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Abstract

Alzheimer’s disease (AD) affects millions of people and is a major rising problem in

health care worldwide. Recent research suggests that AD could have different subtypes,

presenting differences in how the disease develops. Characterizing those subtypes could

be key to deepen the understanding of this complex disease. In this paper, we used a

multivariate, non-supervised clustering method over blood-based markers to find

subgroups of patients defined by distinctive blood marker profiles. Our analysis on

ADNI database identified 4 possible subgroups, each with a different blood profile.
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More importantly, we show that subgroups with different profiles have a different

relationship between brain phenotypes detected in magnetic resonance imaging and

disease condition.

Introduction 1

Alzheimer’s disease (AD) is the most common cause of dementia, a condition affecting 2

more than 47 million people worldwide [1]. AD is one of the biggest concerns in global 3

health care, due to its large economic and social impact. It is characterized by a 4

deposition of amyloid-beta (Aβ) protein in the brain and the formation of tau 5

plaques [2], and its most prevalent symptom is a progressive decline and deterioration of 6

cognitive skills, leading to death. AD has been characterized as a multi-factorial 7

disease [2, 3], involving many different processes and biological phenomena. Despite 8

many efforts spent on research, we know relatively little about many aspects of the 9

disease. 10

Currently, to diagnose accurately the disease and provide for an adequate treatment, 11

several markers are used: cerebrospinal fluid (CSF) concentration of tau, p-tau and 12

Aβ [4], and markers obtained from imaging techniques such as magnetic resonance 13

imaging (MRI) to detect structural neurodegeneration, or positron emission tomography 14

(PET) to detect Aβ concentration and tau deposition in the brain [5, 6]. Efforts have 15

been made to find new, less-invasive markers in blood that can help diagnose the 16

disease. In 2009, Schneider et al. [7] presented a review of proposed plasma marker 17

candidates, concluding that a single reliable candidate had not been found yet. 18

O’Bryant et al. [8], in their review on blood-based markers for AD detection, concluded 19

that, although progress has been made, significant advancements on results validation 20

are still needed before blood markers can be reliably used in clinical trials. 21

Several blood markers have been shown to correlate with structural changes. Dage et 22

al. [9] studied the connection between neurodegeneration and tau protein levels in 23

plasma, finding association between cortical thickness, cognition, and tau levels. In a 24

study by Mattsson et al. [10], plasma neurofilament light was associated with cognitive 25

deterioration and imaging markers of AD. Thambisetty et al. [11] analyzed the 26

relationship between various plasma proteins, brain volume and cortical thickness in AD 27
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patients, finding links between plasma proteins and AD neurodegeneration. In a later 28

work [12], they studied the relationship between plasma clusterin (apolipoprotein J) 29

concentration and longitudinal brain atrophy, finding significant associations. 30

These previously described works do not take into account the possible heterogeneity 31

arising from the interaction between blood and brain. AD is a highly heterogeneous 32

disease, where its symptoms and path of degeneration can vary between patients, and 33

identifying the different presentations or subtypes and their related signatures could 34

help for a better detection of the disease and a better understanding of the interaction 35

between different biological mechanisms (i.e. phenotypes). There have been many 36

studies identifying possible heterogeneous subgroups of the disease. Noh et al. [13] 37

found 3 subtypes on distinct patterns of cortical atrophy, using Ward’s clustering 38

linkage method. Nettiksimmons et al. [14] presented subtypes based on CSF and MRI 39

markers, and in a posterior study [15], they argued that vascular damage could explain 40

subtyping difference. They also studied heterogeneity in mild cognitive impairment 41

patients [16], using CSF, MRI, and plasma markers. In a different approach, Young et 42

al. [17, 18] proposed an event ordering method to infer heterogeneous subtypes of the 43

disease and stage. 44

Studies addressing heterogeneity of AD generally use the same data modality both 45

to subtype the disease and analyze the obtained subgroups. This could hide relevant 46

differences from other modalities. Moreover, clustering over features that are strongly 47

correlated to the disease stage could lead to subgroups divided by disease severity, 48

instead of by possible disease subtypes. Instead, we propose to use blood marker 49

features to define the subgroups and then explore the relationships with the disease in 50

each subgroup using brain volume and cortical thickness phenotypes and disease stages. 51

