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Abstract

Adaptive plasticity allows organisms to cope with environmental change, thereby
increasing the population’s long-term fitness. However, individual selection can only
compare the fitness of individuals within each generation: if the environment changes
more slowly than the generation time (i.e., a coarse-grained environment) a population
will not experience selection for plasticity even if it is adaptive in the long-term. How
does adaptive plasticity then evolve? One explanation is that, if competing alleles
conferring different degrees of plasticity persist across multiple environments, natural
selection between lineages carrying those alleles could select for adaptive plasticity
(lineage selection).

We show that adaptive plasticity can evolve even in the absence of such lineage
selection. Instead, we propose that adaptive plasticity in coarse-grained environments
evolves as a by-product of inefficient short-term natural selection. In our simulations,
populations that can efficiently respond to selective pressures follow short-term, local,
optima and have lower long-term fitness. Conversely, populations that accumulate
limited genetic change within each environment evolve long-term adaptive plasticity
even when plasticity incurs short-term costs. These results remain qualitatively similar
regardless of whether we decrease the efficiency of natural selection by increasing the
rate of environmental change or decreasing mutation rate, demonstrating that both
factors act via the same mechanism. We demonstrate how this mechanism can be
understood through the concept of learning rate.

Our work shows how plastic responses that are costly in the short term, yet adaptive
in the long term, can evolve as a by-product of inefficient short-term selection, without
selection for plasticity at either the individual or lineage level.

Introduction 1

Organisms that live in variable environments are often subject to opposing selective 2

pressures, either temporal or spatial, such that intermediate generalist phenotypes have 3

decreased fitness across all environments. Rather than evolving a generalist phenotype, 4

populations can keep adapting to each environmental condition as they encounter them, 5

a process known as adaptive tracking [1, 2]. Populations that evolve via adaptive 6

tracking avoid the trade-offs paid by generalist phenotypes, but need time to adapt to 7

each new environment. Consequently, the population experiences reduced fitness after 8

each environmental change. Both populations that evolve a generalist phenotype and 9

those that evolve by adaptive tracking thus have reduced fitness in the long term. By 10

contrast, adaptive phenotypic plasticity allows individuals to maintain an adaptive fit 11
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between phenotype and environment: plastic individuals produce only high fitness 12

phenotypes by responding appropriately to environmental cues. Populations evolving 13

adaptive plasticity thus avoid both the fitness loss arising from trade-offs of generalist 14

phenotypes and the fitness loss that tracking populations suffer after environmental 15

change. Within this framework, the question of whether plasticity evolves can be 16

interpreted as the comparison between the long-term average fitness of populations 17

which evolve plastic responses, evolve generalist phenotypes or evolve via tracking [3, 4]. 18

As such, a considerable amount of effort has been invested in characterizing the 19

conditions that determine the fitness of plastic rather than non-plastic solutions, and to 20

document if plasticity itself incurs a fitness cost [5–7]. 21

While adaptive plasticity is common in nature and demonstrably superior to 22

non-plastic solutions for a wide range of conditions, the process by which it evolves 23

remains a matter of debate. The standard assumption that natural selection favours the 24

best available option is problematic, since natural selection only discriminates between 25

phenotypes that are expressed. Natural selection is thus unable to detect that a plastic 26

organism is adapted to more environments than a non-plastic one unless individuals 27

encounter multiple environments within their life spans, a condition known as 28

environmental fine-grain [8]. Even when individuals experience more than one 29

environment per lifetime, plastic individuals may still be limited to a single phenotype if 30

plastic responses are irreversible [9–11], too slow (e.g [12]) or too costly (e.g. [5]) relative 31

to the fitness advantage of producing the right phenotype for the local conditions [2, 7]. 32

Each of those cases creates an evolutionary trap: adaptive plasticity provides the 33

best long-term solution, but natural selection favours non-plastic phenotypes in each 34

short-term environment. In other words, experiencing one environment per lifetime 35

(environmental coarse grain) does not allow individual selection for plasticity, so that if 36

plastic responses incur any cost compared to non-plastic phenotypes they will be 37

selected against in the short-term. Nevertheless, many examples of adaptive plasticity 38

have been reported even when organisms experience only coarse-grained environments. 39

Examples of adaptive responses to coarse-grained environments include the production 40

of resistance and dispersal forms [13,14] and seasonal morphs of short-lived 41

species [9, 15]. 42

How can we explain the process by which costly adaptive plasticity evolves in such 43

coarse-grained environments? While individual-level selection does not favour plasticity 44

in coarse-grained environments, alleles that determine an organism’s plasticity are 45

transmitted between generations, and their fixation or loss will depend on their fitness 46

across the set of environments they encounter [16,17]. Natural selection may therefore 47

discriminate between plastic and non-plastic alleles if both are maintained long enough 48

to be selected across multiple environments, even if each individual organism 49

experiences only a single environment. Plastic adaptations to coarse-grained 50

environments could therefore evolve via genetic lineage selection [4, 18,19]. 51

A key requirement for the evolution of adaptive plasticity via lineage selection is the 52

availability and persistence of standing genetic variation on plastic responses 53

