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Abstract 1 

Translation of mRNAs into proteins is a key cellular process. Ribosome binding sites and stop 2 

codons provide signals to initiate and terminate translation, while stable secondary mRNA structures 3 

can induce translational recoding events. Fluorescent proteins are commonly used to characterize 4 

such elements but require the modification of a part’s natural context and allow only a few 5 

parameters to be monitored concurrently. Here, we develop an approach that combines ribosome 6 

profiling (Ribo-seq) with quantitative RNA sequencing (RNA-seq) to enable the high-throughput 7 

characterization of genetic parts controlling translation in absolute units. We simultaneously 8 

measure 743 translation initiation rates and 746 termination efficiencies across the Escherichia coli 9 

transcriptome, in addition to translational frameshifting induced at a stable RNA pseudoknot 10 

structure. By analyzing the transcriptional and translational response, we discover that sequestered 11 

ribosomes at the pseudoknot contribute to a σ32-mediated stress response, codon-specific pausing, 12 

and a drop in translation initiation rates across the cell. Our work demonstrates the power of 13 

integrating global approaches towards a comprehensive and quantitative understanding of gene 14 

regulation and burden in living cells.  15 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2018. ; https://doi.org/10.1101/338939doi: bioRxiv preprint 

https://doi.org/10.1101/338939
http://creativecommons.org/licenses/by-nd/4.0/


	
	

3 

Introduction 16 

Gene expression is a multi-step process involving the transcription of DNA into messenger RNA 17 

(mRNA) and the translation of mRNAs into proteins. To fully understand how a cell functions and 18 

adapts to changing environments and adverse conditions (e.g., disease or chronic stress), 19 

quantitative methods to precisely observe these processes are required (Belliveau et al, 2018). 20 

Gene regulatory networks (also known as genetic circuits) control where and when these processes 21 

take place and underpin many important cellular phenotypes. Recently, there has been growing 22 

interest in building synthetic genetic circuits to understand the function of natural gene regulatory 23 

networks through precise perturbations and/or creating systems de novo (Wang et al, 2016; 24 

Smanski et al, 2016). 25 

In synthetic biology, genetic circuits are designed to control gene expression in a desired 26 

way (Brophy & Voigt, 2014). Circuits have been built to implement a range of digital (Fernandez-27 

Rodriguez et al, 2015; Moon et al, 2012) and analog functions (Daniel et al, 2013), and have been 28 

integrated with endogenous pathways to control cellular behaviors (Tan et al, 2016; Nielsen & Voigt, 29 

2014). The construction of a genetic circuit requires the assembly of many DNA-encoded parts that 30 

control the initiation and termination of transcription and translation. A major challenge is predicting 31 

how a part will behave when assembled with many others (Cardinale et al, 2013). The sequences of 32 

surrounding parts (Poole et al, 2000), interactions with other circuit components or the host cell 33 

(Ceroni et al, 2015; Gyorgy et al, 2015; Cardinale et al, 2013; Gorochowski et al, 2016), and the 34 

general physiological state of the cell (Gorochowski et al, 2014; Wohlgemuth et al, 2013) can all 35 

alter a part’s behavior. Although biophysical models have been refined to capture some contextual 36 

effects (Salis et al, 2009; Espah Borujeni et al, 2013; Seo et al, 2013), and new types of part created 37 

to insulate against these factors (Shendure et al, 2017; Yang et al, 2014; Daniel et al, 2013; Moon et 38 

al, 2012; Siuti et al, 2013; Mutalik et al, 2013), we have yet to reach a point where large and robust 39 

genetic circuits can be reliably built on our first attempt. 40 

Fluorescent proteins and probes are commonly used to characterize the function of genetic 41 

parts (Hecht et al, 2017; Jones et al, 2014) and debug the failure of genetic circuits (Nielsen et al, 42 

2016). When used for characterization, the part of interest is usually placed into a new genetic 43 

backbone (often a plasmid) and its behavior is directly linked to the expression of one or more 44 

fluorescent proteins (Cambray et al, 2013). When debugging a circuit failure, it is not possible to 45 

extract the part of interest as the context of the circuit is important. For circuits that use transcription 46 

rate (i.e. RNAP flux) as a common signal between components (Canton et al, 2008), debugging 47 

plasmids containing a promoter responsive to the signal of interest have been used to track the 48 

propagation of signals and reveal the root cause of failures (Nielsen et al, 2016). Alternatively, any 49 
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genes whose expression is controlled by the part of interest can be tagged by a fluorescent protein 50 

(Snapp, 2005). Such modifications allow for a readout of protein level but come at the cost of 51 

alterations to the circuit. This is problematic as there is no guarantee the fluorescent tag itself will not 52 

affect a part’s function (Baens et al, 2006; Margolin, 2012). 53 

The past decade has seen tremendous advances in sequencing technologies. This has 54 

resulted in continuously falling costs and a growing range of information that can be captured 55 

(Goodwin et al, 2016). Sequencing methods exist to measure chromosomal architecture 56 

(Lieberman-aiden et al, 2009), RNA secondary structure (Lucks et al, 2011), DNA and RNA 57 

abundance (Conesa et al, 2016), and translation efficiency (Ingolia, 2014). New developments have 58 

expanded the capabilities even further towards more quantitve measurements of transcription and 59 

protein synthesis rates with native elongating transcript sequencing (NET-seq) (Mayer et al, 2015) 60 

and ribosome profiling (Ribo-seq) (Li et al, 2014; Ingolia et al, 2009). Ribo-seq provides position-61 

specific information on the translating ribosomes through sequencing of ribosome-protected 62 

fragments (RPFs; approximately 25–28 nt) which allows genome-wide protein synthesis rates to be 63 

inferred with accuracy similar to quantitative proteomics (Li et al, 2014). 64 

Sequencing technologies offer several advantages over fluorescent probes for 65 

characterization and debugging genetic parts and circuits. First, they do not require any modification 66 

of the circuit DNA. Second, they provide a more direct measurement of the processes being 67 

controlled (e.g. monitoring transcription of specific RNAs), and third, they capture information 68 

regarding the host response and consequently their indirect effects on a part’s function. 69 

Furthermore, for large multi-component circuits or synthetic genomes, sequencing is the only way of 70 

gaining a comprehensive view of the system’s behavior, offering a scalable approach which goes 71 

beyond the limited numbers of fluorescent probes that can be measured simultaneously. Recently, 72 

RNA-seq has been used to characterize every transcriptional component in a large logic circuit 73 

composed of 46 genetic parts (Gorochowski et al, 2017). While successful in demonstrating the 74 

ability to characterize genetic part function, observe internal transcriptional states, and find the root 75 

cause of circuit failures, the use of RNA-seq alone restricts the method to purely transcriptional 76 

elements and does not allow for quantification of this process in physically meaningful units. 77 

Here, we address these limitations by combining Ribo-seq with a modified version of RNA-78 

seq to quantitatively characterize genetic parts controlling transcription and translation at a 79 

nucleotide resolution. By supplementing the sequencing data with other experimentally measured 80 

cell parameters, we are able to generate transcription and translation profiles that capture the flux of 81 

RNA polymerases (RNAPs) and ribosomes governing these processes in absolute units. We apply 82 

our method to Escherichia coli and demonstrate how local changes in these profiles can be 83 
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interpreted using biophysical models to measure the performance of five different types of genetic 84 

part in absolute units. Finally, we demonstrate how genome-wide shifts in transcription and 85 

translation can be used to dissect the burden that synthetic genetic constructs place on the host cell 86 

and the role that competition for shared cellular resources, such as ribosomes, plays. 87 

 88 

Results 89 

Generating transcription and translation profiles in absolute units 90 

To enable quantification of both transcription and translation in absolute units, we modified the RNA-91 

seq protocol and extended the Ribo-seq protocol with quantitative measurements of cellular 92 

properties (red elements in Figure 1A). For RNA-seq, we introduced a set of RNA spike-ins to our 93 

samples at known molar concentrations before the random alkaline fragmentation of the RNA (left 94 

panel, Figure 1A). The RNA spike-ins span a wide range of lengths (250–2000 nt) and 95 

concentrations and share no homology with the transcriptome of the host cell (Supplementary 96 

Figure S1). Using the known concentrations of the RNA spike-ins, the mapped reads can be 97 

converted to absolute molecule counts and then normalized by cell counts give absolute transcript 98 

copy numbers per cell (Bartholomäus et al, 2016; Mortazavi et al, 2008) (Materials and Methods). 99 

The total number of transcripts per cell was ~8200 which well correlates with earlier measurements 100 

of ~7800 mRNA copies/per cell using a single spike-in (Bartholomäus et al, 2016). Similar overall 101 

copy numbers have been theoretically predicted (Bremer et al, 2003) and experimentally determined 102 

for another E. coli strain (Taniguchi et al, 2010). For Ribo-seq, we directly ligated adaptors to the 103 

extracted ribosome-protected fragments (RPFs) (Guo et al, 2010) to capture low-abundance 104 

transcripts (Del Campo et al, 2015). Sequencing was also complemented with additional 105 

measurements of cell growth rate, count, and protein mass (right panel, Figure 1A). 106 

A previous method was employed to generate the transcription profiles that capture the 107 

number of RNAPs passing each nucleotide per unit time across the entire genome (i.e. the RNAP 108 

flux). This assumes that RNA levels within the cells have reached a steady-state (Gorochowski et al, 109 

2017) and that all RNAs have a fixed degradation rate (0.0067 s–1) (Chen et al, 2015) so that RNA-110 

seq data, which captures a snapshot of relative abundances of RNAs, can be used to estimate 111 

relative RNA synthesis rates (Gorochowski et al, 2017). Because each RNA is synthesized by an 112 