We use a data-driven, non-supervised, multivariate clustering technique [19] to identify 52

different presentations of the disease using blood markers, and then we analyze how the 53

different blood profiles interact with brain structural phenotypes across the different 54

disease stages. Compared to methods limited by univariate analysis, such as direct 55

statistical tests for a single marker, multivariate analysis allows identification of 56

potentially hidden blood marker profiles associated with latent pathological processes, 57

addressing a limitation of the reported blood marker studies. 58
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Materials and methods 59

Data 60

Data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 61

(adni.loni.usc.edu) were used for this project. ADNI is a multi-site, longitudinal 62

study launched in 2003 by Weiner et al. [20] that includes acquisitions of MRI, PET, 63

other biological markers, and clinical and neuropsychological assessment tests of patients 64

over time to track the pathology of AD. For this work, we have selected subjects that 65

had available MRI T1.5 scan and blood marker information at baseline. After removing 66

subjects that presented missing values, we ended up with a set of 298 subjects, 67

including 52 cognitive normal (CN), 161 with mild cognitive impairment (MCI) and 85 68

with AD. Table 1 shows the demographic information of the studied cohort. 69

Table 1. Demographic information of the studied cohort.

CN MCI AD Total

Nº subjects 52 161 85 298
Age (years) 75.1± 6.0 74.1± 7.5 74.6± 7.9 74.4± 7.4
Sex (female) 44.2% 33.5% 47% 39.3%
Education (years) 15.8± 2.7 15.8± 2.9 15.3± 3.0 15.7± 2.7
ApoE4 9% 52% 67% 48%
MMSE 29± 1.2 26.9± 1.8 23.4± 1.9 26.3± 2.6

Categorical variables are expressed as counts and percentages. Continuous variables are
expressed as mean ± standard deviation. CN: Cognitive normal. MCI: Mild cognitive
impairment. AD: Alzheimer’s disease. ApoE4: Apolipoprotein E4. MMSE: mini-mental
state examination.

We preselected 235 candidate plasma markers from the available cohort of 70

biospecimen markers in ADNI, including 190 protein plasma markers gathered by the 71

AD Metabolomics Consortium, plasma neurofilament light, Aβ proteins 40 and 42, and 72

41 aminoacids. For the final selection, we accounted for the reported quality of the 73

samples and removed any marker that had missing values in any of the reported subjects. 74

The final selection consisted of 172 markers. Experimental design and quality control 75

methods are described in [31] (for the protein plasma markers) and in the ADNI website 76

(for the rest of biomarkers). MRI data were processed and registered to a common space 77

using Freesurfer’s recon-all [21]. We selected 39 volumes of structures from relevant 78

subcortical regions of the brain defined in the default atlas of Freesurfer [22] and 79
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cortical thickness of the whole brain for interaction analysis. The full list of the selected 80

plasma markers and brain regions can be found in supplementary files S2 and S3. 81

Each volume value was normalized by the estimated intracraneal volume of the 82

subject. Both structural volumes and plasma markers were standardized to [0, 1] range 83

before processing, We used min-max scaling, substracting the minimum value of each 84

biomarker and dividing by the difference between the maximum and the minimum. 85

This way, we preserve zero entries and introduce robustness to small standard 86

deviations in the biomarkers. 87

Methods 88

To find the different profiles, we cluster the patients using their blood markers, without 89

using neither brain phenotypes nor diagnosis. We analyze the resulting clusters to find 90

the blood profiles of each cluster. To find heterogeneous brain presentations in each 91

cluster, we analyze the relationships between brain phenotypes in each cluster and 92

disease stage, thus revealing the interactions between blood marker profiles and brain 93

phenotypes across the disease stages. Fig 1 shows the pipeline of the method. 94

Unsupervised clustering 95

We use CIMLR (which originally stands for cancer integration via multikernel learning, 96

since it was developed for cancer subtyping) [19,23], to identify the blood markers that 97

reveal natural subgroups in the data, without taking into account neither the brain 98