(e.g. [4, 17, 19]). This implies that plasticity will not evolve in populations that are small 54

or under strong selection, since these conditions remove the genetic variation lineage 55

selection requires to operate (e.g. [20]). Because small population size and strong 56

selection are representative for populations experiencing rapid environmental change, 57

evolution of plasticity appears unlikely to play a role in evolutionary rescue or successful 58

colonization [21,22]. The evolution of costly adaptive plasticity will only be possible if 59

genetic diversity is available, but high genetic diversity will also cause rapid removal of 60

costly plastic variants in favour of non-plastic short-term solutions, so that costly 61

adaptive plasticity should only evolve as an intermediate step towards non-plastic 62

solutions. 63
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We apply a core concept of learning theory - learning rate - to propose an alternative 64

mechanism for the evolution and maintenance of costly adaptive plasticity without 65

lineage selection. In machine learning, learning rate measures the amount of change a 66

system accumulates with each example shown. Existing literature demonstrates that 67

the process of learning by trial and error is mechanistically analogous to evolution by 68

natural selection [23]. In the context of adaptation, genetic learning rate measures the 69

ability of a population to change in response to new environments by accumulating 70

adaptive mutations. More specifically, we can define genetic learning rates as the 71

amount of genetic change fixed by a population in each new environment. Genetic 72

learning rate (henceforth just learning rate) depends both on the ability to generate 73

variation (mutation rate and effect size, population size) and to fix particular variants 74

(strength of selection). Since both the processes that produce and fix variants require 75

time to operate, increasing the time spent in each environment will allow populations to 76

accumulate more adaptive change. Thus, the more generations a population spends in a 77

single environment the higher its learning rate will be. 78

As we show in our simulations, populations initially produce phenotypes matching 79

their current environment by accumulating both mutations that change the mean 80

phenotypic value and mutations that change its plasticity. Populations with high 81

learning rates find optimal short-term phenotypes and remove costly plasticity before 82

each new environmental shift: Efficient selection in each short-term environment 83

prevents the evolution of costly long-term adaptive plasticity. Populations with low 84

learning rates cannot reach short-term optima before the next environmental shift, and 85

pass on to the next environment all genetic changes which brought them closer to the 86

previous phenotypic optimum, whether or not these genetic changes cause phenotypes 87

to be plastic. Short-term selection in the new environment thus starts from a 88

population which already accumulated adaptively plastic changes, so that the overall 89

plastic responses can be further refined over time. In evolutionary terms, low learning 90

rates maintain directional selection for plastic development with the end result of 91

directing evolution towards the production of long-term adaptive plastic responses. 92

Unlike the lineage selection explanation, the learning theory explanation does not 93

require the prolonged co-existence of alleles with different effects on plasticity: adaptive 94

plastic responses will evolve even in populations which exhibit only a single reaction 95

norm at any given time. Rather, learning theory only requires that the population 96

accumulates limited genetic change per environment, so that the average genotype 97

retains some of the adaptive plasticity accumulated in past environments. Learning 98

theory thus predicts that, as long as natural selection is inefficient, long-term adaptive 99

plasticity should evolve even in the extreme case when only one lineage is present in the 100

population (strong selection weak mutation) and plasticity is selected against in the 101

short-term. 102

In this paper, we provide a first exploration of the evolution of adaptive plasticity 103

from a learning theory perspective. To do so, we employ a classic linear reaction norm 104

model [24,25] to simulate the evolution of costly adaptive plasticity in temporally 105

coarse-grained scenarios. This allows us to contrast the predictions made by learning 106

theory and lineage selection regarding when and how plasticity should evolve. 107

First, we demonstrate that plasticity can evolve in coarse-grained environments, 108

showing that individual-level selection for plasticity is not necessary to evolve adaptive 109

plasticity. Second, we demonstrate that adaptive plasticity evolves in coarse-grained 110

environments even in the absence of multiple lineages, counter to the predictions of 111

lineage selection. Third, we show that limiting mutation rates biases populations 112

towards adaptive plasticity rather than adaptive tracking. 113

These results are consistent with the predictions of learning theory and reveal that 114

long-term adaptations can evolve even when short-term fitness selects against them, as 115
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long as natural selection is inefficient. 116

