genetic construct that expresses lacZ. Because our 

approach is based on sequencing it can scale beyond what is possible with commonly used 

fluorescence protein-based approaches, and through the use of spike-in standards we are able to 

give measurements in absolute units. Specifically, transcription and translation rates in RNAP/s and 

ribosomes/s units.  

To demonstrate the ability to quantitatively assess various translational processes that have 

been difficult to measure, we studied the behavior of a genetic construct that contains a strong virus-

inspired PK structure that induces a translational frameshift. Following expression of PK-lacZ, the 

main reading frame shifts, but at an efficiency ~3-fold less in in PKs native viral context. In contrast 
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to lacZ expression, PK-lacZ also causes a major burden to the cell. We observe transcriptome-wide 

increases in ribosome dwell times at rare codons encoding arginine, leucine, proline and serine. 

These codons are used far more frequently in the synthetic construct than in the E. coli genome, 

suggesting that strong expression of gene places significant demands on the translational resources 

of the cell. This burden also results in significant changes in gene regulation (both transcriptional 

and translational), which was mediated by the alternative polymerase subunit, σ32 that remodels the 

bacterial proteome following thermal stress 65. The likely cause of σ32 activation is the partial 

unfolding of translation products from the ribosomes stalled at the PK 48,65. Supportive of this 

mechanism is the upregulation of the DnaJ/K and GroEL/ES/GrpE chaperone complexes that 

modulate the release of σ32 and activation of the stress response 62,63. To our knowledge, the stress 

response induced by a strong pseudoknot has not been reported before. Our findings highlight the 

importance of considering the burden a synthetic construct places on a cell (e.g. the sequestering 

shared resources like RNAPs or ribosomes) and their indirect effects on integrated stress responses 
13,14,40,64. 

Mature engineering fields rely on predictive models to efficiently design complex systems by 

reducing the need to physically construct and test each iteration. To date, the accuracy of models in 

synthetic biology have been hampered by a lack of reliable and quantitative measurements of 

genetic parts and devices, and their effects on the host cell. Attempts have been made to improve 

this situation by using standard calibrants to increase reproducibility across labs and equipment 66–68 

and by including synthetic RNA spike-ins to enable absolute quantification of transcription 69. Our 

methodology complements these efforts by combining multiple sequencing methods and spike-in 

standards to quantify the two major cellular processes controlled by genetic circuits (i.e. transcription 

and translation). As we attempt to implement ever more complex functionalities in living cells 26 and 

push towards a deeper understanding of the processes sustaining life, scalable and comprehensive 

methodologies for quantitative measurement of these processes are paramount. Such capabilities 

will move us beyond a surface-level view of living cells to one that allows the exploration of their 

inner most regulation and homeostasis. 

 

Materials and Methods 

Strain, media, and inducers. The E. coli K12 strain, [K-12, recA1 ∆(pro-lac) thi ara F’:lacIq1 

lacZ::Tn5 proAB+], harbours a pBR322-derived plasmid containing either lacZ with a fragment insert 

that contains a truncated lac operon with the Ptac promoter and the wildtype lacZ under lacI control, 

or a pseudoknot-lacZ (PK-lacZ) consisting of gene10, a virus-derived RNA pseudoknot 60, 22/6a, 

fused upstream of the lacZ. Bacteria were grown in MOPS minimal medium supplemented with 
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0.4% glycerol, 2.5 μg/ml vitamin B1, 100 μg/ml ampicillin, 20 μg/ml kanamycin and additionally 50 

μg/ml arginine for the lacZ expressing strain. The cells were grown for at least 10 generations at 

37°C to ensure stable exponential growth before induction. 

 

Gene expression and preparation of the sequencing libraries. LacZ and PK-lacZ expression were 

induced with isopropyl β-D-1-thiogalactopyranoside (IPTG) to a final concentration of 1 mM at OD600 

≈ 0.4 for 10 min and 15 min, respectively. One aliquot of each culture was used to isolate RPFs and 

prepare the cDNA library for Ribo-seq as described in Bartholomäus et al. 41 In parallel, from another 

aliquot, total RNA was isolated with TRIzol (Invitrogen) and subjected to random alkaline 

fragmentation for RNA-seq as described in Bartholomäus et al. 41 The total RNA was spiked in with 

RNA standards (ERCC RNA Spike-In Mix; Ambion) which were used to calculate the copy numbers 

per cell. Total protein concentration (g wet mass per ml culture) were determined by the Bradford 

assay using serial dilutions of the cells from the exponential phase until the induction time at OD 0.4 

and following induction with 1 mM IPTG. Using the cell number and the volume of E. coli as 1 

femtoliter, the protein mass was recalculated as g wet protein mass per cell.  