RNAP these values are equivalent to the relative RNAP flux. By using the known molar 113 

concentrations of the RNA spike-ins and their corresponding RNA-seq reads from our modified 114 

protocol (Supplementary Figure S1), we are able to convert the transcription profiles into RNAP/s 115 

units. Existing biophysical models of promoters and terminators were then used to interpret changes 116 
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in the transcription profiles and infer the performance of these parts in absolute units, similar to 117 

previous work (Gorochowski et al, 2017).  118 

To generate the translation profiles that capture the ribosome flux per transcript, we first took 119 

each uniquely mapped RPF read from the Ribo-seq data and considering the architecture of a 120 

translating ribosome we estimated the central nucleotide of each codon in the ribosomal P site (e.g. 121 

the peptidyl-tRNA site) (Materials and Methods) (Mohammad et al, 2016). By summing these 122 

positions for all reads at each nucleotide x, we computed the RPF coverage N(x). If we assume that 123 

each ribosome translates at a relatively constant speed, which holds true in most cases 124 

(Gorochowski et al, 2015; Li et al, 2014), then the RPF coverage is proportional to the number of 125 

ribosomes at each nucleotide at a point in time and thus captures relative differences in ribosome 126 

flux; more heavily translated regions will have a larger number of ribosomes present and so accrue 127 

a larger number of RPF reads in the Ribo-seq snapshot.  128 

We next needed to convert the RPF coverage into a translation profile whose height 129 

corresponds directly to the ribosome flux in ribosomes/s units. By assuming that each RPF read 130 

corresponds to an actively translating ribosome which synthesizes a full-length protein product and 131 

that the cellular proteome is at steady-state, then the protein copy number for gene i is given by 𝑛" =132 

$%&'
$'&%

. Here, ft is the total number of mapped RPF reads, mt is the total protein mass per cell, and fi 133 

and mi are the number of mapped RPF reads and the protein mass of gene i, respectively. We 134 

measured mt directly (Figure 1A) and calculated mi from the amino acid sequence of gene i 135 

(Materials and Methods). Because proteins are synthesized by incorporating individual amino 136 

acids during the translocation cycle (i.e. by ribosome translocating from the A to P site), the 137 

replication of the entire proteome requires 𝑟) = ∑ 𝑛"𝑎""  ribosome translocations, where ai is the 138 

number of amino acids in the protein encoded by gene i. Assuming that cells are growing at a 139 

constant rate with doubling time td, then the total ribosome flux across the entire transcriptome per 140 

unit time is given by 𝑞 = 3𝑟)/𝑡0. The factor of three accounts for ribosomes translocating at three-141 

nucleotide registers (i.e. 1 codon/s = 3 nt/s). Finally, the translation profile for nucleotide x is 142 

calculated by multiplying the total ribosome flux q by the fraction of active ribosomes N(x)/ft at that 143 

position and normalizing by the number of transcripts per cell of the gene being translated mx, 144 

computed from the RNA-seq data (Figure 1A). This gives, 145 

𝑅(𝑥) = 5∙7(8)
&9$'

.              (1) 146 

Importantly, because both the transcription and translation profiles are given in absolute units 147 

(RNAP/s and ribosomes/s, respectively), they can be directly compared across samples without any 148 

further normalization. 149 
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 150 

Characterizing genetic parts controlling translation 151 

Genetic parts controlling translation alter ribosome flux along a transcript and these changes are 152 

captured by the translation profiles. We developed biophysical models to interpret these signals and 153 

quantify the performance of RBSs, stop codons and translational recoding (e.g. ribosome 154 

frameshifting) in open reading frames (ORFs) at stable secondary structures. 155 

In prokaryotes, RBSs facilitate translation initiation and cause a jump in the translation profile 156 

after the start codon of the associated gene due to an increase in ribosome flux originating at that 157 

location (Figure 1B). If initiation is rate limiting (Li et al, 2014), then the translation initiation rate of 158 

an RBS (in ribosomes/s units) is given by the increase in ribosome flux downstream of the RBS, 159 

𝛿𝑅 = 	∑ <(")=>(")
(8?=8@)

8?
"A8@ − ∑ <(")=>C=>D

E
8F
"A8F=E 	.          (2) 160 

Here, x0 is the start point of the RBS, and xs and xe are the start and end point of the protein coding 161 

region associated with the RBS, respectively (Figure 1B). A window of n = 30 nt (10 codons) was 162 

used to average fluctuations in the translation profile upstream of the RBS; the averaging window is 163 

equal to the approximate length of a ribosome footprint. If the transcription start site (TSS) of the 164 

promoter expressing this transcript fell in the upstream window, then the start point (x0 – n) was 165 

adjusted to the TSS to ensure that the incoming ribosome flux is not underestimated. A similar 166 

change was made if the coding sequence was within an operon and the end of an upstream gene 167 

falls in this window. In this case, the start point was adjusted to 9 nt (3 codons) downstream of the 168 

stop codon of the overlapping gene. We also included correction factors to remove the effect of 169 

translating ribosomes upstream of the RBS that are not in the same reading frame as the RBS-170 

controlled ORF, and therefore may not fully traverse the coding sequence due to out-of-frame stop 171 

codons. These are given by, 172 

𝑐= = 	∑ <(8F=EHI"HJ)
(8F=E)/I

(8F=E)/I
"AK ,             (3) 173 

𝑐H = 	∑ <(8F=EHI"HL)
(8F=E)/I

(8F=E)/I
"AK ,             (4) 174 

𝐶(𝑥) = N

𝑐= + 𝑐H	,					𝑥 < 𝑠= ∧ 𝑥 < 𝑠H
𝑐=	,					𝑥 < 𝑠= ∧ 𝑥 ≥ 𝑠H
𝑐H	,					𝑥 ≥ 𝑠= ∧ 𝑥 < 𝑠H
0	,					otherwise

            (5) 175 

where s– and s+ are the positions of the first out-of-frame stop codon downstream of x0 – n in the –1 176 

and +1 reading frame, respectively. c– and c+ capture the average out-of-frame ribosome flux in the 177 

region upstream of the RBS in the –1 and +1 reading frame, respectively, and C(x) calculates the 178 

total sum of these ribosome fluxes that would reach nucleotide x downstream of the RBS. 179 
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In eukaryotes, genes are generally monocistronic and translation initiation occurs through 180 

scanning of the 5’ untranslated region (5’-UTR) by the 43S preinitiation complex until a start codon is 181 

reached. This allows a translation-competent 80S ribosome to assemble and translation elongation 182 

to begin (Jackson et al, 2010). In this case, no ribosome flux is generated by upstream genes. 183 

Therefore, when calculating the initiation rate of a 5’-UTR, the second term in Equation 2 and the 184 

correction factors are set to zero (i.e. 𝛿𝑅 = 	∑ <(")
(8?=8@)

8?
"A8@ ).  185 

Ribosomes terminate translation and disassociate from a transcript when a stop codon (TAA, 186 

TAG or TGA) is encountered. This leads to a drop in the translation profile at these points (Figure 187 

1C). Although this process is typically efficient, there is a rare chance that some ribosomes may 188 

read through a stop codon and continue translating downstream (Arribere et al, 2016). Assuming 189 

that all ribosomes translating the protein coding region are in-frame with the associated stop codon 190 

and do not frameshift prior to it, then the termination efficiency of the stop codon (i.e. the fraction of 191 

ribosomes terminating) is given by, 192 

𝑇_ = 1 −
∑ <(") E⁄9bDc
%d9b

∑ <(") (8e=8@)⁄9F
%d9@

 ,            (6) 193 

where x0 and x1 are the start and end nucleotide of the stop codon, respectively, xs is the start of the 194 

coding region associated to this stop codon, and n = 30 nt (10 codons) is the window, with the same 195 

width as described above, used to average fluctuations in the translation profile downstream of the 196 

stop codon (Figure 1C). If additional stop codons are present in the downstream window, the end 197 

point of this window (x1 + n) was adjusted to ensure that the termination efficiency of only the (first) 198 

stop codon was measured. A similar adjustment was made if the end of a transcript generated by an 199 

upstream promoter ends within this window. 200 

 Translation converts the information encoded in mRNA into protein whereby each triplet of 201 

nucleotides (a codon) is translated into a proteinogenic amino acid. Because of the three-nucleotide 202 

periodicity in the decoding, each nucleotide could be either in the first, second or third position of a 203 

codon, thus defining three reading frames for every transcript. Consequently, a single mRNA 204 

sequence can encode three different proteins. Although synthetic biology rarely use multiple reading 205 

frames, natural systems exploit this feature in many different ways (Giedroc & Cornish, 2009; 206 

Condron et al, 1991a; Tsuchihashi & Kornberg, 1990; Bordeau & Felden, 2014). In our workflow, the 207 

RPFs used to generate the translation profiles were aligned to the middle nucleotide of the codon 208 

residing in the ribosomal P site, providing the frame of translation. To characterize genetic parts that 209 

cause translational recoding through ribosomal frameshifting, we compared regions directly before 210 

and after the part. Strong frameshifting will cause the fraction of RPFs to shift from the original frame 211 

to a new one when comparing these regions with the frameshifting efficiency given by, 212 
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𝐹_ = 1 −
∑ <(") (8?=8b)⁄9?
%d9b
∑ <(") (8e=8@)⁄9F
%d9@

 .            (7) 213 

Here, x0 is the nucleotide at the start of the region where frameshifting occurs, and x1 is the end 214 

nucleotide of the stop codon for the first coding sequence (Figure 1D). 215 

 216 

Measuring genome-wide translation initiation and termination in Escherichia coli 217 

We applied our approach to Escherichia coli cells harboring a lacZ gene whose expression is 218 

induced using isopropyl β-D-1-thiogalactopyranoside (IPTG) (Figure 2A). After induction for 10 min, 219 

lacZ expression reached 14% of the total cellular protein mass (Supplementary Table S1). 220 

Samples from non-induced and induced cells were subjected to the combined sequencing workflow 221 

(Figure 1A). Sequencing yielded between 41–199 million reads per sample (Supplementary Table 222 

S2) with no measurable bias across RNA lengths and concentrations (Supplementary Figure S1), 223 

and a high correlation in endogenous gene expression between biological replicates (R2 > 0.96; 224 

Supplementary Figure S2). 225 

Transcription and translation profiles were generated from this data and used to measure 226 

translation initiation rates of RBSs and termination efficiencies of stop codons across the genome. 227 