Results and Discussion 117

Simulation Set-up 118

We simulate a population that experiences temporal environmental heterogeneity. Each 119

individual receives information from the environment and develops into an adult 120

phenotype, upon which selection can act. We follow standard approaches for the 121

evolution of plasticity [18,26,27] and model development as a linear reaction norm, 122

whose intercept a represents the genetic trait value and slope b the degree of plasticity 123

(see Reaction Norm Model). The developed phenotype P is thus 124

P = a+ b ∗ C

where C is the univariate environmental cue. 125

We model a heterogeneous varying environment with 10 environmental states, so 126

that each environmental state, Ei produces a single, unique value of the cue CEi and 127

requires a single specific univariate phenotype PEi . We model the matching between 128

cues and trait optima as a linear function (see Environmental Variability). This implies 129

that a linear reaction norm with appropriate slope and intercept can achieve perfect fit 130

for all environments in our set. We assume non-overlapping generations of individuals 131

with a constant fixed lifespan. This assumption allows us to control the granularity of 132

environmental variability with a single parameter, K. If K ≥ 1 the environment changes 133

every K generations, indicating coarse-grained (K = 1) or slow coarse-grained (K > 1) 134

environmental variability. If instead K < 1 the population encounters on average 1/K 135

environments per generation, indicating fine-grained environmental variability. 136

We evaluate the fitness of each individual based on the distance of its developed 137

phenotype from the optimal target phenotype in the current environment. In case the 138

individuals experience more than one environment, we calculate their fitness as the 139

mean match between the developed phenotypes and the selective environments 140

experienced. We further impose a fitness penalty proportional to the individual’s 141

responsiveness to its environment (reaction norm slope b, see above). This cost of 142

plasticity ensures that plastic individuals will have lower fitness than non-plastic ones 143

regardless of their phenotypes, and effectively represents a trade-off incurred by plastic 144

organisms (see Evaluation of Fitness). Organisms reproduce asexually with a 145

probability proportional to their relative fitness within the population (see Evolutionary 146

Process). Every individual inherits the same slope and intercept as their parents, which 147

are then mutated by adding a random value selected from a normal distribution with 148

mean 0 and standard deviation equal to the mutation size (0.01 unless otherwise 149

specified). Thus, both intercept and slope mutate every generation (effective mutation 150

rate = 1), but most mutations have small effects. 151

Unless otherwise stated, we set a population of 1000 individuals and choose a 152

selection coefficient ω of 0.2. In addition, we set the associated cost of plasticity, λ, to 153

be 0.1. We analytically tested all parameter combinations used in our simulations and 154

confirmed that the fitness losses caused by adaptive tracking exceed those caused by the 155

cost of plasticity for all of them (see S1 Appendix). This allows us to rule out the 156

explanation that plasticity evolves as the result of a change in its long-term fitness 157

compared to adaptive tracking. 158
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Fig 1. Evolution of reaction norms in fine-grained environments. (A)
Average (dashed line) and best (solid line) performance of the population over time,
relative to the optimal adaptive reaction norm, see Evaluation of Reaction Norms (B)
Evolved reaction norms (grey lines) compared to optimal reaction norm (dashed line) at
the end of the evolutionary period. Crosses indicate optima corresponding to
environmental values used in the simulation. Dots indicate the phenotypes expressed for
environmental values used in the simulation. The population evolves optimal adaptive
plasticity

Individual-level selection is not necessary for the evolution of 159

adaptive plasticity 160

In this section, we compare the evolution of plasticity in fine-grained environments, 161

which allow individual-level selection for plasticity, with coarse-grained ones, which do 162

not. We initially assess the evolution of phenotypic plasticity when individuals 163

encounter multiple environmental states per life-time (i.e., a fine-grained environment; 164

here 10, K = 0.1). We further assume that the phenotype can change during 165

individuals’ lifespan (reversible plasticity), and this change is both immediate and 166

incurs in no fitness costs. 167

In fine grained environments, the evolved reaction norms converge the optimal 168

intercept and slope in less than 3000 generations (Fig1A, inset). This means that 169

individuals produce trait values that perfectly match the optimal trait value of all 170

environmental states they encountered during their lifetime, as we can see from the fact 171

that the distance between realised and optimal phenotypes decreases to zero for all 172

environments in our set (Fig1A). We find minimal residual genetic variation on both the 173

slope and intercept terms of the reaction norm (Fig1B). This is reflected in the limited 174

differences between the reaction norms of top and mean performing individuals (Fig1A). 175

Note that the reaction of the average (yellow dots) and best individual (green dots) are 176

perfectly aligned and match the optimal reaction norm (red crosses). 177

We contrast the previous fine-grained scenario with a slow coarse-grained 178

environment in which the local conditions change every 4000 generations on average 179

