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Abstract 

RNA-protein complexes underlie numerous cellular processes including translation, splicing, 

and posttranscriptional regulation of gene expression. The structures of these complexes are 

crucial to their functions but often elude high-resolution structure determination. Computational 

methods are needed that can integrate low-resolution data for RNA-protein complexes while 

modeling de novo the large conformational changes of RNA components upon complex 

formation. To address this challenge, we describe a Rosetta method called RNP-denovo to 

simultaneously fold and dock RNA to a protein surface. On a benchmark set of structurally 

diverse RNA-protein complexes that are not solvable with prior strategies, this fold-and-dock 

method consistently sampled native-like structures with better than nucleotide resolution. We 

revisited three past blind modeling challenges in which previous methods gave poor results: 

human telomerase, an RNA methyltransferase with a ribosomal RNA domain, and the 

spliceosome. When coupled with the same sparse FRET, cross-linking, and functional data 

used in previous work, RNP-denovo gave models with significantly improved accuracy. These 

results open a route to computationally modeling global folds of RNA-protein complexes from 

low-resolution data. 
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Introduction 

RNA-protein interactions underlie many critical cellular processes from translation, 

splicing, and telomere extension to regulation of mRNA stability, alternative splicing, and 

subcellular localization (Gerstberger et al., 2014; Mitchell and Parker, 2014). Many of these 

roles require the formation of intricate three-dimensional structures, but the structural 

heterogeneity and transient nature of many RNP states render them invisible to all but the 

lowest resolution methods, such as FRET, crosslinking, and mutagenesis tests. For such states, 

computational techniques will be needed for “hybrid” structure determination integrating low-

resolution data into structural models (Schlundt et al., 2017; Ward et al., 2013). Such strategies 

have proved useful for RNA and proteins separately (Miao et al., 2017; Moult et al., 2017; Ward 

et al., 2013; Weinreb et al., 2016), but they are not yet in widespread use for RNA-protein 

complexes because the necessary computational structure prediction methods have not yet 

been developed. 

The majority of existing structure prediction tools for RNA-protein complexes focus on 

rigid-body docking of RNA and protein partners (Tuszynska et al., 2014). These methods have 

achieved impressive success when predicting structures of complexes from the corresponding 

bound RNA and protein structures (Huang and Zou, 2014; Huang et al., 2013; Li et al., 2012; 

Setny and Zacharias, 2011). However, they typically perform poorly in the more realistic case of 

starting from the unbound RNA and protein structures (Lensink and Wodak, 2010). This 

limitation is largely due to the flexibility and conformational variability of RNA; protein-bound 

RNA structures often differ considerably from the corresponding unbound RNA structures (Rau 

et al., 2012).  

To help address this challenge, a fragment-based method for predicting structures of 

single-stranded RNA bound to proteins was recently developed (Chauvot de Beauchene et al., 

2016; Chauvot de Beauchene, 2016). Starting from a protein structure and the positions of a 

few anchor RNA nucleotides, this method was able to predict structures of RNA recognition 
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motif (RRM) and Puf proteins bound to single-stranded RNA with high accuracy. However, this 

method neglects intramolecular RNA interactions and assumes that every RNA nucleotide 

interacts with the protein, making it applicable to only a small subset of RNA-protein complexes. 

Currently, there are no computational tools that can model arbitrary protein-bound RNA 

structures de novo, though in principle this could be accomplished by combining RNA structure 

prediction (“folding”) and RNA-protein docking methods sequentially in a “prefold-then-dock” 

strategy. 

Here, we present tests of this prefold-then-dock strategy on a benchmark set of ten 

diverse RNA-protein complexes and find that it does not lead to accurate models, suggesting 

that a new modeling approach is needed. We then describe a method RNP-denovo to model 

RNA-protein complexes by simultaneously folding and docking RNA to a protein surface. This 

fold-and-dock approach is implemented in Rosetta and combines the FARNA method for RNA 

folding (Cheng et al., 2015) with RNA-protein binding and a statistical RNA-protein score 

function. For the benchmark set of ten RNA-protein complexes, starting from the unbound 

protein structure and a few RNA residues fixed relative to the protein (to simulate sparse 

experimental data), RNP-denovo recovered native-like models with an average RMSD over the 

best models of 4.3 Å, which is comparable to what has previously been achieved for low-

resolution protein and RNA structure prediction on similar size problems (Das and Baker, 2007; 

Simons et al., 1997). Additional tests demonstrate the importance of including both RNA-protein 

and intramolecular RNA interactions when modeling protein-bound RNA structures. Finally, we 

apply our RNP-denovo fold-and-dock method to previous structure modeling challenges based 

on limited experimental data for the human telomerase core RNP, an RNA methyltransferase, 

and the human spliceosomal C complex active site. We find improvements over previous blind 

models in all cases, and achieve the correct global folds in the telomerase and RNA 

methyltransferase cases. These results demonstrate the applicability of this method to real 

modeling challenges and highlight areas for future improvement. Accurate fully de novo 
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prediction of protein-bound RNA structures is not yet feasible, but we expect the method 

described here to be immediately useful for modeling arbitrary RNA-protein complexes in cases 

where sparse experimental data are available. 

 

Results 

 

Testing a prefold-then-dock approach 

To evaluate different protocols for modeling RNA-protein complexes, we built models for 

a set of ten RNA-protein complexes for which crystal structures are available. The benchmark 

set contains relatively small RNA-protein complexes with between 94 and 417 protein residues 

and between 7 and 45 RNA nucleotides per system. This size range is typical for initial structure 

prediction tests for RNA alone, proteins alone, and protein-protein docking (Das and Baker, 

2007; Gray et al., 2003; Simons et al., 1997); tests on larger RNA-protein complexes are 

described below. Given previous results for low-resolution modeling of RNA and proteins 

separately, the target modeling accuracy for systems in this size range is around 2-7 Å RMSD 

(Das and Baker, 2007; Simons et al., 1997). Because the methods considered here do not 

include final full-atom refinement, we focused on evaluating whether native-like conformations 

are sampled. This is important because current high-resolution refinement methods typically do 

not modify structures dramatically. We therefore report the best RMSD accuracy of the top 100 

scoring models (out of thousands) in all cases. This procedure is also consistent with typical 

evaluation criteria in structure prediction challenges, where multiple models are often 

considered and the number of models is increased to assess progress on more difficult 

problems with large search spaces (Lensink et al., 2017; Miao et al., 2017; Miao and Westhof, 

2017; Moult et al., 2018). 