To remove the bias due to the RPF enrichment in the 5’-end of coding regions (Ingolia et al, 2009) 228 

(Figure 2B), xs was adjusted to 51 bp (17 codons) downstream of the start codon when estimating 229 

average ribosome flux across a coding region in Equations 2 and 6. To determine whether 230 

translation rates were constant across each gene, we compared the number of RPFs mapping to 231 

the first and second half of each coding region. This is a necessary condition for our models to 232 

ensure that changes in the height of a translation profile between two different points is purely a 233 

result of initiating or terminating ribosomes. If the speed of a translating ribosome varies along a 234 

transcript, then regions of slower movement would be enriched in RPFs, resulting in an increase in 235 

the translation profile at those points. This would make it is impossible from the translation profile 236 

alone to distinguish between changes in ribosome speed and the rate of initiation/termination 237 

events. If the ribosomes traverse the coding sequence at a constant speed, then the two halves of a 238 

transcript should have a near identical RPF coverage. We found a high correlation between both 239 

halves for non-induced and induced cells suggesting a constant speed of the ribosomes across the 240 

coding sequences (Supplementary Figure S3). 241 

 We characterized chromosomal RBSs in E. coli by assuming that each covered a region 242 

spanning 15 bp upstream of the start codon. The translation initiation rates of the 761 RBSs we 243 

measured varied over two orders of magnitude with a median initiation rate of 0.1 ribosome/s 244 

(Figure 2C; Supplementary Data S1). This closely matches previously measured rates for single 245 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2018. ; https://doi.org/10.1101/338939doi: bioRxiv preprint 

https://doi.org/10.1101/338939
http://creativecommons.org/licenses/by-nd/4.0/


	
	

10 

genes (Kennell & Riezman, 1977). A few RBSs mostly related to stress response functions (tabA, 246 

hdeA, uspA, uspG), the ribosomal subunit protein L31 (rpmE), and some unknown genes (ydiH, 247 

yjdM, yjfN, ybeD), reached much higher rates of up to 2.45 ribosomes/s. 248 

To estimate termination efficiency at chromosomal stop codons, we considered that they 249 

spanned 9 nt up and downstream of the stop codon (Figure 2B). We also excluded overlapping 250 

genes and those bearing internal sites that promote frameshifting, both of which break the 251 

assumptions of our model (Baggett et al, 2017). In total, the termination efficiency of 746 stop 252 

codons was measured and their median termination efficiency across the genome was found to be 253 

0.987, with 336 of them (45% of all measured) having termination efficiencies >0.99 (Figure 2D; 254 

Supplementary Data S2). Similar performance for both RBSs (R2 = 0.84) and terminators (R2 = 255 

0.52) was found between non-induced and induced conditions (Figures 2E and 2F; Supplementary 256 

Data S1 and S2). 257 

 258 

Quantifying differences in transcription and translation of endogenous and synthetic genes 259 

The quantitative measurements produced by our methodology allow both transcription and 260 

translation to be monitored simultaneously. To demonstrate this capability, we first focused on 261 

differences in the contributions of transcription and translation to overall protein synthesis rates of 262 

endogenous genes in E. coli. For each gene we calculated the protein synthesis rate by multiplying 263 

the transcript copy number by the RBS-mediated translation initiation rate per transcript. We found a 264 

strong correlation with previously measured synthesis rates (Li et al, 2014) (Figure 3A). We also 265 

extracted the transcription and translation profiles of three genes (uspA, ompA and gapA) whose 266 

protein synthesis rate was similar, but whose expression was controlled differently at the levels of 267 

transcription and translation (Figures 3B). Quantification of the promoters and RBSs for these three 268 

genes showed more than an order of magnitude difference in their transcription and translation 269 

initiation rates; uspA was weakly transcribed and highly translated, ompA was highly transcribed and 270 

weakly translated, and gapA was moderately transcribed and translated (Figure 3C). 271 

Because we measure transcription and translation initiation rates in absolute units, it was 272 

also possible to determine their relative contribution to the final synthesis rate by calculating the ratio 273 

of transcription and translation initiation rates, giving RNAPs/ribosomes. High RNAP/ribosome 274 

values relate to genes whose expression is mostly controlled by transcription, while low values 275 

correspond to a greater contribution by translation. This analysis revealed a non-uniform split with a 276 

trend for weakly expressed genes to be mostly governed by translation, while strongly expressed 277 

genes were mostly controlled by transcription (Figure 3A).  278 
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These different modes of gene expression have a major influence on the efficiency of protein 279 

synthesis (Ceroni et al, 2015) and can influence the variability in protein levels between cells (Raser 280 

& O’Shea, 2005). For example, the most metabolically efficient way to strongly express a protein of 281 

interest is by producing very high numbers of transcripts (high transcription initiation rate and stable 282 

transcript) with a relatively weak RBS (low translation initiation rate). This ensures that each 283 

ribosome initiating on a transcript has a very low probability of colliding with others, guaranteeing 284 

efficient translation elongation. Indeed, we observe this efficient expression strategy is enriched for 285 

strongly expressed endogenous genes (Figure 3A). 286 

 We next sought to demonstrate the ability to measure dynamic changes in the function of 287 

regulatory parts using the LacZ construct. We quantified the inducible promoter and terminator 288 

controlling transcription, and the RBS and stop codon controlling translation when the inducer IPTG 289 

was absent and present. The transcription and translation profiles clearly showed the beginning and 290 

end of both the transcript and protein coding region, with sharp increases and decreases at 291 

transcriptional/translational start and stop sites (Figure 3D). Induction caused a large increase in the 292 

number of lacZ transcripts from 0.18 to 110 copies per cell, which was directly observed in the 293 

transcription profiles. In contrast, the translation profiles remained stable across conditions. The Ptac 294 

promoter initiated transcription at a rate of 0.0009 RNAP/s in the absence and 0.73 RNAP/s in the 295 

presence of IPTG (1 mM) (Figure 3E). The RBS for the lacZ gene had consistent translation 296 

initiation rates of between 0.21 and 0.35 ribosomes/s, respectively (Figure 3E). It may seem 297 

counterintuitive to observe translation without IPTG induction because very few transcripts will be 298 

present. However, leaky expression from the Ptac promoter was sufficient to capture enough RPFs 299 

during sequencing to generate a translation profile. It should be noted that the translation profile 300 

represents the ribosome flux per transcript, thus its shape was nearly identical to that when the Ptac 301 

promoter was induced. Like the RBS, both the transcriptional terminator and stop codon showed 302 

similar efficiencies of 0.93–0.95 and 0.9–0.93, respectively (Figure 3E). 303 

 304 

Characterizing a synthetic pseudoknot that induces translational recoding 305 

Pseudoknots (PKs) are stable tertiary structures that regulate gene expression. They are frequently 306 

combined with slippery sequences in compact viral genomes to stimulate translational recoding and 307 

produce multiple protein products from a single gene (Giedroc & Cornish, 2009; Brierley et al, 2007; 308 

Sharma et al, 2014; Tsuchihashi & Kornberg, 1990). The percentage of recoding events generally 309 

reflects the stoichiometry of the translated proteins (e.g. capsule proteins for virus assembly), and 310 

helps overcome problems where the stochastic nature of transcription and translation make 311 

maintenance of specific ratios difficult (Condron et al, 1991a). PKs are the most common type of 312 
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structure used to facilitate mostly –1 frameshifting (Atkins et al, 2016) and in much rarer cases +1 313 

frameshifting (e.g., in eukaryotic antizyme genes) (Ivanov et al, 2004). PKs consist of a hairpin with 314 

an additional loop that folds back to stabilize the hairpin via extra base pairing (Figure 4A). In 315 

addition to stimulating recoding events, PKs regulate translational initiation, where they interfere with 316 

an RBS through antisense sequences that base pair with the RBS (Unoson & Wagner, 2007; 317 

Bordeau & Felden, 2014). They also act as an evolutionary tool, reducing the length of sequence 318 

needed to encode multiple protein coding regions and therefore act as a form of genome 319 

compression.  320 

Two elements signal and stimulate frameshifting. The first is a slippery site consisting of a 321 

heptanucleotide sequence of the form XXXYYYZ which enables out-of-zero-frame paring in the A or 322 

P site of the ribosome, facilitating recoding events. The second is a PK situated 6–8 nt downstream 323 

of the slippery site. In bacteria, the distance between the slippery site and the 5’-end of the PK 324 

positions mRNA in the entry channel of the 30S ribosomal subunit, enabling contact with the PK 325 

which pauses translation and provides an extended time window for frameshifting to occur (Giedroc 326 

& Cornish, 2009).  327 

To demonstrate our ability to characterize this process, we created an inducible genetic 328 

construct (referred to as PK-LacZ) that incorporated a virus-inspired PK structure within its natural 329 

context (gene10) fused to lacZ in a –1 frame (Figure 4A) (Tholstrup et al, 2012). A slippery site 330 

UUUAAAG preceded the PK. Gene10 of bacteriophage T7 produces two proteins, one through 331 

translation in the zero frame and one through a –1 frameshift; both protein products constitute the 332 

bacteriophage capsid (Condron et al, 1991b). We generated translation profiles to assess ribosome 333 

flux along the entire construct (Figure 4B). These showed high-levels of translation up to the PK 334 

with a major drop of 80–90% at the PK to the end of the gene10 coding region, and a further drop of 335 

~97% after this region (Figure 4B). To analyze frameshifting within gene10, we divided the 336 

construct into three regions: (1) the gene10 gene up to the slippery site, (2) the middle region, which 337 

covers the slippery site along with the PK up to the gene10 stop codon, and (3) the downstream 338 

lacZ gene in a –1 frame. For each region, we calculated the fraction of RPFs in each frame as a 339 

total of all three possible frames. We found that the zero and –1 frames dominate the gene10 and 340 

lacZ regions, respectively, with >46% of all RPFs being found in these frames (top row, Figure 4C). 341 