(K = 4000). As such, each individual experiences only one environment, and 180

environmental change between generations is also slow. In this coarse-grained 181

environment, the population fails to evolve adaptive long-term plasticity (Fig2). After 182

each environmental change we observe a drop in short-term fitness, followed by a 183

distinctive two-step pattern in their adaptive paths. During the first phase, organisms 184
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Fig 2. Evolution of reaction norms in slow coarse-grained environments.
(A) Relative performance (see Evaluation of Reaction Norms) in the local (green lines)
and global (blue lines) environments. Dashed lines indicate average population
performance, solid ones best performance. (B) Evolved reaction norms (grey lines)
compared to optimal reaction norm (dashed line) at the end of the evolutionary period.
Crosses indicate optima corresponding to environmental values used in the simulation.
Dots indicate the phenotypes expressed for those values. The population re-adapts to
the local environment after each environmental change (adaptive tracking)

evolve towards the new target phenotype, as indicated by the steep increase in 185

short-term fitness (Fig2A, inset, green line). Crucially, the increase in short-term fitness 186

in this phase is accompanied by a corresponding increase in long-term fitness (Fig2A, 187

blue line), which indicates evolution of adaptive plasticity. Mutations which increase 188

plasticity can be selected for during this phase if they cause the production of fitter 189

phenotypes, offsetting their fitness cost (see S1 Appendix). After organisms are able to 190

produce phenotypes which match the short-term phenotypic optima, we observe a 191

decrease in their long-term fitness (Fig 2A, blue curve). This indicates that the same 192

organisms would no longer be able to produce adaptive phenotypes when exposed to 193

past environments, consistent with a decrease in costly adaptive plasticity. During this 194

phase plasticity is directly selected against in order to decrease its fitness costs. 195

In other words, the population reaches the optimal phenotype using a combination 196

of slope and intercept (phenotypic adaptation) and then minimizes the slope 197

(plasticity minimization). From a fitness perspective, selection during the 198

phenotypic adaptation phase increases fitness by producing the local target phenotype, 199

whereas selection in the plasticity minimization phase increases fitness by removing 200

costly plasticity. It is worth noting that these two phases match those described in the 201

analogous model presented in [17]. After the plasticity minimization phase we still 202

observe some genetic variation in reaction norm slope (grey lines in Fig2B), but the 203

average slope is 0: adaptive plastic responses are approximately as likely as maladaptive 204

ones. Populations evolving under slow, coarse-grained environments thus fail to evolve 205

adaptive plasticity and instead re-adapt upon each environmental change, consistently 206

with adaptive tracking. 207

Next, we test whether direct selection for plasticity is required for its evolution. To 208

do so, we set the environment to change every generation (K = 1), which is the fastest 209

rate we can set under a coarse-grain scenario: every individual experiences only a single 210

environment, but every generation experiences a different one. Since each individual 211
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Fig 3. Evolution of reaction norms in fast coarse-grained environments.
(A) Relative performance (see Evaluation of Reaction Norms) in the local (green lines)
and global (blue lines) environments. Dashed lines indicate average population
performance, solid ones best performance. (B) Evolved reaction norms (grey lines)
compared to optimal reaction norm (dashed line) at the end of the evolutionary period.
Crosses indicate optima corresponding to environmental values used in the simulation.
Dots indicate the phenotypes expressed for those values. The population evolves
optimal adaptive plasticity.

only experiences one environment, we can rule out direct selection for adaptive plasticity. 212

Furthermore, costly plasticity is selected against within each short-term environment. 213

In this fast coarse-grained environment, populations evolved adaptive plasticity 214

(Fig3). We observe that the goodness of fit to current and past environments decreased 215

to zero, indicating optimal fit to all environments within the range experienced (Fig3A). 216

In addition, we observe less residual genetic variation compared to the case of slow 217

coarse-grained environmental variability (Fig3B). This is also indicated by the narrow 218

gap between the top and the mean performance curve in Fig3A. 219

Looking at the evolutionary trajectory of the population, we can see that while 220

fitness to the current environment (i.e., short-term environment; green line) fluctuates, 221

fitness to the whole environment set (i.e., long-term environment; blue line) gradually 222

increases over time. Moreover, we see no gap between performance in the short-term 223

environment and in the long-term environment. This indicates that the population does 224

not evolve short-term fit phenotypes at the expense of long-term performance, but 225

rather directly accumulates responses that are adaptive in the long-term environment. 226