To first address whether a combination of existing tools might be sufficient to predict 

structures of protein-bound RNA, we tested a prefold-then-dock strategy on a set of ten RNA-
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protein complexes using the FARFAR method (Cheng et al., 2015) to fold the RNA and then 

RPDock to dock the resulting RNA structures (Huang et al., 2013). We first tested whether 

RPDock could accurately predict structures of RNA-protein complexes if starting from the bound 

protein structure and bound RNA structure, i.e., if the RNA structure could somehow be 

predicted perfectly. Indeed, RPDock recovered near-native models with RMSDs ≤ 1.5 Å for the 

best of the top 100 scoring models in nine out of ten cases, with mean RMSD of 1.8 Å over all 

ten cases. However, if we use the unbound protein structures, as is more realistic for 

macromolecule docking, the mean RMSD overall increases to 7.1 Å. Furthermore, the results 

became significantly worse if we assume that the bound RNA structures are unknown, as is 

typically the case in realistic modeling scenarios. For these tests, we folded the RNA with 

FARFAR and clustered the resulting RNA structures, retaining the centers of the ten most 

populated clusters for subsequent docking in the hopes of capturing some of the conformational 

heterogeneity of the unbound RNA and including conformations similar to the bound structures. 

After docking these structures with RPDock, the mean RMSD increased to 13.8 Å, with RMSDs 

worse than 11 Å in nine out of ten cases (Figure 1A-K, Figure S1A, see Methods for complete 

details). Indeed even assuming the best possible docking by aligning predicted RNA structures 

to the native RNA coordinates, the mean RMSD remained at 6.5 Å, with RMSDs > 7 Å in five 

out of ten cases (Figure S1A). We emphasize that the RMSD values here and below are 

computed for the best of 100 models and therefore represent ‘best-case’ assessments. The 

poor results suggest that sequentially folding and docking RNA structures does not generally 

lead to accurate models of RNA-protein complexes. 

However, in many realistic cases, the structure prediction problem may be simplified by 

the availability of limited experimental data. In favorable cases, these data can elucidate a few 

specific RNA protein contacts and/or relative orientations of the RNA and protein partners. To 

test the prefold-then-dock strategy in such scenarios, we simulated the availability of limited 

experimental data by assuming the bound conformations of the 3’ and 5’ nucleotides for the 
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single-stranded RNA-protein complexes (analogous to previous work (Chauvot de Beauchene, 

2016)), or the positions of RNA helices relative to the protein for the remaining complexes (see 

Methods for complete details). When the RNA was folded with these constraints, the mean 

RMSD was 5.4 Å over the ten RNA-protein complexes, representing an improvement over the 

naïve prefold-then-dock tests, but still far from the 1.8 Å mean RMSD achieved when docking 

the bound RNA conformations (Table 1, Figure S1B). Together these results suggest that a 

prefold-then-dock strategy alone is insufficient to recover near-native conformations of RNA-

protein complexes, and that a strategy that allows simultaneous optimization of the RNA fold 

and the docked conformation may improve predictions.  

 

Developing a fold-and-dock method 

Motivated by these results, we hypothesize that folding the RNA in the context of the 

protein rather than pre-folding and docking would further improve the accuracy of computational 

models. We developed a fold-and-dock algorithm RNP-denovo in Rosetta by modifying the 

FARNA algorithm for RNA folding to include RNA-protein docking moves and to take into 

account RNA-protein interactions. Currently, RNP-denovo does not include full-atom refinement; 

as decribed above, we wish to cleanly test here whether native-like conformations are sampled 

with a low-resolution protocol. This sampling is important because current high-resolution 

refinement methods typically do not modify structures dramatically. We also developed a new 

RNA-protein statistical potential to score conformations of RNA as it makes contact with a 

protein surface. While prior studies have developed statistical potentials for RNA-protein 

docking, we sought a scoring function that could be rapidly computed at the same time as 

Rosetta RNA score terms and have a similar level of coarse graining. Overall, the new scoring 

function includes all previously published score terms describing RNA structure (Das and Baker, 

2007), as well as new terms describing interactions between RNA and proteins. As with the 

Rosetta RNA statistical potential, we took a coarse-grained knowledge-based approach. Score 
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terms were based on the frequencies of interactions observed in a non-redundant set of 154 

crystal structures of RNA-protein complexes with resolution better than 2.5 Å, curated from the 

Protein Data Bank (PDB). 

The score terms describe three major features of RNA-protein interactions. First, pseudo 

pairs between nucleotides and protein sidechains have been observed and are thought to 

contribute to both the specificity and affinity of RNA-protein interactions (Kondo and Westhof, 

2011). To capture these effects, we developed a potential based on the distributions of protein 

sidechain centroids in the plane of each of the four RNA bases. As described previously for the 

RNA score terms (Das and Baker, 2007), a coordinate system was set up on each base with the 

origin at the centroid of the base heavy atoms, the x-axis going through the N1 atom for purines 

or the N3 atom for pyrimidines, and the z-axis perpendicular to the plane of the base. Analysis 

of the protein sidechain distributions indeed revealed positional preferences within the plane of 

the base (Figure 2A, Figure S2A), though the interactions were not as highly stereotyped as for 

example, RNA base pairs (Figure 2B, C). Statistical potentials were derived by taking the 

negative logarithm of these frequencies (see Methods). These terms include RNA-protein 

pseudo pairs previously identified by expert inspection (Kondo and Westhof, 2011) as well as 

less stereotyped RNA-protein contacts.  

Second, the potential captures the effect of stacking interactions frequently found at 

RNA-protein interfaces (Rahman et al., 2015). Analysis of the distributions of protein sidechains 

above and below the plane of the base revealed that the aromatic amino acids tryptophan, 

tyrosine, and phenylalanine and two additional hydrophobic amino acids, valine and leucine, 

frequently stack on RNA bases (Figure 2D-F, Figure S2B). A stacking bonus is encoded in the 

potential for any of these five sidechains with 3.0 Å < |z| < 6.5 Å and 𝑥! + 𝑦! < 4.0 Å, again 

analogous to the bonus for RNA-RNA stacking. 
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Third, the potential includes the effect of interactions with the RNA backbone, which 

often confer both affinity and structural specificity to RNA-protein interactions (Iwakiri et al., 

2012). Scores were inferred by taking the negative logarithm of the frequencies of distances 

between RNA phosphate atoms and protein sidechain centroids (see Methods). The resulting 

statistical potentials exhibit several expected features (Figure S3A), most notably that 

interactions with positively charged amino acids (arginine and lysine) are among those that 

score most favorably and interactions with polar amino acids are generally preferred over 

interactions with nonpolar amino acids.  