phenotypes nor the disease stage, to obtain subtypes not defined by disease stage. We 99

could have used any other unsupervised clustering method, but we selected CIMLR, 100

coupled with manifold learning and k-means clustering, due to its scalability with large 101

amounts of data, good performance on a variety of datasets [19, 23], and interpretability 102

of results. 103

CIMLR is a method based on multiple kernel learning that learns a similarity 104

between each pair of samples by combining different kernels per feature (in our case, 105

blood markers). It enforces a C block structure on the learned similarity, where each 106

block is a set of samples similar to each other, i.e., a cluster. The number of clusters C 107

must be specified beforehand. The learned similarity can then be used to compute a 108
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Profile discovery

Profile 1

- Marker 1
- Marker 2
- ...

Profile 2

- Marker 1
- Marker 2
- ...

Profile N

- Marker 1
- Marker 2
- ...

Blood markers
Clustering

Similarity kernels Learned Similarity Matrix
Embedding

CIMLR t-SNE

MRI images

Diagnosis info

Interaction analysis

Fig 1. Method overview. We detect clusters on the space defined by the blood
markers, define a different profile for each cluster, and, using the phenotypes extracted
from the MRI images, we analyze the interactions between the profiles and the disease.

space of reduced complexity, where each subject is positioned with respect to the whole 109

population, and the distance between subjects indicates how similar they are. By 110

combining multiple kernels, each of which is based on a specific blood marker, it 111

integrates the heterogeneous information, and provides the contribution of each blood 112

marker in the computed low-dimensional representation. 113

Let the input data consist of N samples with M features (i.e., blood markers) each, 114

be defined as {xim}Ni=1, m = 1, . . . ,M , where xim represents the blood marker m of 115

subject i. Each blood marker is assigned to P kernels Kmp, p = 1, . . . , P . CIMLR 116

solves for 3 variables: S ∈ RN×N (the learned similarity matrix), w ∈ RM ·P×1 (a vector 117

containing the weights associated to each kernel), and A ∈ RN×C (a matrix enforcing C 118
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clusters in S). The optimization problem is defined as follows: 119

minS,A,w −
∑

i,j,p,m

wmpKmp(xim, xjm)Sij + γtr(AT (IN − S)A)

+ µ
∑
m,p

wmplog wmp + β‖S‖2F

subject to ATA = IC ,
∑
m,p

wmp = 1, wmp ≥ 0,
∑
j

Sij = 1 and Sij ≥ 0.

(1)

Here, γ, µ, and β are tuning parameters for the various terms of the optimization 120

function, I represents the identity matrix, ‖.‖F stands for the Frobenius norm, and tr 121

denotes the trace of the matrix. The first term of Equation 1 links the learned similarity 122

S with the combination of kernels from all features: similarity between two samples 123

should be small if their kernel-based distance is large. The second term enforces S to 124

have C connected components, through the auxiliary matrix A and its associated 125

constraint IC . The third term imposes a constraint on w so that more than one kernel 126

is selected, and last term applies a regularization penalizing the scale of the learned 127

similarities. An extended overview of the algorithm, including the optimization method, 128

can be found in [19]. A MATLAB implementation of the method by the authors of the 129

paper has been used (https://github.com/BatzoglouLabSU/SIMLR). 130

We use Gaussian kernels to define Kmp. In total, there are P kernels for each 131

feature m, each with different parameters. This is needed because different markers 132

could be sensitive to different ranges of parameters. We define Kmp as: 133

Kmp(xi, xj) =
1

εijp
√

2π
exp

(
−‖xim − xjm‖

2
2

2ε2ijm

)
,

µim =

∑
j∈KNN(xim) ‖xim − xjm‖2

k
, εijm =

σ(µim + µjm)