These results demonstrate that populations evolving in fast-changing environments 227

produce adaptive plastic responses even when plasticity is costly and environmental 228

change only occurs between generations. 229

At this stage, we have merely confirmed well-known results (e.g., [17]). We now 230

consider two explanations for the evolution of adaptive plasticity in coarse-grained 231

environments. According to a lineage selection model, faster environmental change will 232

increase the odds that each allele is tested in more than one environment. Adaptive 233

plasticity can evolve since plastic alleles have greater mean fitness than non-plastic, 234

short-term adaptive, alleles when compared across multiple environments. The learning 235

theory model instead predicts that decreasing the number of generations in each 236

environment will decrease the genetic change accumulated within each environment (i.e., 237

the learning rate), ensuring that the changes accumulated during the phenotypic 238
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adaptation phase are not lost because of short-term optimization. While both 239

mechanisms cause a shift from short to long-term adaptation, each has distinct 240

requirements: lineage selection relies on the transmission of genetic variation in order to 241

compare the fitness of multiple alleles; learning theory requires that populations 242

accumulate little genetic change in each environment. In the next two sections, we make 243

use of this key difference to determine which of the two processes can better explain the 244

evolution of plasticity in coarse environments. 245

Lineage selection is not necessary for the evolution of adaptive 246

plasticity 247

In order to test the need for lineage selection, we repeat the scenarios for the evolution 248

of plasticity in fine-grained (K = 0.1), coarse-grained (K = 1) and slow coarse-grained 249

(K = 40000) environments enforcing strong selection and weak mutation (SSWM). 250

Under SSWM, the speed at which mutations arise is much slower compared to the 251

speed at which they are fixed or lost, driving standing genetic variation to zero. 252

Comparing the fitness of alleles across different environments is therefore impossible. 253

We model SSWM using a hill-climber algorithm: each evolutionary step produces only 254

one mutation. If the new mutation is fitter than the previous one it is fixed, otherwise it 255

is lost (see Hill-climbing Model). SSWM leads to a constant effective population size of 256

1 and makes lineage selection impossible. Therefore, if the lineage selection hypothesis is 257

correct, we expect that adaptive plasticity will fail to evolve in all coarse-grained 258

environments. To rule out that the potential failure to evolve plasticity is due to 259

insufficient time, we verify the results under an extended simulation time of 2 ∗ 107 260

generations. 261

Contrary to the predictions of the lineage selection explanation, we find that the 262

results from the above simulations are qualitatively and quantitatively similar to those 263

obtained using a population size of 1000, despite the SSWM selection regime (Fig4). 264

That is, populations fail to evolve plasticity when environments change every 40000 265

generations (Fig4A), and succeed in doing so when provided with either fine 266

environmental grain (Fig4B) or a rapid coarse-grained (i.e., trans-generational) change 267

(Fig4C). 268

The evolutionary trajectory of populations under SSWM also remains remarkably 269

similar to that of populations with standing genetic variation (compare Fig4 with Fig1, 270

Fig2 and Fig3). Populations evolving in fine-grained and fast coarse-grained 271

environments both show a gradual increase in long-term fitness, which remains 272

comparable to short-term fitness. This indicates that they evolve by adapting to the 273

long-term environment rather than to the short-term environments. Populations in slow 274

coarse-grained environments instead perform consistently better in short-term, current, 275

environments compared to the long-term one, showing the repeated evolution of 276

short-term adaptive phenotypes, or adaptive tracking. Their evolutionary trajectory 277

also displays the same two-step cycle after each environmental change: fitness increase 278

in both short and long-term environments (phenotypic adaptation) followed by fitness 279

decrease in the long-term environment only (plasticity minimization) (Fig4A). 280

Taken together, these findings demonstrate that both the final results and the 281

evolutionary trajectories of our simulations are largely unaffected by the lack of 282

standing genetic variation. Since standing genetic variation is required for adaptation 283

via lineage selection, these results falsify the hypothesis that plasticity needs to evolve 284

by averaging the fitness benefits of alternative variants across multiple environments. In 285

the next section, we make predictions based on the learning theory explanation and try 286

to falsify them. 287
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Fig 4. Evolution of reaction norms under Strong Selection Weak Mutation.
Panels to the left show population performance (see section Evaluation of Reaction
Norms) over time in the local (green line) and global (blue line) environment. Panels to
the right show the evolved reaction norm (solid line) compared to optimal reaction
norm (dashed line) at the end of the evolutionary period. Crosses indicate optima
corresponding to environmental values used in the simulation. Dots indicate the
phenotypes expressed for those values. (A) Slow coarse-grained environments
(K=40000) (B) Fine-grained environments (K=0.1) (C) Fast coarse-grained
environments (K=1). Performance over time and evolved reaction norms are identical
to weak selection scenarios
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Low mutation rates are analogous to fast environmental change 288