To account for additional interactions that may be missed by the three score terms 

described above, we also included a general distance dependent potential based on the 

observed distributions of distances between representative RNA and protein atoms (Figure 

S3B), analogous to several prior efforts (Guilhot-Gaudeffroy et al., 2014; Huang and Zou, 2014; 

Li et al., 2012; Perez-Cano et al., 2010; Setny and Zacharias, 2011; Simons et al., 1997; 

Tuszynska and Bujnicki, 2011; Zheng et al., 2007). Finally, steric clashes between the RNA and 

protein are penalized in a manner similar to clashes within the RNA (Das and Baker, 2007). A 

penalty is applied when representative RNA and protein atoms come within a distance smaller 

than the minimum distance observed in the set of crystal structures from the PDB (Figure S4). 

 

Benchmarking RNP-denovo on ten RNA-protein complexes 

We benchmarked the performance of the RNP-denovo fold-and-dock method on the 

same set of ten RNA-protein complexes that was used for the prefold-then-dock tests described 

above. Again, to simplify the problem and simulate the availability of limited experimental data, 

we assumed the positions of the 5’ and 3’ nucleotides relative to the protein for the single-

stranded RNA binding proteins, and the relative positions of the RNA helices for the remaining 

systems (see Methods). We then built models of the remaining RNA residues in the presence of 

the protein with RNP-denovo. To assess the effect of the RNA-protein score terms, we first built 
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a set of models with a score function that included only the RNA-specific score terms and the 

RNA-protein steric penalty. The best of the top 100 scoring models (top 1.4%) achieved an 

average RMSD of 6.0 Å, with RMSDs better than 5 Å in three out of ten cases (Table S1). For 

models built with all of the RNA-protein score terms included, the average RMSD over the best 

of the top 100 scoring models improved to 4.3 Å, with RMSDs better than 5 Å in seven out of 

ten cases (Table 1, Table S1), recovering near-native RNA folds for all systems (Figure 3A-J). 

In all cases, the inclusion of the RNA-protein score terms resulted in a shift in the distribution of 

RNP-denovo models towards lower RMSDs (Figure 3A-J).  

 

Testing alternative score functions 

The major difference between the Rosetta RNA-protein potential described here and 

previously developed RNA-protein docking potentials is the inclusion of terms describing RNA-

RNA interactions, which can safely be neglected for rigid-body docking problems. To test 

whether existing docking potentials might produce similar results if integrated into an algorithm 

for structure prediction of RNA at protein interfaces, such as the RNP-denovo fold-and-dock 

method described here, we rescored our RNP-denovo models with the 3dRPC (Huang et al., 

2016) and DARS-RNP docking potentials (Tuszynska and Bujnicki, 2011). For the single-

stranded RNA binding proteins, the docking potentials picked out models with accuracy similar 

to the full Rosetta RNP potential (Table S2, Figure 4A). However, for three of the RNA-protein 

systems containing structured RNA, the docking potentials picked out models that deviated 

significantly from the native conformations with RMSDs ≥ 14.7 Å. Over all ten systems, the 

average RMSD of the best scoring models was 11.6 Å for 3dRPC and 10.2 Å for DARS-RNP 

compared to 6.4 Å for the Rosetta RNA-protein score function (Table S2, Figure 4A). The 

docking potentials performed worst for 1DFU, with the distribution of model accuracy over the 

top scoring models shifting dramatically towards poorer RMSDs (Figure 4B). The best scoring 

RNP-denovo model picked out by both DARS-RNP and 3dRPC adopts a conformation in which 
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the two RNA strands, which interact in the native complex, wrap around opposite sides of the 

protein to maximize the number of RNA-protein contacts (Figure 4C). As an additional 

comparison, we rescored the RNP-denovo models with just the five Rosetta RNA-protein 

(intermolecular) score terms. The results were similar to the poor results with prior RNA-protein 

docking potentials, with an average RMSD over the best scoring models for each of the ten 

systems of 10.5 Å (Table S2, Figure S5). These results highlight the importance of RNA-RNA 

interactions in RNA-protein complexes. All “decoy” models are being made available at 

https://purl.stanford.edu/gt072md8147 to allow testing of new RNP scoring functions. 

 

Applying RNP-denovo to three past modeling challenges of large RNPs 

To test whether RNP-denovo would be useful for real modeling problems, we revisited 

three past modeling challenges for large RNA-protein complexes in which only sparse 

experimental data were available. These three systems are substantially larger than the 

complexes in our initial benchmark set; the average number of protein and RNA residues per 

system is 702 and 117 residues, respectively, compared to 215 and 21 residues, respectively, 

for the initial benchmark set. Due to the increased size of these problems, we expected the 

RMSD values to be higher than for the initial benchmark set. Using a previously determined 

relationship between number of residues and RMSD (Carugo and Pongor, 2001), we calculated 

that the structural similarity specified by an RMSD of 4.3 Å (average for the initial benchmark 

set) for complexes with 21 RNA residues on average would correspond approximately to an 

RMSD of 21 Å for the larger complexes (see Methods). We therefore targeted RMSD 

accuracies of better than 21 Å as representative of correct global fold recovery for these three 

larger systems. First, we built models of the human telomerase core RNP based on FRET 

measurements, which provided ten distance restraints between specific pairs of RNA residues 

(Parks et al., 2017). Models of this system were previously built in 2015 using FARNA with 

these FRET constraints and an additional score term that penalized RNA-protein steric clashes 
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(Parks et al., 2017). Here, we followed the previous modeling procedure, but used the RNP-

denovo fold-and-dock method and the more advanced Rosetta RNP statistical potential 

described here (see Methods). As before, the positions of the template hybrid and CR4/5 RNA 

were kept fixed relative to the homology model of the telomerase reverse transcriptase protein 

(TERT). Although a high-resolution structure of the human telomerase core RNP has still not 

been determined, the accuracy of the newly and previously built models could be assessed by 

comparing to the recently solved 7.7 Å resolution cryoEM structure of the human telomerase 

RNP (Nguyen et al., 2018) (which was determined after the original and RNP-denovo models 

were built). Specifically, we considered the positioning of the highly conserved RNA pseudoknot 

motif relative to the TERT protein. Qualitatively, both the previously built and the new RNP-

denovo fold-and-dock models agree well with the cryoEM structure, with the pseudoknot 

positioned on the correct face of TERT. The best RNP-denovo model (out of the top 100 scoring 

models) has an improved RMSD accuracy of 13.2 Å over the ends of the pseudoknot motif (see 

Methods), compared to 17.1 Å for the best of the top 100 previously built models (Figure S6A, 

S8B, S8C). Although the accuracy here is worse than for the systems in the initial benchmark 

set, it is still reasonable given the increased size of this problem. Notably, at 13.2 Å RMSD, the 

global fold is still correctly recovered (Figure 5A, middle and right panels). 