The middle region saw a greater mix of all three, and the zero-frame further dropped in the lacZ 342 

region. This is likely due to a combination of ribosomes that have passed the PK successfully and 343 

terminated in zero-frame at the end of gene10 and those that have frameshifted. Similar results 344 

were found with and without induction by IPTG (Figure 4C). An identical analysis of the reading 345 

frames from the RNA-seq data revealed that no specific frame was preferred with equal fractions of 346 
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each (bottom row, Figure 4C). This suggests that the reading frames recovered for the RPFs were 347 

not influenced by any sequencing bias. We further tested if the major translation frame could be 348 

recovered by analyzing the entire genome and measured the fraction of each frame across every 349 

gene. The correct zero-frame dominated in most cases (Figure 4D). 350 

Finally, to calculate the efficiency of frameshifting by the PK, we compared the density of 351 

RPFs per nucleotide for the middle and lacZ regions. Because the PK causes ribosome stalling, the 352 

assumption of constant ribosome speed is broken for the gene10 region upstream of the PK. 353 

Therefore, when calculating the frameshifting efficiency using Equation 7, xs and x0 were set to the 354 

start and end nucleotide of the middle region, directly downstream of the PK where pausing was not 355 

expected to occur. We found that the PK caused 2–3% of ribosomes to frameshift, ~3-fold less than 356 

the 10% reported for the PK in its natural context (Condron et al, 1991a). 357 

 358 

Cellular response to a strong synthetic pseudoknot 359 

Expression of strong PKs can severely impact cell growth, but the reason for this remains unclear 360 

(Tholstrup et al, 2012). We observed a large number of RPF reads within the gene10 region (Figure 361 

4B) and many of these reads capture stalled ribosomes. Stalling increases the abundance of 362 

partially synthesized protein products but also limits the availability of translational resources, raising 363 

the question as to whether expression of the PK-LacZ construct elicits cellular stress by 364 

sequestering ribosomes. To better understand the burden that expression of both lacZ and PK-lacZ 365 

exhibited on the cell, we compared shifts in transcription (i.e. mRNA counts) and translation 366 

efficiency (i.e. density of ribosome footprints per mRNA) of endogenous genes following induction 367 

with IPTG (Figure 5A; Supplementary Data S3). No major changes were observed for the LacZ 368 

construct (Figure 5A). In contrast, the PK-LacZ construct caused significant shifts in the expression 369 

of 491 genes (Supplementary Data S4). Of these, 341 were transcriptionally (i.e. significant 370 

changes in mRNA counts) and 204 translationally regulated (i.e. significant changes in translational 371 

efficiency), with little overlap (54 genes) between the two types of regulation (Figure 5B). Of the 372 

transcriptionally regulated genes, most saw a drop in mRNA counts, while translationally regulated 373 

genes were split between increasing and decreasing translational efficiencies. Gene ontology (GO) 374 

analysis revealed a clustering of transcriptionally downregulated genes in categories mostly linked to 375 

translation, e.g. ribosomal proteins, amino acid biosynthesis, amino acid activation (aminoacyl 376 

synthetases), and genes involved in respiration and catabolism (Supplementary Data S5). 377 

Transcriptionally upregulated genes were associated with ATP binding, chaperones (ftsH, lon, clpB, 378 

dnaJK, groLS, htpG), ion binding, proteolytic activities (ftsH, prlC, htpX), and an endoribonuclase 379 

(ybeY). Interestingly, the expression of all of these are under σ32 regulation which is the most 380 
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common regulatory mode to counteract heat stress. σ32 upregulation is often observed by 381 

expressing synthetic constructs, although the precise mechanism of σ32 activation is not known 382 

(Ceroni et al, 2018). In our case, the incompletely synthesized polypeptides from the stalled 383 

ribosomes on the PK-LacZ mRNA are most likely partially folded or misfolded and generate 384 

misfolding stress similar to the heat shock response.  Binding of the major E. coli chaperone 385 

systems, DnaK/DnaJ and GroEL/S, to the misfolded proteins negatively regulates  σ32. The shift of 386 

the chaperones to misfolded proteins releases σ32, which then binds to the RNA polymerases and 387 

induces expression of heat shock genes (Mogk et al, 2011; Guisbert et al, 2004). This notion is 388 

supported by the fact that dnaJ, groL/S, and grpE were transcriptionally upregulated during PK 389 

induction as well as ftsh, which encodes the protease that degrades σ32. 390 

To test whether PK-lacZ expression caused changes in translation dynamics (e.g. ribosome 391 

pausing at particular codons), we next computed the dwell time of ribosomes at each codon (also 392 

known as codon occupancy) across the genome and compared it to that without inducing PK-lacZ 393 

expression (Lareau et al, 2014). Notable increases in occupancy were found for the codons AGA, 394 

CTA, CCC, TCC, which encode for arginine, leucine, proline and serine, respectively (Figure 5C). 395 

All of these codons are rarely used in the genome for their cognate amino acid but were found in 396 

higher proportions across gene10. For example, the CTA codon that codes for leucine is only used 397 

by 4% of codons in the genome, while accounting for 8% of the gene10 region. Coupled with the 398 

strong expression of gene10, the stress induced by this abnormal demand on cellular resources 399 

would be amplified. 400 

The broad shifts in regulation at a cellular-scale and changes in codon occupancy suggest 401 

that PK-lacZ expression may significantly limit the availability of shared cellular resources. From a 402 

translational perspective, this would manifest as a cell-wide drop in translation initiation rates as the 403 

pool of free ribosomes would be reduced (Gorochowski et al, 2016). To test this hypothesis, we 404 

compared the RBS initiation rates of endogenous genes before and after induction of lacZ and PK-405 

lacZ expression and found a consistent reduction across all genes for both synthetic constructs 406 

(Figure 5D; Supplementary Data S1). While relatively small for the LacZ construct (18%) where no 407 

notable stress response was detected, the PK-LacZ construct triggered a large (43%) drop in 408 

translation initiation rates across the cell (Figure 5D). Analysis of the transcriptome composition and 409 

distribution of engaged ribosomes across cellular transcripts further revealed that the PK-LacZ 410 

construct made up 40% of all mRNAs and captured 47% of the shared ribosome pool engaged in 411 

translation (Figure 5E). This would account for the global drop in translation initiation rates and 412 

misfolding stress induced by the partially translated proteins from gene10 transcripts, explaining the 413 

strong σ32-mediated response. 414 
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We also observed a large difference in the number of transcripts for each construct after 415 

induction; the lacZ transcripts were 43-fold lower than those for PK-lacZ (81 vs. 3504 transcripts/cell, 416 

respectively). Such a difference is unlikely to occur solely through an increased transcription 417 

initiation rate at the Ptac promoter. Previous studies have shown that the decay rate of the lacZ 418 

transcript is highly dependent on the interplay between transcription and translation rates (Yarchuk 419 

et al, 1992; Makarova et al, 1995; Iost & Dreyfus, 1995). RNase E sites within the coding region 420 

become accessible to cleavage by RNase E when translation initiation rates are low because fewer 421 

translating ribosomes are present to sterically shield these sites and prevent degradation (Yarchuk 422 

et al, 1992). This mechanism could account for the lower lacZ transcript numbers, which in turn 423 

would reduce the number of sequestered ribosomes translating lacZ mRNAs and explain the lack of 424 

a stress response for this construct. 425 

 426 

Discussion 427 

In this work, we present new approach to quantify transcription and translation in living cells at a 428 

nucleotide resolution. This is based on a deep-sequencing workflow that combines a modified 429 

version of RNA-seq and Ribo-seq with measures of key cellular parameters and uses biophysical 430 

models to interpret this data (Figure 1). We show that our high-throughput approach is able to 431 

simultaneously characterize the translation initiation rate of 743 RBSs and termination efficiency of 432 

746 stop codons across the E. coli transcriptome (Figure 2), in addition to measuring the precise 433 

behavior of the genetic parts controlling transcription and translation of several endogenous genes 434 

and a synthetic genetic construct that expresses lacZ (Figure 3). Because our methodology is 435 

based on sequencing, it can scale beyond the number of simultaneous measurements that are 436 

possible with common fluorescence-based approaches, and through the use of spike-in standards 437 

we are able to extract part parameters in absolute units (i.e. transcription and translation rates in 438 

RNAP/s and ribosomes/s units, respectively).  439 

To demonstrate the ability to quantitatively assess various translational processes that have 440 

been difficult to measure, we studied the behavior of a genetic construct that contains a strong virus-441 

inspired PK structure that induces a translational frameshift (Figure 4). Following expression of PK-442 

lacZ, the main reading frame shifts, but the efficiency is ~3-fold lower than the PKs native viral 443 

context. In contrast to lacZ expression, PK-lacZ also causes a major burden to the cell, sequestering 444 

a large proportion of the shared gene expression machinery, e.g. ribosomes (Figure 5). We observe 445 

transcriptome-wide increases in ribosome dwell times at codons rare for the E. coli endogenous 446 

genes, but more frequent in the synthetic construct, suggesting that the strong expression of this 447 

gene places significant demands on the translational resources of the cell. This burden also results 448 
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in significant changes in gene regulation (both transcriptional and translational), which was mediated 449 

by the alternative polymerase subunit, σ32 that remodels the bacterial proteome following thermal 450 

stress (Guo & Gross, 2014a). The likely cause of σ32 activation is a combination of strong 451 

overexpression of gene10 and misfolding stress triggered by partial unfolding of incompletely 452 

synthesized polypeptides (Giedroc & Cornish, 2009; Guo & Gross, 2014b).  To our knowledge the 453 

stress response induced by a strong pseudoknot has not been reported before making this work a 454 

valuable data set for future studies. 455 

Previous studies have used sequencing to investigate translational regulation. Ribo-seq was 456 

employed by Li et al. (Li et al, 2014) to measure the protein synthesis rate of 3,041 genes and by 457 