Since we define learning rates in biological systems as the amount of genetic change 289

accumulated in each new environment, they can be affected by several parameters other 290

than rate of environmental change. Population size, mutation size and mutation 291

frequency will all increase the amount of genetic change produced within each 292

environment and thus increase the population’s learning rates. Stronger selective 293

pressure will speed up the fixation of beneficial variants, and therefore also increase 294

learning rates. If the learning rate explanation for the evolution of adaptive plasticity in 295

coarse-grained environments is correct, these factors should be interchangeable with the 296

rate of environmental change. 297

In this section, we evaluate the learning theory explanation by testing the specific 298

prediction that adaptively plastic responses can evolve even when environmental 299

changes are slow, provided that mutation sizes are sufficiently small (and hence learning 300

rate is low). In order to test this prediction, we return to the case of slow coarse-grained 301

environments (environments change every 40000 generations) with a population size of 302

1000 individuals. As shown above, adaptive plasticity fails to evolve under these 303

conditions. Learning theory explains this failure with the high learning rates in this 304

population. Rather than decreasing the learning rate by decreasing the number of 305

generation spent in each environment, we lower the standard deviation of mutation sizes 306

from 10−2 to 10−4. 307

As we can see in Fig5B, the population eventually evolves an optimally adaptive 308

plastic reaction norm, with negligible amounts of variation around both slope and 309

intercept. Their evolutionary trajectories (Fig5A) are also qualitatively similar to those 310

of populations evolving in fast, coarse-grained environments. In both scenarios, fitness 311

in the short-term environment (green) fluctuates around average fitness in the long-term 312

environment (blue), indicating that the populations are not evolving phenotypes that 313

increase short-term fitness at the expense of long-term adaptation. The steady increase 314

in average fitness instead indicates the evolution and retention of more general, plastic 315

solutions. 316

While the two trajectories are similar in shape, the population experiencing slower 317

environmental changes and smaller mutation rates takes a significantly longer amount of 318

time to reach optimal plasticity. An increase in the number of generations required to 319

find solutions is a known consequence of lower learning rates. Intuitively, we can explain 320

the longer time required to adapt as a consequence of the slower rate at which variants 321

become available. 322

While lineage selection is technically viable in this simulation, decreasing mutation 323

sizes would also decrease the amount of available genetic variation, making it even less 324

effective. Therefore, it is unlikely that lineage selection causes the recovery of plasticity 325

in mutation limited populations. Nevertheless, in order to ensure that the results we 326

observe are not caused by lineage selection, we run a simulation with K = 40000 and 327

σµ = 10−5 using a hill-climber to model SSWM. The results are both qualitatively and 328

quantitatively similar to those obtained in the previous simulation (see Fig6). Since we 329

are unable to falsify the learning rate hypothesis, we conclude that it provides the best 330

explanation for evolution of costly adaptive plasticity under coarse-grain. 331

Conclusion 332

The evolution of costly adaptive plasticity has often been framed as a necessity caused 333

by environmental change outpacing the ability of natural selection to generate new 334

adaptations [2, 3, 28,29], but the means by which organisms achieve plasticity in these 335

conditions have seldom been clarified. 336

We demonstrate that neither individual nor lineage-level selection for adaptive 337
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Fig 5. Evolution of reaction norms in slow coarse-grained environments
with low mutation rates. (A) Relative performance (see Evaluation of Reaction
Norms) in the local (green lines) and global (blue lines) environments. Dashed lines
indicate average population performance, solid ones best performance. (B) Evolved
reaction norms (grey lines) compared to optimal reaction norm (dashed line) at the end
of the evolutionary period. Crosses indicate optima corresponding to environmental
values used in the simulation. Dots indicate the phenotypes expressed for those values.
The population slowly evolves optimal adaptive plasticity.

Fig 6. Evolution of reaction norms in slow coarse-grained environments
with low mutation rates under SSWM (A) Relative performance (see Evaluation
of Reaction Norms) in the local (green lines) and global (blue lines) environments. (B)
Evolved reaction norms (grey lines) compared to optimal reaction norm (dashed line) at
the end of the evolutionary period. Crosses indicate optima corresponding to
environmental values used in the simulation. Dots indicate the phenotypes expressed for
those values. The population slowly evolves optimal adaptive plasticity.
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plasticity are necessary for it to evolve. Rather, the speed of adaptation relative to 338

environmental change (modelled as learning rates) is by itself a causal factor in the 339

evolution of adaptive long-term plastic responses. High learning rates allow local 340

optimization of phenotypes in each environment, at the expense of more general 341

solutions. Low learning rates instead make it impossible for phenotypes to chase 342

short-term optima, yet allow individuals to reach long-term optimal plasticity despite 343

the presence of short-term trade-offs. 344

Although plasticity evolves when natural selection is least effective, plasticity 345

maximizes long-term population fitness in all our simulations. In contrast, adaptive 346

tracking produces higher fitness phenotypes in the short term, but shows lower fitness in 347

the long term due to the fitness losses that follow each environmental change (see S1 348