We additionally tested whether the inclusion of the FRET data was necessary to build 

accurate models of the telomerase core RNP, as was noted for the previously built models 

(Parks et al., 2017). The top scoring models built without FRET data using RNP-denovo were 

on average more accurate than top scoring models built with the previous method without FRET 

data (Figure S6D, S8E). The most accurate RNP-denovo model of the top 100 scoring had an 

RMSD of 15.0 Å, compared to 51.4 Å for models built with the previous method (scoring with 

RNA score terms and RNA-protein sterics only) and 25.5 Å for the top 100 scoring previously 

built blind models (Figure 5A). Additionally, predicted FRET values calculated from models built 

using the previous method correlate poorly with the experimental FRET values, with a maximum 
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correlation of 0.37 (Figure S6F). This correlation is improved for many of the models built with 

the new RNP-denovo method, with the best RMSD model achieving the maximum correlation of 

0.60 (Figure S6F). These results suggest that in contrast to the previous approach, RNP-

denovo does not require FRET data to sample accurate models, though inclusion of the data 

still enriches for and helps select accurate models. 

We then revisited Target 33/34, an RNA methyltransferase, from the 2008 CAPRI blind 

modeling challenge (Janin, 2010). Target 33 challenged modelers to build a structure of the full 

RNA-protein complex, starting from sequence only. Subsequently, for Target 34 modelers were 

provided with the crystal structure of the bound RNA and asked to predict the structure of the 

RNA-protein complex. Originally, models for Target 33 were built with Rosetta using an ad hoc 

prefold-then-dock approach, with restraints based on RNA chemical structure probing data, 

highly conserved protein residues likely to interact with the RNA, and a homology model of the 

methyltransferase ((Fleishman et al., 2010) and Methods). Although the crystal structure of the 

complex has not yet been released, the accuracy of the models can be assessed by comparing 

to the best Target 34 model of the bound RNA crystal structure docked to the protein, which 

CAPRI evaluators confirmed to be close to the crystal structure of the complex (interface RMSD 

(I_rmsdBB) of 1.5 Å; http://www.ebi.ac.uk/msd-srv/capri/round15/round15.html). Using this 

structure for comparison, the previously submitted Target 33 model achieved 31.0 Å RMSD 

over the RNA after aligning over the protein. To determine whether the RNP-denovo fold-and-

dock method could build more accurate models, we applied it to this problem and additionally 

repeated the prefold-then-dock modeling to control for possible changes to the RNA modeling 

procedure (see Methods). When comparing the accuracy over the full complex (RMSD of the 

RNA after aligning to the protein), the best of the top 100 scoring RNP-denovo models was 

more accurate than the best of the top 100 scoring prefold-then-dock models, with RMSDs of 

13.6 Å and 18.2 Å, respectively (Figure S6G, Figure 5B). 
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Finally, we applied the RNP-denovo fold-and-dock method to build a model of the 

human spliceosomal C complex active site. Prior to the determination of high-resolution cryoEM 

structures, Anokhina et al. built a model of the core RNA elements bound to the Prp8 protein 

based on RNA chemical structure probing data, crosslinking data, homology to the group II 

intron, and a crystal structure of the Prp8 protein alone (Anokhina et al., 2013). While many 

features of this model, particularly the relative arrangement of the intron and U2 and U6 RNA, 

agree well with the later solved cryoEM structures, the positioning of these RNA elements 

relative to the Prp8 protein was not highly accurate with 34.5 Å RMSD over key active site RNA 

residues (the 3’ residue of the 5’ exon, the 5’ residue of the intron, and the residue immediately 

3’ of the branchpoint A) after alignment over Prp8 (Figure 5C). This inaccuracy can potentially 

be explained by the fact that the RNA model was docked rigidly to Prp8 despite explicitly noted 

uncertainty in the U5 RNA positioning (Figure S6H, I). Applying the Rosetta prefold-then-dock 

approach to this problem gave improved RMSD accuracy over active site residues of 13.8 Å for 

the best of the top 100 scoring models for which the crosslinking constraints were satisfied, 

although the global fold over the entire RNA-protein complex was not recovered (Figure S6I). 

The complete RNP-denovo fold-and-dock method has the potential to further improve the 

accuracy of the model by explicitly accounting for the uncertainty in U5 RNA positioning and 

allowing it to move relative to the rest of the RNA during docking to Prp8. Starting from the 

published RNA model and using the same crosslinking constraints, but allowing U5 to move, the 

RNP-denovo Rosetta fold-and-dock method resulted in models of the Prp8-RNA complex that 

were more accurate than the previously published model and the prefold-then-dock models 

although the global fold was still not completely accurate (Figure 5C). Over just active site 

residues, the best of the top 100 scoring models for which the crosslinking constraints were 

satisfied achieved 8.0 Å RMSD (Figure S6I, Figure 5C orange and cyan space-filled residues). 

 Overall, for three large RNA-protein systems with sparse experimental restraints, the 

RNP-denovo method resulted in models with improved or similar accuracy compared to 
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previously published models. These tests suggest that this method is useful for real modeling 

challenges, sampling an ensemble of models with biologically correct global folds or placement 

of functional residues.  

 

Discussion 

Structure prediction of RNA-protein complexes has remained a relatively unexplored 

area of research, with efforts predominantly focused on RNA structure prediction without 

consideration of RNA-protein binding or separately on RNA-protein rigid-body docking. A critical 

bottleneck is the computational difficulty of sampling de novo the new conformations that RNAs 

form when interacting with protein surfaces. Tests presented here show that combining existing 

tools in a prefold-then-dock strategy does not generally lead to accurate models of RNA-protein 

complexes, and that simultaneous optimization of RNA structure and rigid-body orientation is 

necessary to more accurately predict the structures of these complexes. Over a benchmark set 

of ten RNA-protein complexes, with the assumption of a few RNA-protein contacts, a Rosetta 

RNP-denovo fold-and-dock method recovered native-like RNA folds in all cases. The new 

knowledge-based RNA-protein potential implemented in Rosetta enriched sampling of near-

native models. Additionally, models favored by potentials that do not include intramolecular RNA 

interactions were less accurate compared to those favored by the full Rosetta RNP potential for 

systems containing structured RNA, suggesting that it is necessary to balance consideration of 

both RNA-RNA and RNA-protein interactions to accurately fold protein-bound RNA structures. 