2
,

(2)

with KNN(xim) representing the k nearest neighbours of subject i with respect to 134

marker m, and ‖.‖2 being the Euclidean distance. For k ∈ {30, 45, 50} and 135

σ ∈ {30, 35, 40, 45, 50}, we have a total of P = 15 kernels for each feature. The choice of 136

parameters was done empirically. The method is mainly invariable to P [23]. For 172 137

markers, we optimize over a total of 15× 172 = 2580 kernels. 138
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As in [19], we estimate the best number of clusters with the heuristic proposed 139

in [24], and further validate the choice with the elbow method. For visualization of the 140

clusters and dimensionality reduction, we apply t-distributed stochastic neighbor 141

embedding (t-SNE) [25], a manifold learning technique, on the resulting similarity 142

matrix. After obtaining the low dimensional embedding, k-means clustering is used to 143

discover the clusters. 144

Cluster validation 145

We want to test the stability of the clusters against perturbations (e.g. particular choice 146

of individuals). If the same clusters arise after modifying the choice of individuals, this 147

suggests that the clustering is capturing an underlying structure in the data that is 148

invariant to the particular choice of individuals, to some extent. We use a bootstrap 149

procedure to test this stability. We apply the CIMLR-based clustering method to 150

randomly select subsets of the data, with the same size of the original dataset but with 151

replacement (i.e. some patients could appear several times, wheras others could not 152

appear at all). After applying the clustering algorithm, we compute the similarity of the 153

obtained clusters in each bootstrap iteration with the clusters obtained for the whole 154

dataset. 155

We use the Jaccard index to quantify the similarity between clusters. This Jaccard 156

index is defined, for two sets A,B, as the intersection divided by the union of the sets: 157

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
. (3)

The higher the index, the higher the similarity and hence the stability. 158

Profile discovery 159

Subjects in a given cluster share a specific profile of blood markers. To obtain the 160

profile of each cluster, we need to determine which markers contributed more to the 161

clustering. We look at the weights w in the optimization procedure: each weight 162

accounts for the importance of a specific kernel. As described above, we generate 15 163

kernels for each of the 172 markers, with 15 associated weights. We compute the 164

importance as the sum of those weights. 165
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For further validation, we use one-way analysis of variance (ANOVA) tests of mean 166

population across the clusters for the described markers to test whether the population 167

of each subtype has a different mean. With this, we obtain a stable list of the most 168

informative markers for the clustering, and describe the different blood profiles in each 169

subgroup according to that set of markers. 170

Interaction analysis 171

To detect different interactions between blood markers and structural brain phenotypes, 172

we test for differences between the brain volumes and cortical thickness of the 173

individuals in each subgroup. We perform three different comparison tests: 174

1. Whole cluster analysis: Each subgroup and the rest of the population, not 175

taking into account diagnostic groups, to detect different characteristics in each 176

subgroup. 177

2. Diagnostic group analysis: Diagnostic groups, for each subgroup, to find 178

differences between stages of the disease in each subgroup with respect to the 179

whole population. 180

3. Diagnostic interaction analysis: Each diagnostic group of each subgroup with 181

the rest of subjects on the population in that diagnostic group, to detect different 182

interactions between blood profiles and structural brain phenotypes across 183

different stages of the disease. 184

We want to know whether cluster membership (independent variable) has significant 185

effects on brain volume/cortical thickness (dependent variable). The significance 186

thresholds may vary depending on the samples sizes, especially in our case that the 187

groups may have different number of samples (i.e. clusters of different size). To correct 188

for different sized groups and remove false positives, we used a permutation based 189

method [26]. For a large enough number of iterations (1000), we perform random 190

permutation of the independent variable (i.e. cluster membership), while preserving the 191

cluster sizes and the diagnostic group sizes. Thus, we obtain a distribution of 192

significance levels. 193

According to the permutation strategy, for the test to be significant, a higher 194

significance level than those of most of the random permutations (e.g. 95%, 99%, ... 195
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Test all 
permutations P

P0.05Pc

Pc

P0.05

Corrected test 
results Pc with 
respect to 5% 

percentile (P0.05) 

G1 G2

P1 P2 PN

Fig 2. Permutation procedure. For groups G1 and G2, we create new random
subgroups and test them. Then, we correct the obtained result in the original group (Pc,
red line), with respect to the 5% percentile of the obtained distribution of p-values
(P0.05, black line). If the result is in the percentile, we consider it significant.