Appendix). 349

While low learning rates are necessary to evolve general solutions in the presence of 350

trade-offs in performance, none of the factors that affect learning rates is necessary by 351

itself. This is because learning rate is a composite measure, so any given factor may be 352

offset by the others. We demonstrate this by showing that low mutation rate is 353

sufficient to evolve costly adaptive plasticity even in slow, coarse-grained environments. 354

Increasing population size and selection strength will instead decrease the odds of 355

evolving costly adaptive plasticity, as both factors increase learning rates. As a 356

consequence, even populations with no measurable genetic variation in plasticity could 357

evolve adaptive plastic responses as long as (1) new genetic variation can be produced 358

over time and (2) environmental change is faster than adaptation. 359

This observation reverses the suggested causal link between plasticity and the rate of 360

genetic evolution. Current theory proposes that plastic individuals experience weaker 361

selection because they are able to cope with a wider range of environments [4]. Because 362

of the reduced selective pressure, the amount of genetic change that accumulates in the 363

population (learning rate) is also reduced. We instead suggest a low learning rate itself 364

may skew populations towards evolving more general solutions, such as short-term 365

costly but long-term optimal adaptive plasticity. 366

Since low learning rates promote the evolution of adaptive plastic responses by 367

reducing the relative importance of minimizing plasticity costs, they will be irrelevant to 368

the evolution of inexpensive plastic responses. If there are no costs of plasticity, every 369

combination of slope and intercept that generates the optimal short-term phenotype will 370

be fitness equivalent within each environment. This implies that adaptive plasticity will 371

be selected for while the population moves towards the local phenotypic optimum and 372

randomly drift after the optimal phenotype has been reached. The population will thus 373

inevitably find the long-term optimum, and learning rates will only determine the speed 374

of the adaptation and drift processes. 375

Learning rates are likewise irrelevant for the evolution of costly adaptive plasticity in 376

fine-grained environments, which are sufficient (but not necessary) for the evolution of 377

adaptive plasticity across all our simulations. Fine-grained environments allow natural 378

selection to directly compare the fitness of phenotypes across multiple environments at 379

the individual-level within each generation, so that adaptive plasticity is optimal even in 380

the short-term. Direct selection for plasticity is unsurprisingly sufficient to ensure the 381

evolution of adaptive plasticity, so that learning rates can only determine the speed of 382

selective process rather than its outcome. 383

Our simulations consider the specific case of maintenance costs for plasticity. That 384

is, we assume that plasticity directly decreases fitness, regardless of whether it is 385

expressed. However, several alternative scenarios can create mathematically equivalent 386

trade-offs between short and long-term selection. A well-studied example is that of 387

inaccurate cues, either due to imperfect perception or noise in the cues 388

themselves [3,21,30]. Alternatively, the target phenotypes may not perfectly match with 389
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the best possible reaction norm. This scenario can happen for any reaction norm which 390

is selected on a set of environments larger than its degrees of freedom (3 in the case of 391

linear reaction norms) [31] or if there are limits to the maximum amount of plastic 392

changes that an organism can evolve [26,32–34]. In all of the above mentioned cases, 393

optimal long-term plasticity would cause loss of fitness in the short term and be 394

consequently selected against. Learning rates will thus be relevant for the evolution of 395

plastic responses across all of them. 396

In our simulations, mutations that lead to adaptive plasticity are selected since they 397

increase phenotypic fitness within the short-term environment, and adaptive long-term 398

plasticity evolves as a result of direct selection for fitter phenotypes in the short term. 399

This is in contrast with lineage selection models, in which adaptive plasticity evolves 400

because of its long-term benefits, but is (at best) selectively neutral within each 401

environment. Since the evolution of plasticity in our model is driven by a direct (rather 402

than lineage) selection process, we predict it to be both faster and more robust to the 403

presence of short-term trade-offs. Similar dynamics apply to the evolution of modularity 404

as a by-product of short-term phenotypic selection, and are proven to be scalable to 405

arbitrarily complex systems in which the long-term optimal solutions incur short-term 406

fitness costs [35]. 407

From a learning theory perspective, low learning rates cause the evolution of 408

adaptive plasticity because they constrain populations to evolve new adaptive solutions 409

starting from previous adaptations rather than ’from scratch’. As a result, evolved 410

reaction norms do more than just ’remember’ the specific instances of cue to phenotype 411

matchings experienced during selection: they capture the logic that matches cues and 412

phenotypes. In learning theory terms, organisms learn the regularities of the 413