Finally, application of the RNP-denovo fold-and-dock method to three past modeling challenges 

of large RNA-protein systems resulted in improved accuracy compared to previously published 

models built with other methods and to prefold-then-dock methods, suggesting that the RNP-

denovo will be useful in real modeling scenarios. Overall, RNP-denovo appears to resolve a 

critical sampling bottleneck for de novo prediction of protein-bound RNA structures. We expect 
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the method to be widely useful for structure determination, particularly because Rosetta already 

allows integration of numerous kinds of limited experimental data. 

Although RNP-denovo here represents an advance in our ability to predict the structures 

of RNA-protein complexes, fully de novo structure prediction without experimental data remains 

an unsolved challenge. The benchmark on the ten small RNA-protein systems presented here 

relied on having limited information about specific RNA-protein contacts; without this 

information, we do not yet have the tools to accurately predict structures of RNA-protein 

complexes. Additionally, the tests on three larger RNA-protein systems suggest that RNP-

denovo will be useful for real modeling challenges, but also highlight that high-accuracy RNA-

protein modeling remains an unsolved problem. Our results suggest several possible reasons 

as to why RNA-protein structure prediction remains difficult. First, RNA-protein interactions, 

unlike RNA-RNA base pairing, are not highly stereotyped, making the development of a 

predictive low-resolution potential difficult. Second, the development of a statistical potential is 

hindered by the relatively small number of RNA-protein structures in the PDB; our non-

redundant set of crystal structures contains only 154 systems. Finally, the overall conformation 

of an RNA-protein complex is determined by a balance of both intermolecular and 

intramolecular interactions, resulting in a folding landscape with many local energy minima in 

which just one of these sets of interactions may be optimized at the expense of the other. This 

scenario was observed in the tests of 1DFU structure prediction presented here: in addition to 

near-native models, there were many models generated in which the RNA-protein contacts 

were maximized at the expense of RNA structure. Efficiently sampling these conformations for 

large systems and in fully de novo tests will be a challenge. 

The results described here suggest two additional areas for future improvement. First, 

the success of this method relies on having limited experimental data. Here for the benchmark 

of small RNA-protein systems, we simulated this situation by assuming specific RNA-protein 

contacts, and for the three large RNA-protein tests, we used FRET or crosslinking data, or 
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information about highly conserved residues. However this method could be further generalized 

to include other types of experimental information such as NMR restraints (Zhang et al., 2018), 

contacts derived from evolutionary couplings (Weinreb et al., 2016), or SAXS data 

(Schneidman-Duhovny et al., 2012; Schwieters et al., 2018), as we have accomplished recently 

for cryoEM data, achieving models with near-atomic accuracy in blind challenges (Kappel et al., 

2018). Second, improving the accuracy of this method and discriminating the top model (rather 

than the top 100) will require new high-resolution refinement methods that can be applied to 

RNA-protein complexes. Currently, conformations are scored exclusively with a low-resolution 

knowledge-based potential. Refining these low-resolution structures with a full-atom energy 

function will likely be necessary to improve the overall accuracy of the models and to improve 

discrimination of near-native versus non-native conformations. 
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Methods 

The benchmark set of ten RNA-protein complexes 

Ten systems were chosen from the non-redundant set of RNA-protein complexes with 

corresponding unbound protein structures available, described in (Perez-Cano and Fernandez-

Recio, 2010). The specific systems were selected manually to represent a diversity of types of 

RNA-protein interactions (unbound protein structures listed in parentheses): 1DFU (1B75) (Lu 

and Steitz, 2000; Stoldt et al., 1998), 1B7F (3SXL) (Crowder et al., 1999; Handa et al., 1999), 

1JBS (1AQZ) (Yang et al., 2001; Yang and Moffat, 1996), 1P6V (1K8H) (Dong et al., 2002; 

Gutmann et al., 2003), 1WPU (1WPV) (Kumarevel et al., 2005), 1WSU (1LVA) (Selmer and Su, 

2002; Yoshizawa et al., 2005), 2ASB (1K0R) (Beuth et al., 2005; Gopal et al., 2001), 2BH2 

(1UWV) (Lee et al., 2004, 2005), 2QUX (2QUD) (Chao et al., 2008), and 3BX2 (3BWT) (Miller et 

al., 2008). Fixed residues for tests in which some RNA residues were held fixed relative to the 

protein were selected as follows: for systems containing only single stranded RNA (1B7F, 

1WPU, 2ASB, 3BX2), the first and last RNA residues were kept fixed; for 1DFU, 1WSU, and 

2QUX, the first three base pairs were held fixed; for 1P6V the first two base pairs of both helices 

were held fixed (residues 19-20, 37-38, 41-42, 56-57); for 2BH2, the first three base pairs of the 

RNA helix and the 5’ nucleotide were kept fixed; for 1JBS, the 5’ and 3’ residues were held 

fixed. 

 

The prefold-then-dock protocol 

 For each of the ten structures in the benchmark set, the RNA was folded with the 

FARFAR method (Cheng et al., 2015). 5000 structures were generated for each system. The 

resulting structures were clustered in Rosetta, with a clustering radius of 2.0 Å. The centers of 

the ten most populated clusters were then docked to the unbound protein structures with 
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RPDock (Huang et al., 2013). RMSDs were calculated over RNA heavy atoms after alignment 

based on the protein coordinates. The best RMSD was selected from the top ten scoring 

models for each of the ten docked RNA cluster centers (100 structures in total for each system).  

To dock the native bound conformations, the RNA and protein chains were extracted 

from the bound complex, then docked together with RPDOCK. The best RMSD was selected 

from the top 100 models for each system. 

For tests with fixed RNA residues, the RNA residues described above were held fixed 

during RNA folding in FARFAR. RMSDs were calculated over RNA residues that were not held 

fixed after alignment to the fixed RNA residues. The best RMSD was selected from the top 100 

models for each system (clustering was not performed). 

 

Assembling a non-redundant set of crystal structures of RNA-protein complexes 

All crystal structures containing both RNA and protein chains, with resolution better than 

2.5 Å were downloaded from the Protein Data Bank in August 2016. Complexes containing only 

protein chains of length less than 20 amino acids or RNA chains of length less than four 

nucleotides were discarded. All protein chains were clustered using blastclust (Altschul et al., 

1990) with a 30% sequence identity cutoff using the command “blastclust –i fasta.txt –o 

blastclust_output.txt –b T –S 30”. Because the protein chains were clustered individually, 

different protein chains of the same RNA-protein complex could end up in different clusters after 

this step. This was addressed by merging clusters with members from the same RNA-protein 

complex. A single representative structure from each cluster was then selected based on a 

priority score defined as 1 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑅!"## + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑐ℎ𝑎𝑖𝑛𝑠, where higher 

priority scores were prioritized. The final structures were visually inspected to check that they 

actually reflected the biological assemblies and that multiple copies of the same complex were 
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not present in a structure (e.g. in the case of a virus capsid bound at every protein subunit by 

the same RNA hairpin). Final PDB IDs are listed in Supporting Information.  