depending on the desired significance level) should be achieved. This correction is done 196

to ensure that the obtained statistical significance was not caused by the different 197

sample sizes of each subgroup and each diagnostic group. Fig 2 shows an outline of the 198

procedure. 199

We use a non-parametric Mann-Whitney-Wilcoxon test for comparing the brain 200

subvolumes. For cortical thickness, we use FreeSurfer’s mri glmfit-sim and fsPalm to 201

implement the analysis. We also perform a cluster-wise correction on the surface of the 202

cortex and applied Bonferroni correction for the two hemispheres. In this way, we can 203

map corrected regions in the cortex that present significant differences in each analysis. 204
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Results 205

We applied the proposed method to the described cohort of subjects from ADNI 206

database, to find the subgroups with heterogeneous blood profiles and analyze the 207

interactions with the disease of each subgroup using volume features and cortical 208

thickness. All the experiments are reproducible following the instructions found in the 209

repository of the project https://github.com/GerardMJuan/simlr-ad. 210

Clustering 211

After applying the heuristics on cluster size described in the Methods section, we 212

obtained C ∈ {4, 6} using [24] and C ∈ {4, 5} using the elbow method. We decided on 213

C = 4 as the most appropriate choice. Figure 3 shows the learned similarity matrix S 214

and the cluster distribution in the first two dimensions of the low-dimensional space 215

identified by t-SNE. We compared it to the similarity matrix and cluster distribution 216

obtained using Euclidean distance on the original blood marker space. Fig 3 illustrates 217

that clusters are not distinguishable when using an Euclidean-based similarity matrix, 218

whereas CIMLR has a block structure that improves dimensionality reduction and 219

cluster analysis. 220

We assessed the stability of the obtained clusters by using the bootstrap approach 221

described in the Methods section and compared it with stability results obtained using a 222

random clustering and k-means clustering with Euclidean metric. Table 2 shows the 223

results. CIMLR got a larger mean similarity in each cluster than random clustering, 224

and similar stability to k-means clustering. Clusters C1 and C2 appeared more stable 225

than C3 and C4. 226

Table 2. Stability tests.

Cluster Random k-means CIMLR

C1 0.227 0.453 0.467
C2 0.208 0.435 0.409
C3 0.187 0.320 0.317
C4 0.206 0.331 0.386

Stability tests for the clustering, compared to random clustering and k-means clustering
using Euclidian distance. Reported result is mean similarity.

Table 3 shows the demographic information of the subjects for each obtained cluster. 227
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Fig 3. Similarity matrices and 2D embeddings a) Euclidean distance between
subjects over the initial blood marker space. b) Learnt similarity matrix S. Subjects in
the matrix are ordered by the obtained clusters. c) d) 2D embeddings of the respective
matrices in a) and b) using t-SNE.

Distribution of the diagnostic groups is similar to the distribution in the whole 228

population, and the other characteristics (age, sex, education, Mini–Mental State 229

Examination results and APoE4 genotype) are also similar across subgroups, with the 230

exception of the mean age of C4, which is 5 years lower than the mean population, and 231

a slightly higher fraction of women in C3 and C4. No major significant differences 232

between subgroups were observed, meaning that the obtained groups were not biased. 233

Blood marker ranking and profiling 234

CIMLR revealed patterns of plasma markers that relate to natural subgroups. Fig 4 235

shows the ten most relevant markers determined by the weight vector w. The method 236

uses all blood markers to find the clusters but, unlike other methods, it automatically 237

weights each marker. S4 data contains the full set of weights. 238

Fig 5 shows the values for each marker and cluster. All the ANOVA tests done for 239
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Table 3. Demographic characteristics of the different clusters.