Baggett et al. (Baggett et al, 2017) to analyze translation termination at 1200 stop codons. However, 458 

unlike our approach, which is calibrated by external RNA spike-in standards, these previous studies 459 

had no means of assessing the sensitivity of their measurements. Measuring the variability of 460 

several different RNA spike-in molecules at similar known molar concentrations allows us to 461 

accurately calculate a detection limit, emphasizing the benefit of including external standards in 462 

sequencing experiments. 463 

A limitation of our approach is that the models underpinning the generation and interpretation 464 

of the transcription and translation profiles rely on some key assumptions that may not always hold 465 

true. For the transcription profiles to accurately capture RNAP flux it is essential that the system has 466 

reached a steady-state because RNA-seq only measures RNA abundance at a single point in time 467 

and not directly the rate of RNA production (Gorochowski et al, 2017). While this assumption is valid 468 

for cells that have been exponentially dividing for several generations, rapidly changing RNA 469 

production or degradation rates (e.g. through increased expression of degradation machinery or a 470 

change in growth phase) may cause issues. Furthermore, for quantification of absolute transcript 471 

numbers, while the RNA spike-ins will undergo the same depletion during sequencing library 472 

preparation, it is necessary to assume that the total RNA from the cells is efficiently extracted prior 473 

to this step. Incomplete cell lysis or low-efficiency RNA extraction would require a further correction 474 

during the quantification process. 475 

For the translation profiles, the key assumptions are that every ribosome footprint gives rise 476 

to a full-length protein and that translation elongation globally proceeds at a near uniform speed 477 

along all transcripts. Translation is a complex multi-step process and can be affected by ribosome 478 

pausing (e.g. due to amino acid charge) (Charneski & Hurst, 2013), premature termination 479 

(Freistroffer et al, 2000), and environmental conditions that alter cell physiology (Bartholomäus et al, 480 

2016) or the global availability of cellular resources (e.g. ribosomes, tRNAs, amino acids) (Dong et 481 

al, 1996; Wohlgemuth et al, 2013; Gorochowski et al, 2016). Although these factors normally have 482 
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only a small effect (Ingolia et al, 2009; Li et al, 2014), significant genome-wide shifts induced by 483 

long-term chronic stress can increase their occurrence and potentially alter translation elongation 484 

speed and processivity in a non-uniform way (Bartholomäus et al, 2016). Our calculation of absolute 485 

protein synthesis rates also relies on the assumption that proteins are stable with dilution by cell 486 

division dominating their degradation rate (Li et al, 2014). This holds for most proteins, but care 487 

should be taken under stress conditions or for synthetic constructs where the proteome is heavily 488 

modified (e.g. by overexpressing proteases). 489 

Being able to measure RNAP and ribosome flux across multi-component genetic circuits 490 

offers synthetic biologists a powerful tool for designing and testing new living systems (Nielsen et al, 491 

2016; Gorochowski et al, 2017). These capabilities are particularly useful for large genetic circuits 492 

where many parts must function together to generate a required phenotype. Ideally, complex circuits 493 

are built by readily connecting simpler parts together. In electronics this is made possible by using 494 

the flow of electrons as a common signal that captures the state at every point in a circuit. This 495 

signal can be easily routed between components using conductive wires to create more complex 496 

functionalities. In genetic circuits, RNAP and ribosome fluxes can serve a similar role acting as 497 

common carrier signals (Canton et al, 2008; Brophy & Voigt, 2014). Promoters and RBSs guide 498 

these signals to particular points in a circuit’s DNA/RNA and allow them to propagate and be 499 

transformed. 500 

The ability to easily connect large numbers of genetic parts allows for the implementation of 501 

more complex functionalities, but can also lead to fragile circuits that break easily (Nielsen et al, 502 

2016). This is particularly common for those that use components with sharp switch-like transitions 503 

(e.g. repressors with high cooperativity) (Nielsen et al, 2016). These types of part can lead to 504 

situations where although the output of the circuit behaves as desired, it becomes highly sensitive to 505 

changes in growth conditions or the inclusion of other genetic components (Gorochowski et al, 506 

2017). This problem arises because the state of these parts can fall close to their sharp transition 507 

point allowing for minor perturbations to cause large deviations in expression that then propagate to 508 

the output of the circuit. The only way to ensure the robustness of such systems is to measure every 509 

internal state (Gorochowski et al, 2017) or to implement feedback control within the circuit itself to 510 

enable self-regulation (Ceroni et al, 2018). The ability to monitor every element in a circuit also 511 

makes our approach valuable when elucidating the root cause of failures. Instead of time-consuming 512 

tinkering with a circuit until the problem is found, our method allows doe targeted modifications that 513 

precisely correct malfunctioning parts, accelerating developments in the field (Gorochowski et al, 514 

2017). 515 
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Mature engineering fields rely on predictive models to efficiently develop complex systems 516 

by reducing the need to physically construct and test each design. To date, the accuracy of models 517 

in synthetic biology have been hampered by a lack of reliable, quantitative and high-throughput 518 

measurements of genetic parts and devices, as well as their effects on the host cell. Attempts have 519 

been made to improve this situation by using standard calibrants to increase reproducibility across 520 

labs and equipment (Castillo-Hair et al, 2016; Davidsohn et al, 2015; Beal et al, 2016) and by 521 

including synthetic RNA spike-ins to enable absolute quantification of transcription (Owens et al, 522 

2016). Our methodology complements these efforts by combining RNA-seq and Ribo-seq with RNA 523 

spike-in standards to quantify the regulation of transcription and translation by genetic circuits. The 524 

importance of pushing biology towards measurements in absolute units has also seen growing 525 

interest (Justman, 2018) and is becoming widely recognized as essential for developing mechanistic 526 

models that can support reliable predicative design (Jones et al, 2014; Belliveau et al, 2018; Endy et 527 

al, 2000). To demonstrate why, it is important to realize that many behaviors are intrinsically linked 528 

to their absolute scale. For example, the stochastic nature of biochemical reactions means that the 529 

inherent noise when only a few molecules are present will be far greater than when there are many. 530 

Therefore, knowing if one arbitrary unit corresponds to one or 10,000 molecules is essential if the 531 

models are to hold any predictive power as to the expected variability. The use of absolute 532 

measurements in mechanistic models of biological parts (Belliveau et al, 2018; Jones et al, 2014) 533 

and entire genetic systems (Endy et al, 2000) has already seen some success. 534 

As we attempt to implement ever more complex functionalities in living cells (Nielsen et al, 535 

2016) and push towards a deeper understanding of the processes sustaining life, scalable and 536 

comprehensive methodologies for quantitative measurement of fundamental processes become 537 

paramount. Such capabilities will move us beyond a surface-level view of living cells to one that 538 

allows the exploration of their inner most regulation and homeostasis. 539 

 540 

Materials and Methods 541 

Strains, media, and inducers. The E. coli K12 strain, [K-12, recA1 ∆(pro-lac) thi ara F’:lacIq1 542 

lacZ::Tn5 proAB+], harbours a pBR322-derived plasmid containing either lacZ with a fragment insert 543 

that contains a truncated lac operon with the Ptac promoter and the wildtype lacZ under lacI control, 544 

or a pseudoknot-lacZ (PK-lacZ) consisting of gene10, a virus-derived RNA pseudoknot (Tholstrup et 545 

al, 2012), 22/6a, fused upstream of the lacZ. Bacteria were grown in MOPS minimal medium 546 

supplemented with 0.4% glycerol, 2.5 μg/ml vitamin B1, 100 μg/ml ampicillin, 20 μg/ml kanamycin 547 

and additionally 50 μg/ml arginine for the lacZ expressing strain. The cells were grown for at least 10 548 

generations at 37°C to ensure stable exponential growth before induction. 549 
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 550 

Gene expression and preparation of the sequencing libraries. LacZ and PK-lacZ expression were 551 

induced with isopropyl β-D-1-thiogalactopyranoside (IPTG) to a final concentration of 1 mM at OD600 552 

≈ 0.4 for 10 min and 15 min, respectively. One aliquot of each culture was used to isolate RPFs and 553 

prepare the cDNA library for Ribo-seq as described in Bartholomäus et al. (Bartholomäus et al, 554 

2016) In parallel, from another aliquot, total RNA was isolated with TRIzol (Invitrogen) and subjected 555 

to random alkaline fragmentation for RNA-seq as described in Bartholomäus et al. (Bartholomäus et 556 

al, 2016) Different than the previous protocol, prior to alkaline fragmentation, the total RNA was 557 

spiked in with RNA standards (ERCC RNA Spike-In Mix; Ambion) which were used to (a) determine 558 

the detection limit in each data set and (b) calculate the copy numbers per cell. The RNA standards 559 

consist of 92 different transcripts, covering lengths of 250-2000 nt and approximately a 106-fold 560 

concentration range. Detection threshold (RPKM) has been set at values with a linear dependence 561 

between the reads from the spike-in controls and concentration in each RNA-Seq data set. Spike-ins 562 

with linear correlation were used in the copy number analysis (Supplementary Figure S1). Total 563 

protein concentration (grams of wet mass per ml culture) were determined by the Bradford assay 564 

using serial dilutions of the exponentially growing cells at different time points (e.g. prior the 565 

induction time at OD 0.4 and following induction with 1 mM IPTG). Using the cell number and the 566 

volume of E. coli as 1 femtoliter, the protein mass was recalculated as grams of wet protein mass 567 

per cell.  568 

  569 

Processing of sequencing data. Sequenced reads were quality trimmed using fastx-toolkit version 570 

0.0.13.2 (quality threshold: 20), sequencing adapters were cut using cutadapt version 1.8.3 (minimal 571 

overlap: 1 nt) and the reads were uniquely mapped to the genome of E. coli K-12 MG1655 strain 572 

using Bowtie version 1.1.2 allowing for a maximum of two mismatches. LacZ and other similar parts 573 

of the plasmids were masked in the genome. Reads aligning to more than one sequence including 574 

tRNA and rRNA were excluded from the data. The raw reads were used to generate gene read 575 

counts by counting the number of reads whose middle nucleotide (for reads with an even length the 576 

nucleotide 5' of the mid-position) fell in the coding sequence (CDS). Gene read counts were 577 

normalized by the length of the unique CDS per kilobase (RPKM units) and the total mapped reads 578 

per million (RPM units) (Mortazavi et al, 2008). Biological replicates were performed for all 579 

sequencing reactions. Based on the high correlation between replicates (Supplementary Figure 580 