 

Development of the Rosetta low-resolution RNP score function 

Distances between RNA and protein atoms for each of the structures in the non-

redundant set were calculated in Rosetta. Distributions were analyzed (below) to inform the final 

pairwise score terms. The RNA-protein score function is a linear combination of the previously 

described RNA score terms and the five RNP score terms described here. Weights for the RNP 

score terms were adjusted so that the magnitudes of the final score values were similar. The 

final score function is available within Rosetta as “rna_lores_with_rnp_aug.wts”. 

 

Scoring RNA-protein interactions in the plane of the base (rnp_base_pair) 

A coordinate system was set up on each base as described previously (Das and Baker, 

2007). Distributions of each of the protein sidechain centroids around each of the four RNA 

bases were analyzed for 0 < |z| < 3 Å, 0 < |x| < 10 Å, and 0 < |y| < 10 Å, and binned into 2 Å by 

2 Å boxes in the x-y plane. The resulting two-dimensional histograms were smoothed with a 1.2 

Å Gaussian filter (using the gaussian_filter function in python (scipy)) and normalized by the 

total counts of interactions across all protein sidechains and RNA bases in a given bin. 

rnp_base_pair scores were calculated as the negative logarithm of these frequencies. The 

scores were renormalized by subtracting the maximum score value across all bins, so that the 

maximum value of this score was equal to zero.  

 

Scoring RNA-protein stacking interactions (rnp_stack) 

Distributions of protein sidechain centroids around each of the four RNA bases were 

analyzed as described for rnp_base_pair above, but above and below the plane of the base, for 

3.0 < |z| < 6.5 Å. The distributions showed clear stacking interactions between each of the four 
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RNA bases and tryptophan, tyrosine, phenylalanine, valine, and leucine. The rnp_stack score 

term rewards these interactions by applying a bonus of -1.0 when any of these five protein 

sidechain centroids falls within 𝑥! + 𝑦! < 4.0 Å and 3.0 < |z| < 6.5 Å of an RNA base.  

 

Scoring general RNA-protein interactions (rnp_pair_dist) 

Distances between RNA base centroids and P, C5’, C1’, C3’ atoms and protein 

sidechain centroids and N, C, CA, O, C atoms were binned from 0 to 20 Å in 2 Å intervals. 

rnp_pair_dist scores were calculated as described previously for protein-protein docking (Gray 

et al., 2003) (Spair), but because the potential here is a function of distance rather than binary 

interaction, the potential was normalized for interaction volume. This normalization was 

performed for each distance range by dividing by the total number of interactions between any 

protein atom and any RNA atom within that distance. Scores were adjusted so that the 

maximum score value was equal to zero, and to reduce noise, resulting values between 0 and -

1.0 were set to 0. 

 

Scoring interactions with the RNA backbone (rnp_aa_to_rna_backbone) 

Distances between RNA phosphate atoms and protein sidechain centroids were binned 

for distances between 3 and 10 Å in 1 Å intervals. Counts in each bin were normalized by the 

volume of the bin and by the counts of any protein sidechain in a given distance bin. The 

rnp_aa_to_rna_backbone scores were calculated as the negative logarithm of these 

frequencies. Scores were normalized to zero at 10 Å.  

 

Scoring steric clashes (rnp_vdw) 

Interactions between each of nine RNA atoms (P, C5’, C1’, C3’, N1, and for adenosine 

N6, N7, N3, O2’; for cytidine N4, C6, O2, C2’; for guanosine O6, N7, N2, O2’; for uridine O4, C6, 
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O2, C2’) and protein sidechain centroids, C, CA, O, N, and CB atoms are penalized when they 

come within the minimum distance observed in the non-redundant set of crystal structures. Like 

for the RNA and protein steric penalties (Das and Baker, 2007; Simons et al., 1997), the 

rnp_vdw score is calculated as 
𝑑!,!! − 𝑥!,!!

!

𝑑!,!!
    where xi,j is the distance between the RNA 

atom i and protein atom j, and di,j is the minimum observed distance. 

 

Simultaneous folding and docking in Rosetta 

 To create RNP-denovo, the FARNA method was updated to include protein binding. 

Specifically, rigid-body docking moves are included along with the standard RNA fragment 

insertion moves in the Monte Carlo simulation. For runs where some RNA residues were held 

fixed relative to the protein (the benchmark set of ten complexes described above and 

telomerase described below), these rigid-body docking moves were not used, but the center of 

mass of the RNA could still change dramatically during modeling. Conformations are scored 

with the RNA-protein score function described above. This method is freely available to 

academic users as part of the Rosetta software package (www.rosettacommons.org). An 

example Rosetta command line is as follows:  

 

rna_denovo	–f	fasta.txt	–secstruct_file	secstruct.txt	–s	

protein_structure.pdb	–minimize_rna	false	–nstruct	100		

 

where fasta.txt lists the full RNA and protein sequence, secstruct.txt contains the secondary 

structure in dot-bracket notation with the protein represented as dots, and protein_structure.pdb 

is the structure of the protein.  

 For each system, the RNA was built in the presence of the unbound protein structure or 

a homology model for telomerase and the CAPRI RNA methyltransferase. Coordinates for the 
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fixed RNA residues for the benchmark set of ten complexes were taken from the bound 

complex. The orientation of the fixed RNA residues relative to the unbound protein was 

determined by aligning the unbound protein structure to the bound complex. For the benchmark 

set of ten complexes, 7000 models were generated for each system and RMSDs were 

calculated over the RNA heavy atoms after alignment of the protein coordinates. Further details 

for the three large RNA-protein systems are described below. 