Total C1 C2 C3 C4

Nº subj. 298 82 77 61 78
CN 52 (17.4%) 17 (20.7%) 15 (24.5%) 12 (19.7%) 8 (10.2%)
MCI 161 (54%) 35 (45.4%) 44 (57.1%) 33 (54.1%) 49 (62.8%)
AD 85 (28.5%) 30 (39%) 18 (23.4%) 16 (26.2%) 21 (26.9%)
Age 74.4± 7.4 77.2± 6.7 75.6± 6.1 75.1± 7.1 70.0± 7.2
Sex 39% 25% 28% 52% 53%
Education 15.7± 3.0 15.9± 2.6 14.0± 3.4 15.6± 2.5 16.2± 3.0
ApoE4 48% 37% 54% 45% 57%
MMSE 26.3± 2.6 25.9± 2.9 26.6± 2.4 26.2± 2.7 26.5± 2.4

Categorical variables are expressed as counts and percentages. Continuous variables are
expressed as mean ± standard deviation. Number next to the disease groups indicate
the proportion of that group in the cluster. CN: Cognitive normal. MCI: Mild cognitive
impairment. AD: Alzheimer’s disease. ApoE4: Apolipoprotein E4. MMSE: mini-mental
state

Fig 4. Marker weights. Top 10 marker weights in the kernel combination.

each of the described markers reject the null hypothesis with p < 0.001, meaning that 240

the differences found between clusters on those blood markers are statistically 241

significant. 242

Each of the profiles is defined by different values of the markers: 243

• C1 presents larger values of beta-2-microglobulin, cystatin-C and lower 244

thrombospondin-1 with respect to the total population. 245

• C2 shows decreased values in all of the relevant markers compared to the whole 246
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Fig 5. Marker distributions. Distribution of top ten ranked markers for each
cluster. Normalized values.

population, with the exception of beta-2-microglobulin. 247

• C3 shows higher values in all of the relevant markers compared to the whole 248

population, with the exception of beta-2-microglobulin and cystatin-C. 249

• C4 presents lower values of beta-2-microglobulin, cystatin-C and higher values of 250
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every other marker, compared with the general population. 251

Tau and amyloid-related markers, which are commonly associated with 252

dementia [9, 27,28], are not ranked highly. However, as per table 3, we know that the 253

defined subgroups have a diagnostic distribution similar to the whole population: if 254

markers that were highly correlated to the disease stage (such as the tau and amyloid 255

related markers) had been selected by the algorithm, then that distribution would have 256

been biased. 257

Interaction analysis 258

We analyzed the heterogeneity between the different groups and the interactions 259

between the stages of the disease and the brain volume and cortical thickness 260

phenotypes depending on the blood profiles in each subgroup, as described in the 261

Methods section. 262

Whole cluster analysis 263

We compared subcortical brain volumes in each subgroup against the rest of the 264

population, corrected for different group sizes and false positives using permutation tests. 265

Fig 6 shows the differences in the characteristics of the population in each subgroup. C1 266

presents significant differences in the ventricles, putamen, accumbens area, left-vessel, 267

right-pallidum, choroid plexus and posterior corpus callosum. C2 and C3 are similar to 268

the general population: C2 only shows differences in the corpus callosum central and 269

anterior, whereas C3 is only different to the rest in the right accumbens area. C4 shows 270

many differences in the choroid plexus, ventricles, putamen and pallidum, among others. 271

We also tested for cortical thickness differences. Fig 7 shows the results. C1 presents 272

differences in the superior parietal, supramarginal and central regions. C4 also shows 273

differences in the supramarginal and central, and additionally in a region in the frontal 274

cortex. We did not detect any differences in C2 and C3, which is consistent with the 275

previous results on subcortical volume analysis. 276
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Fig 6. Whole cluster analysis. Differences in volume for each of the presentations
against the rest. Corrected using permutation. Inf: Inferior. WM: White Matter. CC:
Cingular Cortex.

Diagnostic group analysis 277

To identify differences between diagnostic groups in each of the subgroups, we compared 278

between diagnostic groups (CN, MCI, AD) for each of the different subgroups (C1 to 279

C4). In this task, permutation tests allow us to detect differences between diagnostic 280

groups that are specific to that subgroup, by correcting the result against random 281

subgroups. Figs 8 and 9 show the difference between diagnostic groups in: (i) each of 282
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Fig 7. Whole cluster analysis, cortical thickness. Differences in cortical
thickness for each of the presentations against the rest. Corrected using permutation.