S2), reads from both biological replicates were merged into metagene sets (Ingolia et al, 2009). 581 

Differential gene expression was performed using DESeq2 version 1.20. Firstly, transcripts with P < 582 

0.01 for both translational efficiency and mRNA expression were selected. P-values were adjusted 583 
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for multiple testing using false-discovery rate (FDR) according to Benjamini and Hochberg. Since the 584 

RNA-Seq data sets have very high reproducibility between replicates (Supplementary Figure S1), 585 

we decided to apply more restrictive threshold P < 0.001 and additionally selected the 25th 586 

percentile.  The GO terms with significant enrichment (P < 0.01) were calculated using GO.db 587 

version 2.10. 588 

 589 

Calculating absolute transcript numbers. To calculate the transcript copy number, we used a method 590 

previously described by Bartholomäus et al. and Mortazavi et al. (Bartholomäus et al, 2016; 591 

Mortazavi et al, 2008). Briefly, the mapped reads for a transcript were related to the total reads and 592 

the length of the transcriptome. The latter was determined using the molecules of all spike-in 593 

standards above the detection limit (Supplementary Figure S1) and was normalized by cell 594 

number. 595 

 596 

Calibration of ribosome profiling reads. RPFs were binned in groups of equal read length, and each 597 

group was aligned to the stop codons as described previously by Mohammad et al. (Mohammad et 598 

al, 2016) For each read length we calculated the distance between the point a transcript leaves the 599 

ribosome and the middle nucleotide in the P site. This distance was used to determine the center of 600 

each P site codon along each mRNA. As expected, the majority of our sequence reads were 23–28 601 

nt and these read lengths were used for the further analysis. The ribosome dwelling occupancy per 602 

codon over the whole transcriptome was calculated as described by Lareau et al. (Lareau et al, 603 

2014), where the reads over each position within a gene were normalized to the average number of 604 

footprints across this gene. Metagene analysis of the ribosome occupancies within the start and stop 605 

codon regions was performed as described by Baggett et al. (Baggett et al, 2017) Thereby, only 606 

genes with at least 5 RPFs in the chosen window were considered. Overlapping genes were 607 

excluded from the analysis. 608 

 609 

Data analysis and visualization. Data analysis was performed using custom scripts run with R 610 

version 3.4.4 and Python version 3.6.3. Plots was generated using matplotlib version 2.1.2 and 611 

genetic constructs were visualized using DNAplotlib version 1.0 (Der et al, 2017) with Synthetic 612 

Biology Open Language Visual (SBOLv) notation (Myers et al, 2017). 613 

 614 

Data availability. Sequencing data from RNA-Seq and Ribo-Seq were deposited in the Sequence 615 

Read Archive (https://www.ncbi.nlm.nih.gov/sra/) under accession number SRP144594. 616 

 617 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2018. ; https://doi.org/10.1101/338939doi: bioRxiv preprint 

https://doi.org/10.1101/338939
http://creativecommons.org/licenses/by-nd/4.0/


	
	

21 

Acknowledgements 618 

We thank Alexander Bartholomäus for the initial mapping and earlier data analysis. This work was 619 

supported by BrisSynBio, a BBSRC/EPSRC Synthetic Biology Research Centre (grant 620 

BB/L01386X/1), a Royal Society University Research Fellowship (grant UF160357 to T.E.G.), the 621 

MOLPHYSX program of the University of Copenhagen (S.P.), and by the European Union (grants 622 

NICHE ITN and SynCrop ETN to Z.I.) 623 

 624 

Author Contributions 625 

Z.I. and T.E.G. conceived of the study. M.E. performed the sequencing experiments, P.N. performed 626 

the quantitative determination of cellular parameter. S.P. provided the LacZ and PK-LacZ constructs 627 

and advised the experimental acquisition of sequencing data. T.E.G. developed the biophysical 628 

models. I.C. processed the sequencing data. Z.I., T.E.G. and I.C. analyzed the data. Z.I., T.E.G. and 629 

I.C. wrote the manuscript.   630 

 631 

Conflict of Interest 632 

The authors declare no competing financial interest.  633 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2018. ; https://doi.org/10.1101/338939doi: bioRxiv preprint 

https://doi.org/10.1101/338939
http://creativecommons.org/licenses/by-nd/4.0/


	
	

22 

References 634 

Arribere JA, Cenik ES, Jain N, Hess GT, Lee CH, Bassik MC & Fire AZ (2016) Translation 635 

readthrough mitigation. Nature 534: 719–723 636 

Atkins JF, Loughran G, Bhatt PR, Firth AE & Baranov P V. (2016) Ribosomal frameshifting and 637 

transcriptional slippage: From genetic steganography and cryptography to adventitious use. 638 

Nucleic Acids Res. 44: 7007–7078 639 

Baens M, Noels H, Broeckx V, Hagens S, Fevery S, Billiau AD, Vankelecom H & Marynen P (2006) 640 

The dark side of EGFP: Defective polyubiquitination. PLoS One 1: 1–6 641 

Baggett NE, Zhang Y & Gross C (2017) Global analysis of translation termination in E. coli. PLoS 642 

Genet. 13: e1006676 643 

Bartholomäus A, Fedyunin I, Feist P, Sin C, Zhang G, Valleriani A & Ignatova Z (2016) Bacteria 644 

differently regulate mRNA abundance to specifically respond to various stresses. Philos. Trans. 645 

R. Soc. A Math. Phys. Eng. Sci. 374: 20150069 646 

Beal J, Haddock-Angelli T, Gershater M, De Mora K, Lizarazo M, Hollenhorst J, Rettberg R, Demling 647 

P, Hanke R, Osthege M, Schechtel A, Sudarsan S, Zimmermann A, Gabryelczyk B, Ikonen M, 648 

Salmela M, Acar M, Aktas MF, Bestepe F, Ceylan FS, et al (2016) Reproducibility of 649 

fluorescent expression from engineered biological constructs in E. coli. PLoS One 11: 1–22 650 

Belliveau NM, Barnes SL, Ireland WT, Jones DL, Sweredoski MJ, Moradian A, Hess S, Kinney JB & 651 

Phillips R (2018) Systematic approach for dissecting the molecular mechanisms of 652 

transcriptional regulation in bacteria. Proc. Natl. Acad. Sci. 115: E4796–E4805 653 

Bordeau V & Felden B (2014) Curli synthesis and biofilm formation in enteric bacteria are controlled 654 

by a dynamic small RNA module made up of a pseudoknot assisted by an RNA chaperone. 655 

Nucleic Acids Res. 42: 4682–4696 656 

Bremer H, Dennis P & Ehrenberg M (2003) Free RNA polymerase and modeling global transcription 657 

in Escherichia coli. Biochimie 85: 597–609 658 

Brierley I, Pennell S & Gilbert RJC (2007) Viral RNA pseudoknots: Versatile motifs in gene 659 

expression and replication. Nat. Rev. Microbiol. 5: 598–610 660 

Brophy JAN & Voigt CA (2014) Principles of genetic circuit design. Nat Meth 11: 508–520 661 

Cambray G, Guimaraes JC, Mutalik VK, Lam C, Mai QA, Thimmaiah T, Carothers JM, Arkin AP & 662 

Endy D (2013) Measurement and modeling of intrinsic transcription terminators. Nucleic Acids 663 

Res. 41: 5139–5148 664 

Del Campo C, Bartholomäus A, Fedyunin I & Ignatova Z (2015) Secondary Structure across the 665 

Bacterial Transcriptome Reveals Versatile Roles in mRNA Regulation and Function. PLoS 666 

Genet. 11: 1–23 667 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2018. ; https://doi.org/10.1101/338939doi: bioRxiv preprint 

https://doi.org/10.1101/338939
http://creativecommons.org/licenses/by-nd/4.0/


	
	

23 

Canton B, Labno A & Endy D (2008) Refinement and standardization of synthetic biological parts 668 

and devices. Nat. Biotechnol. 26: 787–93 669 

Cardinale S, Joachimiak MP & Arkin AP (2013) Effects of genetic variation on the E. coli host-circuit 670 

interface. Cell Rep. 4: 231–237 671 

Castillo-Hair SM, Sexton JT, Landry BP, Olson EJ, Igoshin OA & Tabor JJ (2016) FlowCal: A User-672 

Friendly, Open Source Software Tool for Automatically Converting Flow Cytometry Data from 673 

Arbitrary to Calibrated Units. ACS Synth. Biol. 5: 774–780 674 

Ceroni F, Algar R, Stan GB & Ellis T (2015) Quantifying cellular capacity identifies gene expression 675 

designs with reduced burden. Nat. Methods 12: 415–418 676 

Ceroni F, Furini S, Gorochowski TE, Boo A, Borkowski O, Ladak YN, Awan AR, Gilbert C, Stan G-B 677 

& Ellis T (2018) Burden-driven feedback control of gene expression. Nat. Methods: 177030 678 

Charneski C a & Hurst LD (2013) Positively charged residues are the major determinants of 679 

ribosomal velocity. PLoS Biol. 11: e1001508 680 

Chen H, Shiroguchi K, Ge H & Xie XS (2015) Genome-wide study of mRNA degradation and 681 

transcript elongation in Escherichia coli. Mol. Syst. Biol. 11: 781–781 682 

Condron BG, Atkins JF & Gesteland RF (1991a) Frameshifting in gene 10 of bacteriophage T7. J. 683 

Bacteriol. 173: 6998–7003 684 

Condron BG, Gesteland RF & Atkins JF (1991b) An analysis of sequences stimulating frameshifting 685 

in the decoding of gene 10 of bacteriophage T7. Nucleic Acids Res. 19: 5607–5612 686 

Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, 687 

Gaffney DJ, Elo LL, Zhang X & Mortazavi A (2016) A survey of best practices for RNA-seq data 688 

analysis. Genome Biol. 17: 1–19 689 

Daniel R, Rubens JR, Sarpeshkar R & Lu TK (2013) Synthetic analog computation in living cells. 690 