  

Processing of sequencing data. Sequenced reads were quality trimmed using fastx-toolkit version 

0.0.13.2 (quality threshold: 20), sequencing adapters were cut using cutadapt version 1.8.3 (minimal 

overlap: 1 nt) and the reads were uniquely mapped to the genome of E. coli K-12 MG1655 strain 

using Bowtie version 1.1.2 allowing a maximum of two mismatches. LacZ and other similar parts of 

the plasmids were masked in the genome. Reads aligning to more than one sequence including 

tRNA and rRNA were excluded from the data. The raw reads were used to generate gene read 

counts by counting the number of reads whose middle nucleotide (for reads with an even length the 

nucleotide 5' of the mid-position) fell in the coding sequence (CDS). Gene read counts were 

normalized by the length of the unique CDS per kilobase (RPKM units) and the total mapped reads 

per million (RPM units) 42. Biological replicates were performed for all sequencing reactions. Based 

on the high correlation between replicates (Supplementary Figure S1), reads from both biological 

replicates were merged into metagene sets 39. Differential gene expression was performed using 

DESeq2 version 1.20 (P < 0.01 for the translational efficiency data, and P < 0.001 and a log2 fold-

change > 1.37 for the mRNA counts due to very high correlation in this data) and the GO terms with 

significant enrichment (P < 0.01) were calculated using GO.db version 2.10. P-values were adjusted 

for multiple testing using false-discovery rate (FDR) according to Benjamini and Hochberg. 
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Calculating absolute transcript numbers. To calculate the transcript copy number, we used a method 

previously described by Bartholomäus et al. and Mortazavi et al. 41,42 

 

Calibration of ribosome profiling reads. RPFs were binned in groups of equal read length, and each 

group was aligned to the stop codons as described previously by Mohammad et al. 70 For each read 

length we calculated the distance between the point a transcript leaves the ribosome and the middle 

nucleotide in the P site, and used this distance to determine the center of each P site codon along 

each mRNA. As expected, the majority of our sequence reads were 23–28 nt and these read 

lengths were used for the further analysis. The ribosome dwelling occupancy per codon over the 

whole transcriptome was calculated as described by Lareau et al. 52, where the reads over each 

position within a gene were normalized to the average number of footprints across this gene. 

Metagene analysis of the ribosome occupancies within the start and stop codon regions was 

performed as described by Baggett et al. 71 Thereby, only genes with at least 5 RPFs in the chosen 

window were considered. Overlapping genes were excluded from the analysis. 

 

Data analysis and visualization. Data analysis was performed using custom scripts run with R 

version 3.4.4 and Python version 3.6.3. Plots was generated using matplotlib version 2.1.2 and 

genetic constructs were visualized using DNAplotlib version 1.0 72 with Synthetic Biology Open 

Language Visual (SBOLv) notation 73. 

 

Data availability. Sequencing data from RNA-Seq and Ribo-Seq were deposited in the Sequence 

Read Archive (https://www.ncbi.nlm.nih.gov/sra/) under accession number SRP144594. 
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Figures and Captions 
 

 
 
Figure 1: Overview of the workflow. (A) Major steps involved when quantifying transcription 

(RNA-seq) and translation (Ribo-seq) and the additional cellular features measured. Elements 

required for quantification in absolute units are highlighted in red. (B) Model for calculating the 

translation initiation rate of a ribosome binding site (Eq. 2). (C) Model for calculating the termination 

efficiency of a stop codon (Eq. 3). Star denotes the location of the stop codon. (D) Model for 

calculating translational frameshifting efficiency between two coding regions ‘A’ and ‘B’ in zero and –