 

Rescoring Rosetta models with docking potentials 

 For each of the ten systems in the benchmark set, all 7000 Rosetta RNP-denovo models 

were rescored with the DARS-RNP and 3dRPC potentials using the following commands:  

For 3dRPC: 

3dRPC	-mode	8	-system	9	-par	scoring.par	

For DARS-RNP: 

python	~/src/DARS-RNP_v3/DARS_potential_v3.py	-f	list.txt	–n	

	

Calculating target RMSD accuracy for larger RNA-protein complexes 

The size independent RMSD metric, RMSD100 proposed in (Carugo and Pongor, 2001) is given 

by: 

𝑅𝑀𝑆𝐷!"" =
𝑅𝑀𝑆𝐷

−1.3 + 0.5 ln (𝑁)
 

where N is the number of residues. This relationship was originally determined for proteins, but 

we assumed that it would also hold for RNA-protein complexes. RMSD100 values for the initial 

benchmark set and the larger RNA-protein complexes should be the same for models exhibiting 

the same degree of structural similarity. We then used the average number of RNA residues in 

the initial benchmark set (Nsmall = 21) and the larger RNA-protein complexes (Nlarge = 117), as 
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well as the average RMSD value for the initial benchmark set (RMSDsmall = 4.3 Å) to calculate 

the expected RMSD value (RMSDlarge) for the larger RNA-protein complexes: 

𝑅𝑀𝑆𝐷!"#$% =  
𝑅𝑀𝑆𝐷!"#$$ −1.3 + 0.5 ln (𝑁!"#$%)

−1.3 + 0.5 ln (𝑁!"#$$)
 

 

Telomerase modeling 

 Models of the telomerase core RNP with an 11-nucleotide template hybrid were built 

without enforcing the formation of the P1 stem exactly following the procedure described 

previously, but using the RNP-denovo fold-and-dock method described here instead of the 

smFRET-Rosetta protocol previously described (Parks et al., 2017). As before, the template 

hybrid and CR4/5 RNA were kept fixed relative to the homology model of the TERT protein. 

Distance restraints based on FRET data were applied as described previously. As before, 

approximately 2500 models were built. Two additional sets of models were built following the 

same procedure, but without the FRET distance restraints: one with the full Rosetta RNA-

protein score function and the other with only the RNA score terms and the score term 

penalizing RNA-protein steric clashes (rnp_vdw). RMSDs were calculated between Rosetta 

models and the published 7.7 Å cryoEM structure (Nguyen et al., 2018) at the ends of the 

pseudoknot motif over two pseudoatoms defined as the centroids of the C1’ positions of 

residues 96 and 118, and residues 108 and 182. RMSDs were not calculated over all atoms 

because the cryoEM structure was determined at 7.7 Å resolution, which is not high enough to 

confidently resolve positions of individual atoms. Additionally, positions of the highly conserved 

pseudoknot motif differ considerably between the recently determined Tetrahymena (Jiang et 

al., 2018) and human structures (Nguyen et al., 2018), and previous single-molecule FRET 

studies suggest conformational flexibility (Parks et al., 2017). Predicted FRET values were 

calculated by converting the distances between the C5 atoms in respective atom pairs to FRET 

with the following equation: 
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𝐹𝑅𝐸𝑇 =  
1

1 + 𝑟
𝑅!

! 

where the Förster radius, R0 = 56 Å and r is the distance between atoms. 

 

CAPRI Target 33/34 RNA methyltransferase modeling 

 Models of the RNA methyltransferase complex were built using either the RNP-denovo 

fold-and-dock or the prefold-then-dock method. In each case, we used the previously built 

protein homology model bound to the SAM cofactor (Fleishman et al., 2010) and assumed the 

correct RNA secondary structure. Fixed ideal A-form helices were used to model all helical 

elements. In both cases, constraints were applied matching those used in the original CAPRI 

modeling (Fleishman et al., 2010). 10000 models were built using the RNP-denovo fold-and-

dock method. For the prefold-then-dock method, 10000 models of the RNA alone were built with 

FARNA. The top scoring 1000 models were clustered as described in the prefold-then-dock 

section above. The cluster centers of the ten most populated clusters were then docked in 

Rosetta to the protein homology model (using the RNP-denovo fold-and-dock method described 

here, but treating the whole RNA as a rigid body) with constraints (described above) applied. 

100 models of the complex were generated for each cluster center, and the top 10 soring were 

taken from each to give a final pool of 100 top scoring models. RMSDs were calculated over all 

RNA heavy atoms after alignment over either all protein heavy atoms or all RNA heavy atoms. 

 

Spliceosome modeling 

Models of the spliceosome core RNA bound to Prp8 were built starting from the 

published RNA model (Anokhina et al., 2013). This model was docked to the Prp8 crystal 

structure (using the same region as for the previously published model). For the RNP-denovo 

fold-and-dock runs, the position of U5 bound to the 5’ exon was allowed to move relative to the 

rest of the RNA model by assuming that the 3’ end of the 5’ exon is still covalently connected to 
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the 5’ end of the intron and allowing the torsions at this connection to move freely. For the 

prefold-then-dock runs, the published RNA model was treated as a rigid body. The three 

crosslinking constraints used to build the published model of the RNA docked to Prp8 were also 

included here. Specifically, a score penalty was applied to conformations where none of the C1’ 

atoms of the U5 RNA residues were within 5.0 Å of residues 1281-1414 of Prp8. An additional 

penalty was applied when there were no RNA branchpoint helix residues within 5 Å of Prp8 

residues 1575 or 1598 (the ends of the disordered loop in Prp8). Finally, a penalty was also 

applied when there were no residues within the ACAGA/pre-mRNA loop within 30 Å of residue 

1826 of Prp8 (the connection to the RNaseH-like domain, which was not included in the models, 

and is meant here to represent its approximate location). All of these restraints were 

implemented as ambiguous flat harmonic restraints in Rosetta with standard deviations of 1 Å. 

Because these restraints were so stringent, they were considered “satisfied” in the final models 

when the total restraint score was less than 60.0 Rosetta energy units and as an additional 

check, U5 residue 39 was within 60 Å of the center of mass of Prp8 residues 1281-1323+1326-

1413, the fourth intron residue in the branchpoint helix was within 25 Å of the center of mass of 

Prp8 residues 1575 and 1598, and intron residue U+4 was within 60 Å of Prp8 residue 1826. 

Approximately 1500 models were built. RMSDs were calculated over phosphorus atoms in the 

last (3’) residue of the 5’ exon, the first residue (5’) of the intron, and the residue right after (3’ 

of) the branchpoint A with respect to the corresponding residues from the published cryoEM 

structure of the yeast C complex (Wan et al., 2016) after alignment over Prp8.  
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Figure 1. Tests of the best accuracies achievable by a prefold-then-dock strategy. A) The best 

RMSDs achieved for ten systems for the prefold-then-dock strategy versus the (unrealistic) best 

case of rigid-body docking of the native RNA to the native protein structures. (B-K) Native 

structures (RNA in cyan) overlaid with the best models from the prefold-then-dock method (RNA 

in red, protein in gray) for (B) 1B7F (C) 1DFU, (D) 1JBS, (E) 1P6V, (F) 1WPU, (G) 1WSU, (H) 

2ASB, (I) 2BH2, (J) 2QUX, and (K) 3BX2. See also Figure S1. 
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Figure 2. Statistical RNA-protein potential in Rosetta. A) The distribution of glutamine sidechain 

centroids around uracil in the plane of the base (0 < |z| < 3 Å), from the non-redundant set of 

RNA-protein crystal structures from the PDB (darker blue represents higher frequency). 