Nature 497: 619–623 691 

Davidsohn N, Beal J, Kiani S, Adler A, Yaman F, Li Y, Xie Z & Weiss R (2015) Accurate Predictions 692 

of Genetic Circuit Behavior from Part Characterization and Modular Composition. ACS Synth. 693 

Biol. 4: 673–681 694 

Der BS, Glassey E, Bartley BA, Enghuus C, Goodman DB, Gordon DB, Voigt CA & Gorochowski TE 695 

(2017) DNAplotlib: Programmable Visualization of Genetic Designs and Associated Data. ACS 696 

Synth. Biol. 6: 697 

Dong H, Nilsson L & Kurland CG (1996) Co-variation of tRNA abundance and codon usage in 698 

Escherichia coli at different growth rates. J. Mol. Biol. 260: 649–63 699 

Endy D, You L, Yin J & Molineux IJ (2000) Computation, prediction, and experimental tests of fitness 700 

for bacteriophage T7 mutants with permuted genomes. Proc. Natl. Acad. Sci. 97: 5375–5380 701 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2018. ; https://doi.org/10.1101/338939doi: bioRxiv preprint 

https://doi.org/10.1101/338939
http://creativecommons.org/licenses/by-nd/4.0/


	
	

24 

Espah Borujeni A, Channarasappa AS & Salis HM (2013) Translation rate is controlled by coupled 702 

trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby 703 

sites. Nucleic Acids Res.: gkt1139 704 

Fernandez-Rodriguez J, Yang L, Gorochowski TE, Gordon DB & Voigt CA (2015) Memory and 705 

Combinatorial Logic Based on DNA Inversions: Dynamics and Evolutionary Stability. ACS 706 

Synth. Biol. 4: 707 

Freistroffer D V., Kwiatkowski M, Buckingham RH & Ehrenberg M (2000) The accuracy of codon 708 

recognition by polypeptide release factors. Proc. Natl. Acad. Sci. 97: 2046–2051 709 

Giedroc DP & Cornish P V. (2009) Frameshifting RNA pseudoknots: Structure and mechanism. 710 

Virus Res. 139: 193–208 711 

Goodwin S, McPherson JD & McCombie WR (2016) Coming of age: Ten years of next-generation 712 

sequencing technologies. Nat. Rev. Genet. 17: 333–351 713 

Gorochowski TE, Avcilar-Kucukgoze I, Bovenberg RAL, Roubos JA & Ignatova Z (2016) A Minimal 714 

Model of Ribosome Allocation Dynamics Captures Trade-offs in Expression between 715 

Endogenous and Synthetic Genes. ACS Synth. Biol. 5: 716 

Gorochowski TE, Van Den Berg E, Kerkman R, Roubos JA & Bovenberg RAL (2014) Using 717 

synthetic biological parts and microbioreactors to explore the protein expression characteristics 718 

of escherichia coli. ACS Synth. Biol. 3: 129–139 719 

Gorochowski TE, Espah Borujeni A, Park Y, Nielsen AAK, Zhang J, Der BS, Gordon DB & Voigt CA 720 

(2017) Genetic circuit characterization and debugging using RNA-seq. Mol. Syst. Biol. 13: 721 

Gorochowski TE, Ignatova Z, Bovenberg RAL & Roubos JA (2015) Trade-offs between tRNA 722 

abundance and mRNA secondary structure support smoothing of translation elongation rate. 723 

Nucleic Acids Res. 43: 3022–3032 724 

Guisbert E, Herman C, Lu CZ & Gross CA (2004) A chaperone network controls the heat shock 725 

response in E. coli. Genes Dev. 18: 2812–2821 726 

Guo H, Ingolia NT, Weissman JS & Bartel DP (2010) Mammalian microRNAs predominantly act to 727 

decrease target mRNA levels. Nature 466: 835–840 728 

Guo MS & Gross CA (2014a) Stress-induced remodeling of the bacterial proteome. Curr. Biol. 24: 729 

R424–R434 730 

Guo MS & Gross CA (2014b) Stress-induced remodeling of the bacterial proteome. Curr. Biol. 24: 731 

R424–R434 732 

Gyorgy A, Jiménez JI, Yazbek J, Huang HH, Chung H, Weiss R & Del Vecchio D (2015) Isocost 733 

Lines Describe the Cellular Economy of Genetic Circuits. Biophys. J. 109: 639–646 734 

Hecht A, Glasgow J, Jaschke PR, Bawazer LA, Munson MS, Cochran JR, Endy D & Salit M (2017) 735 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2018. ; https://doi.org/10.1101/338939doi: bioRxiv preprint 

https://doi.org/10.1101/338939
http://creativecommons.org/licenses/by-nd/4.0/


	
	

25 

Measurements of translation initiation from all 64 codons in E. coli. Nucleic Acids Res. 45: 736 

3615–3626 737 

Ingolia NT (2014) Ribosome profiling: New views of translation, from single codons to genome 738 

scale. Nat. Rev. Genet. 15: 205–213 739 

Ingolia NT, Ghaemmaghami S, Newman JRS & Weissman JS (2009) Genome-wide analysis in vivo 740 

of translation with nucleotide resolution using ribosome profiling. Science (80-. ). 324: 218–23 741 

Iost I & Dreyfus M (1995) The stability of Escherichia coli lacZ mRNA depends upon the simultaneity 742 

of its synthesis and translation. EMBO J. 14: 3252–61 743 

Ivanov IP, Anderson CB, Gesteland RF & Atkins JF (2004) Identification of a new antizyme mRNA 744 

+1 frameshifting stimulatory pseudoknot in a subset of diverse invertebrates and its apparent 745 

absence in intermediate species. J. Mol. Biol. 339: 495–504 746 

Jackson RJ, Hellen CUT & Pestova T V. (2010) The mechanism of eukaryotic translation initiation 747 

and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11: 113–127 748 

Jones DL, Brewster RC & Phillips R (2014) Promoter architecture dictates cell-to-cell variability in 749 

gene expression. Science (80-. ). 346: 1533–1536 750 

Justman Q (2018) Splitting the World with Absolute Measurements: A Call for Collaborations in 751 

Physical Biology. Cell Syst. 6: 395–396 752 

Kennell D & Riezman H (1977) Transcription and translation initiation frequencies of the Escherichia 753 

coli lac operon. J. Mol. Biol. 114: 1–21 754 

Lareau LF, Hite DH, Hogan GJ & Brown PO (2014) Distinct stages of the translation elongation 755 

cycle revealed by sequencing ribosome-protected mRNA fragments. Elife 2014: 1–16 756 

Li GW, Burkhardt D, Gross C & Weissman JS (2014) Quantifying absolute protein synthesis rates 757 

reveals principles underlying allocation of cellular resources. Cell 157: 624–635 758 

Lieberman-aiden E, Berkum NL Van, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie 759 

BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, 760 

Stamatoyannopoulos J & Mirny LA (2009) Comprehensive Mapping of Long-Range Interactions 761 

Reveals Folding Principles of the Human Genome. Science (80-. ). 33292: 289–294 762 

Lucks JB, Mortimer SA, Trapnell C, Luo S, Aviran S, Schroth GP, Pachter L, Doudna JA & Arkin AP 763 

(2011) Multiplexed RNA structure characterization with selective 2’-hydroxyl acylation analyzed 764 

by primer extension sequencing (SHAPE-Seq). Proc. Natl. Acad. Sci. 108: 11063–11068 765 

Makarova O V, Makarov EM, Sousa R & Dreyfus M (1995) Transcribing of Escherichia coli genes 766 

with mutant T7 RNA polymerases: stability of lacZ mRNA inversely correlates with polymerase 767 

speed. Proc. Natl. Acad. Sci. U. S. A. 92: 12250–4 768 

Margolin W (2012) The price of tags in protein localization studies. J. Bacteriol. 194: 6369–6371 769 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2018. ; https://doi.org/10.1101/338939doi: bioRxiv preprint 

https://doi.org/10.1101/338939
http://creativecommons.org/licenses/by-nd/4.0/


	
	

26 

Mayer A, Di Iulio J, Maleri S, Eser U, Vierstra J, Reynolds A, Sandstrom R, Stamatoyannopoulos JA 770 

& Churchman LS (2015) Native elongating transcript sequencing reveals human transcriptional 771 

activity at nucleotide resolution. Cell 161: 541–544 772 

Mogk A, Huber D & Bukau B (2011) Integrating protein homeostasis strategies in prokaryotes. Cold 773 

Spring Harb. Perspect. Biol. 3: 1–19 774 

Mohammad F, Woolstenhulme CJ, Green R & Buskirk AR (2016) Clarifying the Translational 775 

Pausing Landscape in Bacteria by Ribosome Profiling. Cell Rep. 14: 686–694 776 

Moon TS, Lou C, Tamsir A, Stanton BC & Voigt CA (2012) Genetic programs constructed from 777 

layered logic gates in single cells. Nature 491: 249–253 778 

Mortazavi A, Williams BA, McCue K, Schaeffer L & Wold B (2008) Mapping and quantifying 779 

mammalian transcriptomes by RNA-Seq. Nat. Methods 5: 621–628 780 

Mutalik VK, Guimaraes JC, Cambray G, Lam C, Christoffersen MJ, Mai QA, Tran AB, Paull M, 781 

Keasling JD, Arkin AP & Endy D (2013) Precise and reliable gene expression via standard 782 

transcription and translation initiation elements. Nat. Methods 10: 354–360 783 

Myers CJ, Beal J, Gorochowski TE, Kuwahara H, Madsen C, McLaughlin JA, Misirli G, Nguyen T, 784 

Oberortner E, Samineni M, Wipat A, Zhang M & Zundel Z (2017) A standard-enabled workflow 785 

for synthetic biology. Biochem. Soc. Trans. 45: 786 

Nielsen AA & Voigt CA (2014) Multi-input CRISPR/Cas genetic circuits that interface host regulatory 787 

networks. Mol. Syst. Biol. 10: 763–763 788 

Nielsen AAK, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, Ross D, Densmore D & 789 

Voigt CA (2016) Genetic circuit design automation. Science (80-. ). 352: 790 

Owens NDL, Blitz IL, Lane MA, Patrushev I, Overton JD, Gilchrist MJ, Cho KWY & Khokha MK 791 