the subgroups (Fig 8) and (ii) the whole population (Fig 9). 283

There are significant differences in C3 between CN and AD subjects in the corpus 284

callosum, the third ventricle and the choroid plexus, and in C4 between CN and MCI 285

subjects in the corpus callosum and the ventricles. C1 and C2 have more sparse 286

differences with respect to the whole population. Most of the statistically significant 287

differences correspond to volumes that show less significant differences on the whole 288

population analysis. Intra-group heterogeneity between disease stages is located in 289

specific regions that are usually less affected by the disease. 290

We only detected differences in cortical thickness when testing on CN vs MCI in C4, 291

after correcting for multiple comparisons. Fig 10 shows the detected regions on the 292

cortical surface, located on the frontal cortex and on the right temporal and parietal 293

regions. 294

Diagnostic interaction analysis 295

To detect different interactions between blood profiles and brain phenotypes across 296

different stages of the disease, we tested for differences across same diagnostic subgroups 297

for each cluster against the rest of the population with the same diagnosis. Fig 11 shows 298
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Fig 8. Diagnostic group analysis. Differences between diagnostic groups for each
of the presentations. Corrected using permutation. Inf: Inferior. WM: White Matter.
CC: Cingular Cortex.

the results. 299

We observed differences in volume across all the subgroups: 300

• C1 differs in CN, presenting differences in the 3rd and 4th ventricles, and in MCI, 301

with differences in the lateral ventricle, left vessel, left and right choroid plexus, 302

among others. No differences were found in the AD group. 303

• C2 presents very small differences in the three diagnostic groups compared to the 304
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Fig 9. Diagnostic group analysis, whole population. Differences between
diagnostic groups on the whole population. Inf: Inferior. WM: White Matter. CC:
Cingular Cortex.

rest of the population. 305

• C3 does not present many significant differences: small volume differences in the 306

MCI group, in the right accumbens, right caudate and right inferior lateral 307

ventricle, and in the AD group in the left vessel. 308

• C4 shows many differences in the CN and MCI subgroups. CN presents 309

differences in ventricles, both left and right, and the 3rd ventricle, and in various 310
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Fig 10. Diagnostic group analysis, cortical thickness. Differences in cortical
thickness between diagnostic groups for each of the presentations. Corrected using
permutation.

zones of the cingular cortex. MCI presents differences in the ventricles, left and 311

right choroid plexus and left accumbens area, among others. AD also shows some 312

differences esspecially in the left pallidum. 313

In cortical analysis, we found significant differences in MCI and AD patients of C4 314

-which also presented many differences in our subvolume analysis- in the central and 315

frontal regions of both hemispheres (see Fig 12). 316

Discussion 317

We applied a multivariate data-driven procedure for AD subtyping using blood-based 318

markers, to obtain heterogeneous groups with different blood marker profiles. We 319

showed that patients with different profiles present different interactions between 320

disease stage and brain phenotypes. Although existing blood markers can still not be 321

used to properly diagnose the disease [7, 29,30], using blood markers to detect patient 322

profiles where the disease could behave differently and could provide valuable biological 323

insights is a promising research direction. 324

The method identifies natural subgroups of patients in a multivariate way, finding 325

hidden associations between the markers and automatically weighting the most 326

important ones. The method is scalable to a large number of subjects and to a large 327

number of features, allowing for an easier incorporation of other types of data, such as 328
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Fig 11. Diagnosis interaction analysis. Differences between diagnosis stages
across presentations. Corrected using permutation. Inf: Inferior. WM: White Matter.
CC: Cingular Cortex.

genotypes or other not-included blood markers. It also has some limitations: the 329

obtained subgroups do not have a high stability. We also did not compare to other 330

possible subtyping methods to further validate the obtained results. 331

From a clinical point of view, a study of the detected profiles is needed to investigate 332

possible implications of the found markers. The different presentations of the disease 333

detected in this work could be useful for a more personalized treatment in such an 334
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Fig 12. Diagnostic interaction analysis, cortical thickness. Differences in
cortical thickness between diagnostic stages across presentations. Corrected using
permutation.

heterogeneous disease. Further validation of the results on a larger, independent cohorts 335

of patients will be important to confirm the results and detect more complex profiles. 336

Interactions of the profiles could also be further validated in other phenotypes, such as 337

longitudinal brain atrophy. 338
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