Distributions of all protein sidechains around all four RNA bases are shown in Figure S2A. B) A 

pseudo-pair between glutamine and uracil. C) Conformations from the two major hotspots 

circled in (A) show that the interactions between glutamine and uracil are not highly stereotyped. 

D) The distribution of phenylalanine sidechain centroids around uracil above and below the 

plane of the base (3 < |z| < 6.5 Å; darker blue represents higher frequency). Distributions of all 

protein sidechains around all four RNA bases are shown in Figure S2B. E) Representative 

conformations from the hotspot in (D) show stereotyped stacking interactions. F) Conformations 

of valine around uracil also reveal frequent stacking interactions. See also Figures S2, S3, S4.  
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Figure 3. Results of Rosetta RNP-denovo folding. (Left) Histograms of RNP-denovo RMSDs 

relative to native for Rosetta models built with the full RNP score function (blue) and the RNP 

van der Waals term plus RNA-only score terms (gray), and (Right) the best models (by RMSD) 

out of the top 100 scoring (RNA in red) overlaid with the native RNA-protein complexes (RNA in 
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cyan) for (A) 1B7F, (B) 1DFU, (C) 1JBS, (D) 1P6V, (E) 1WPU, (F) 1WSU, (G) 2ASB, (H) 2BH2, 

(I) 2QUX, and (J) 3BX2. RNA residues that were kept fixed relative to the protein are colored 

black. Unbound protein structures (gray) were used for modeling to simulate a realistic 

prediction scenario. See also Table S1. 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 5, 2018. ; https://doi.org/10.1101/339374doi: bioRxiv preprint 

https://doi.org/10.1101/339374


31 

 

Figure 4. Rescoring RNP-denovo Rosetta models with docking potentials. A) The RMSD of the 

best scoring Rosetta models assessed by the DARS-RNP (green) and 3dRPC (gray) docking 

potentials versus by the Rosetta RNP score function for systems shown in Figure 3. Values for 

single-stranded RNA binding proteins are shown as squares. B) Distributions of RMSDs for the 

top 100 scoring models assessed by the DARS-RNP (green), 3dRPC (gray), and Rosetta RNP 

potentials (blue). C) The best scoring model assessed by 3dRPC for 1dfu (RNA colored red) 

overlaid with the native structure (RNA colored cyan). Residues that were kept fixed during 

modeling are colored black. See also Figure S5 and Table S2. 
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Figure 5. Revisiting three past modeling challenges with the Rosetta RNP-denovo fold-and-

dock method. (A) The best of the previously selected blind human telomerase core RNP models 

built without FRET data (Parks et al., 2017) (left; RMSD over select pseudoknot residues = 78.8 

Å; pseudoknot RNA motif colored red, template RNA colored blue, other modeled RNA colored 

light blue, protein colored gray), the best RNP-denovo fold-and-dock model by RMSD of the top 

100 scoring models built without FRET (middle; RMSD over select pseudoknot residues = 15.0 

Å), and the cryoEM structure of human telomerase (Nguyen et al., 2018) (right). (B) The best of 
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the previously submitted RNA methyltransferase CAPRI T33 models (left; RMSD = 31.0 Å; RNA 

colored blue, red, and orange; protein colored gray), the best of the top 100 scoring RNP-

denovo fold-and-dock models (middle; RMSD = 13.6 Å), and the best T34 model, which closely 

resembles the crystal structure (right; interface RMSD to crystal structure = 1.5 Å). (C) The 

previously published human spliceosomal C complex model (Anokhina et al., 2013) (left; RMSD 

over key active site residues (shown as spheres) = 34.5 Å, U2 RNA colored green, U5 RNA 

colored blue, U6 RNA colored red, intron colored orange, 5’ exon colored cyan, protein colored 

gray), the best RMSD model of the top 100 scoring RNP-denovo fold-and-dock models of the 

human C complex (middle; RMSD over key active site residues = 8.0 Å), and the cryoEM 

structure of the yeast C complex (right). See also Figure S6. 
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Table 1. Accuracy of prefold-then-dock versus Rosetta RNP-denovo fold-and-dock. 

System 
Best RMSD of top 100 scoring models (Å) 

Prefold-then-dock1 Rosetta RNP-denovo 
fold-and-dock 

Sex-lethal RRM 
(1b7f) 6.7 4.2 

Ribotoxin restrictocin –  
SRL analog (1jbs) 3.1 3.0 

HutP antitermination complex 
(1wpu) 7.3 3.9 

mRNA binding domain of 
SelB elongation factor (1wsu) 2.4 2.4 

NusA transcriptional regulator 
(2asb) 5.6 3.1 

Methyltransferase RumA in 
complex with rRNA (2bh2) 6.5 5.8 

PP7 coat protein and viral 
RNA (2qux) 5.2 4.7 

Puf4 bound to 3’ UTR of 
target transcript (3bx2) 6.3 3.8 

SmpB-tmRNA complex  
(1p6v) 5.2 6.3 

E. coli L25-5S rRNA  
(1dfu) 5.2 5.5 

Human telomerase2 

 51.4 (25.5)3 15.0 

RNA methyltransferase 
(CAPRI T33) 18.2 (31.0)4 13.6 

Human spliceosome 

 13.8 (34.5)5 8.0 

Average 10.5 6.1 
1For the ten small RNA-protein systems, the RNA was folded keeping the same residues fixed 
relative to the protein as in the RNP-denovo fold-and-dock runs (therefore, docking was not 
performed; see Figure 1 and Figure S1 for full prefold-then-dock results). 
2Results for models built without FRET data. RMSDs calculated over pseudoknot ends (see 
Methods). Accuracy of best of top 100 previous blind models shown in parentheses. 
3Because the position of the template RNA relative to the protein is known, prefold-then-dock 
was not attempted. Instead, the results here are for the RNP-denovo fold-and-dock runs with 
just RNA-only score terms and RNA-protein sterics. Accuracy of best of top 100 previous blind 
models shown in parentheses. 
4Accuracy of the best of the previously submitted blind models shown in parentheses. 
5Accuracy of the previously published blind model shown in parentheses. RMSDs were 
calculated over active site residues (see Methods). 
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