(2016) Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals 792 

Transcriptome Kinetics in Development. Cell Rep. 14: 632–647 793 

Poole ES, Brown CM & Tate WP (2000) The identity of the base following the stop codon 794 

determines the efficiency of in vivo translational termination in Escherichia cobl. EMBO J. 14: 795 

151–158 796 

Raser JM & O’Shea EK (2005) Noise in Gene Expression: Origins, Consequences, and Control. 797 

Science (80-. ). 309: 2010–2014 798 

Salis HM, Mirsky E a & Voigt C a (2009) Automated design of synthetic ribosome binding sites to 799 

control protein expression. Nat. Biotechnol. 27: 946–50 800 

Seo SW, Yang JS, Kim I, Yang J, Min BE, Kim S & Jung GY (2013) Predictive design of mRNA 801 

translation initiation region to control prokaryotic translation efficiency. Metab. Eng. 15: 67–74 802 

Sharma V, Prère MF, Canal I, Firth AE, Atkins JF, Baranov P V. & Fayet O (2014) Analysis of tetra-803 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2018. ; https://doi.org/10.1101/338939doi: bioRxiv preprint 

https://doi.org/10.1101/338939
http://creativecommons.org/licenses/by-nd/4.0/


	
	

27 

and hepta-nucleotides motifs promoting-1 ribosomal frameshifting in Escherichia coli. Nucleic 804 

Acids Res. 42: 7210–7225 805 

Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA & Waterston RH 806 

(2017) DNA sequencing at 40: Past, present and future. Nature 550: 345–353 807 

Siuti P, Yazbek J & Lu TK (2013) Synthetic circuits integrating logic and memory in living cells. Nat. 808 

Biotechnol. 31: 448–452 809 

Smanski MJ, Zhou H, Claesen J, Shen B, Fischbach MA & Voigt CA (2016) Synthetic biology to 810 

access and expand nature’s chemical diversity. Nat. Rev. Microbiol. 14: 135–149 811 

Snapp E (2005) Design and Use of Fluorescent Fusion Proteins in Cell Biology. Curr. Protoc. Cell 812 

Biol. 813 

Tan SZ, Manchester S & Prather KLJ (2016) Controlling Central Carbon Metabolism for Improved 814 

Pathway Yields in Saccharomyces cerevisiae. ACS Synth. Biol. 5: 116–124 815 

Taniguchi Y, Choi PJ, Li G-W, Chen H, Babu M, Hearn J, Emili A & Xie XS (2010) Quantifying E. 816 

coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells. Science (80-. 817 

). 329: 533 LP-538 818 

Tholstrup J, Oddershede LB & Sørensen MA (2012) MRNA pseudoknot structures can act as 819 

ribosomal roadblocks. Nucleic Acids Res. 40: 303–313 820 

Tsuchihashi Z & Kornberg A (1990) Translational frameshifting generates the gamma subunit of 821 

DNA polymerase III holoenzyme. Proc. Natl. Acad. Sci. 87: 2516–2520 822 

Unoson C & Wagner EGH (2007) Dealing with stable structures at ribosome binding sites: Bacterial 823 

translation and ribosome standby. RNA Biol. 4: 113–117 824 

Wang L-Z, Wu F, Flores K, Lai Y-C & Wang X (2016) Build to understand: synthetic approaches to 825 

biology. Integr. Biol. 8: 394–408 826 

Wohlgemuth SE, Gorochowski TE & Roubos JA (2013) Translational sensitivity of the Escherichia 827 

coli genome to fluctuating tRNA availability. Nucleic Acids Res. 41: 8021–8033 828 

Yang L, Nielsen AAK, Fernandez-Rodriguez J, McClune CJ, Laub MT, Lu TK & Voigt CA (2014) 829 

Permanent genetic memory with >1-byte capacity. Nat. Methods 11: 1261–1266 830 

Yarchuk O, Jacques N, Guillerez J & Dreyfus M (1992) Interdependence of translation, transcription 831 

and mRNA degradation in the lacZ gene. J. Mol. Biol. 226: 581–596 832 

  833 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2018. ; https://doi.org/10.1101/338939doi: bioRxiv preprint 

https://doi.org/10.1101/338939
http://creativecommons.org/licenses/by-nd/4.0/


	
	

28 

Figures and Captions 834 

 835 

 836 

 837 

Figure 1: Overview of the workflow. (A) Major steps involved when quantifying transcription 838 

(RNA-seq) and translation (Ribo-seq) and the additional cellular features measured. Elements 839 

required for quantification in absolute units are highlighted in red. (B) Model for calculating the 840 

translation initiation rate of a ribosome binding site (Eq. 2). (C) Model for calculating the termination 841 

efficiency of a stop codon (Eq. 3). Star denotes the location of the stop codon. (D) Model for 842 

calculating translational frameshifting efficiency between two coding regions ‘A’ and ‘B’ in zero and –843 

1 reading frames, respectively (Eq. 4).  844 
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 845 
 846 
Figure 2: Measuring translation initiation and termination signals across the E. coli 847 

transcriptome. (A) Genetic design of the LacZ reporter construct whose expression is activated by 848 

the inducer IPTG. (B) Normalized RPF count profile averaged for all E. coli transcripts. Profiles 849 

generated for cells grown in the absence and presence of IPTG (1 mM). Start and stop codons are 850 

shaded. (C) Bar chart of all measured RBS initiation rates ranked by their strength. Strong RBSs 851 

with initiation rates >1 ribosome/s are highlighted in red. (D) Bar chart of all measured stop codon 852 

termination efficiencies ranked by their strength. Stop codons with termination efficiency >0.99 are 853 

highlighted in red. (E) Distribution of initiation rates for cells grown in the absence and presence of 854 

IPTG (1 mM). (F) Distribution of stop codon termination efficiencies for cells grown in the absence 855 

and presence of IPTG (1 mM).  856 
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 857 
 858 
Figure 3:  Simultaneous quantification of transcription and translation of endogenous 859 

genes and a synthetic genetic construct. (A) Comparison of protein synthesis rate of 860 

endogenous E. coli genes measured using Ribo-seq from this study (in molecules/s units) and from 861 

that by Li et al. (Li et al, 2014) (in molecules/generation units). Each point corresponds to a single 862 

gene and color denotes the ratio of transcription and translation rate capturing whether transcription 863 

(light yellow) or translation (dark blue) is the dominant factor. (B) Transcription (bottom) and 864 

translation (top) profiles for yggN, rpoH and greA, computed from the RNA-seq and Ribo-seq data 865 

without induction. Positions of the genetic parts and gene are shown below the profiles. (C) 866 

Promoter strengths in RNAP/s units and RBS initiation rates in ribosome/s units. (D) Transcription 867 

(bottom) and translation (top) profiles for lacZ. Profiles are shown for cells in the absence and 868 

presence of IPTG (1 mM). Position of genetic parts and gene is shown below the profiles. RBS is 869 

omitted from the genetic design due to its size. (E) Measured promoter strength in RNAP/s units, 870 

RBS initiation rate in ribosomes/s units, and the transcriptional terminator and stop codon 871 

termination efficiency for lacZ. Data shown for cells in the absence and presence of IPTG (1 mM).  872 
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 873 

 874 

Figure 4: Characterization of a synthetic pseudoknot construct that induces translational 875 

frameshifting. (A) Genetic design of the PK-LacZ construct. Expanded sequence shows the PK 876 

secondary structure with the slippery site underlined, as well as the two genes (gene10 and lacZ) in 877 

differing reading frames. (B) Translation profiles for the PK-LacZ construct in cells cultured in the 878 

absence (bottom) and presence (top) of IPTG (1 mM). The gene10, middle, and lacZ regions are 879 

labelled above the profiles. Shaded region denotes the PK, and dashed lines denote the start codon 880 

and stop codons of gene10 and LacZ. (C) Fraction of the total RPFs and mRNA reads in each 881 

reading frame for the gene10, PK or middle, and lacZ regions schematically shown below and are of 882 

the PK-LacZ construct. Data shown separately for cells cultured in the absence and presence of 883 

IPTG (1 mM). (D) Violin plots of the distributions of fractions of total RPFs and mRNA reads in each 884 

reading frame for all E. coli transcripts. Median values shown by horizontal bars. *, P = 0.049; **, P = 885 

1.6 × 10–9.  886 
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 888 
Figure 5: Cellular response to the expression of a synthetic pseudoknot construct. (A) 889 

Change in expression of chromosomal genes in E. coli cells following induction of PK-lacZ 890 

expression (1 mM IPTG). Each point represents a transcript. Differentially expressed genes (mRNA 891 

count: P < 0.001 and absolute log2 fold-change > 1.37; translation efficiency: P < 0.01) are 892 

highlighted in color and by an alternative point shape (transcriptional regulation: purple cross; 893 

translational regulation: orange open circle). (B) Venn diagram of genes significantly regulated 894 

transcriptionally and translationally after induction of the PK-LacZ construct. Colors match those in 895 

panel A. (C) Change in codon occupancy for cells harboring the PK-LacZ construct after induction 896 

by IPTG (1 mM) calculated from the Ribo-seq data. Each point corresponds to a codon, which are 897 

ordered by amino acid identity and then by abundance in the genome (left most abundant, right least 898 

abundant). Dashed horizontal line denotes no change. Outliers are labelled and highlighted in red 899 

(Tukey test: 1.5 times the interquartile range below the first quartile or above the third quartile). (D) 900 

Translation initiation rates for all E. coli RBSs in cells harboring the LacZ and PK-LacZ constructs in 901 

the absence and presence of IPTG (1 mM). Solid line shows the same initiation rate for both 902 

conditions. Dotted lines denote linear regressions for the data with no offset. (E) Fractions of mRNA 903 

reads and RPFs mapping to each synthetic expression construct (LacZ and PK-LacZ) and E. coli 904 

transcripts, which are divided into three major categories: ribosomal, metabolic, and other functions. 905 

Data shown for cells cultured in the absence and presence of IPTG (1 mM). 906 
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