1 reading frames, respectively (Eq. 4). 
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Figure 2: Measuring translation initiation and termination signals across the E. coli 
transcriptome. (A) Genetic design of the LacZ reporter construct whose expression is activated by 

the inducer IPTG. (B) Normalized RPF count profile averaged for all E. coli transcripts. Profiles 

generated for cells grown in the absence and presence of IPTG (1 mM). Start and stop codons are 

shaded. (C) Bar chart of all measured RBS initiation rates ranked by their strength. Strong RBSs 

with initiation rates >1 ribosome/s are highlighted in red. (D) Distribution of initiation rates for cells 

grown in the absence and presence of IPTG (1 mM). (E) Bar chart of all measured stop codon 

termination efficiencies ranked by their strength. Stop codons with termination efficiency >0.99 are 

highlighted in red. (F) Distribution of stop codon termination efficiencies for cells grown in the 

absence and presence of IPTG (1 mM). 
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Figure 3:  Simultaneous quantification of transcription and translation in a synthetic 
genetic construct. (A) Transcription (bottom) and translation (top) profiles for lacZ, computed from 

the RNA-seq and Ribo-seq data, respectively. Profiles are shown for cells in the absence and 

presence of IPTG (1 mM). Position of genetic parts and gene is shown below the profiles. RBS is 

omitted from the genetic design due to its size. (B) Measured performance of promoter strength in 

RNAP/s units, RBS strength and initiation rate in ribosomes/s units, and the transcriptional 

terminator and stop codon termination efficiency for lacZ. Data shown for cells in the absence and 

presence of IPTG (1 mM). 
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Figure 4: Characterization of a synthetic pseudoknot construct that induces translational 
frameshifting. (A) Genetic design of the PK-LacZ construct. Expanded sequence shows the PK 

secondary structure with the slippery site underlined, as well as the two genes (gene10 and lacZ) in 

differing reading frames. (B) Translation profiles for the PK-LacZ construct in cells cultured in the 

absence (bottom) and presence (top) of IPTG (1 mM). The gene10, middle, and lacZ regions are 

labelled above the profiles. Shaded region denotes the PK, and dashed lines denote the start codon 

and stop codons of gene10 and LacZ. (C) Fraction of the total RPFs and mRNA reads in each 

reading frame for the gene10, PK or middle, and lacZ regions schematically shown below and are of 

the PK-LacZ construct. Data shown separately for cell cultured in the absence and presence of 

IPTG (1 mM). (D) Violin plots of the distributions of fractions of total RPFs and mRNA reads in each 

reading frame for all E. coli transcripts. Median values shown by horizontal bars. *, P = 0.049; **, P = 

1.6 × 10–9. 
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Figure 5: Cellular response to the expression of a synthetic pseudoknot construct. (A) 

Change in expression of chromosomal genes in E. coli cells following induction of PK-lacZ 

expression (1 mM IPTG). Each point represents a transcript. Differentially expressed genes (mRNA 

count: P < 0.001 and absolute log2 fold-change > 1.37; translation efficiency: P < 0.01) are 

highlighted in color and by an alternative point shape (transcriptional regulation: purple cross; 

translational regulation: orange open circle). (B) Venn diagram of genes significantly regulated 

transcriptionally and translationally after induction of the PK-LacZ construct. Colors match those in 

panel A. (C) Change in codon occupancy for cells harboring the PK-LacZ construct after induction 

by IPTG (1 mM) calculated from the Ribo-seq data. Each point corresponds to a codon, which are 

ordered by amino acid identity and then by abundance in the genome (left most abundant, right least 

abundant). Dashed horizontal line denotes no change. Outliers are labelled and highlighted in red 

(Tukey test: 1.5 times the interquartile range below the first quartile or above the third quartile). (D) 

Translation initiation rates for all E. coli RBSs in cells harboring the LacZ and PK-LacZ constructs in 

the absence and presence of IPTG (1 mM). Solid line shows the same initiation rate for both 

conditions. Dotted lines denote linear regressions for the data with no offset. (E) Fractions of mRNA 

reads and RPFs mapping to each synthetic expression construct (LacZ and PK-LacZ) and E. coli 

transcripts, which are divided into three major categories: ribosomal, metabolic, and other functions. 

Data shown for cells cultured in the absence and presence of IPTG (1 mM). 
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