(evolutionary) problem, a process also known as generalization [36]. Therefore, as long 414

as regularities remain the same, each individual will be able to produce adaptive 415

phenotypes even in environments it has never experienced in its evolutionary history 416

(extrapolation). Several studies show that systems which learn a problem’s regularities 417

are also able to quickly adapt to new problems which share a similar logic, increasing 418

their evolvability [37,38]. Our demonstration that organisms can learn regularities 419

between environments even when they do not experience them within their lifetimes 420

opens up the possibility that evolved plastic responses may allow organisms to both 421

anticipate future environments and enable them to more rapidly evolve novel adaptive 422

solutions. This demonstrates that past evolution can shape evolutionary trajectories by 423

biasing the phenotypic variants that are exposed to selection [23]. 424

In summary, we use a simple reaction norm model to demonstrate that costly 425

adaptive plasticity can evolve even when natural selection is unable to compare 426

competing alleles over multiple environments (i.e., lineage selection). A learning theory 427

framework helps us interpret this finding: Populations evolving in coarse-grained 428

environments can evolve adaptive plasticity if the amount of adaptive change 429

accumulated per environment - the learning rate - is low. Populations with high 430

learning rates evolve via repeated short-term adaptation even if this pattern is 431

maladaptive in the long term. Low learning rates facilitate long-term adaptation over 432

short-term adaptation, favouring adaptive plasticity even in the presence of short-term 433

functional trade-offs. Thus, long-term adaptive plasticity can evolve even when it is not 434

selected for at either the individual nor lineage level. Whether a population evolves 435

phenotypes that optimize fitness in the short or long term instead depends on the 436

amount of adaptive changes it accumulates within each environment. 437

438
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1 Methods 439

1.1 Environmental Variability 440

We model a heterogeneous global environment in which each population is exposed to 441

local environments with different phenotypic optima, each characterized by reliable cues. 442

We assume that the lifespan of the individuals is fixed and the same for all. As a result, 443

environmental grain is solely determined by the parameter K. K < 1 indicates 444

fine-grained environmental variability, where the population encounters an average of 445

1/K environments per generation. On the other hand, K >= 1 indicates coarse-grained 446

(K = 1) or slow coarse-grained (K > 1) environmental variability where the population 447

encounters a new environment every K generations on average. We choose small K 448

values compared with the total number of generations in our simulations so that each 449

population is able to evolve for multiple environmental cycles. 450

For plasticity to evolve, the environment needs to fulfil two roles: determining the 451

selective conditions (selective role) and providing information about those conditions 452

(constructive role) [39]. We simulate the selective role by assigning each local 453

environmental state a target single trait optimum φ, represented by a single real number. 454

We simulate the constructive role by assigning each target optima an environmental cue 455

represented by a real number C, which varies between 0 and 1. For simplicity, we 456

consider a linear relationship between phenotypic targets and environmental cues, so 457

that φ = g(e) = g1 ∗ e+ g0. Hence, the targets are directly proportional to the 458

respective cue. We choose g1 = −2 and g0 = 6. This ensures that the relationship 459

between selective environment and cues remains constant across environmental states. 460

Our simulations were designed with temporal variation in mind, but the conclusions 461

should be applicable to spatial variation as well. In fact, the environmental fluctuations 462

described within our model match those experienced by a population in which all 463

individuals migrate after fitness evaluation and before reproduction, or in which all 464

propagules are dispersed to the same new environment. In this scenario environmental 465

change rates are effectively interchangeable with migration rates, with other findings 466

remaining unchanged. 467

1.2 Reaction Norm Model 468

We model plastic responses using a univariate linear reaction norm model [40]. A 469

reaction norm can be defined as the set of phenotypes that would be expressed if the 470

given individual would be exposed to the respective set of environments. Since we 471

consider univariate and linear reaction norms, we can describe the development of an 472

organism’s phenotype as P = a+ b ∗ C. Each organism’s genotype can thus be 473

described by the factors a and b. Of those, a determines the organism’s breeding value 474

and b the direction and magnitude of its plasticity. 475

1.3 Evolutionary Process 476

We model the evolution of a population of asexual individuals as follows. First, we 477

select a parent using a fitness proportional criterion [41,42]. Each individual can be 478

selected with a probability of f/f̄ , where f̄ corresponds to mean fitness in the current 479

population and f to the parent’s own fitness (see section 1.4 for details on how we 480

calculate f). Then, we generate a new individual with the same genotype (reaction 481

norm intercept a and slope b) as the parent. Finally, we independently mutate both the 482

offspring’s intercept and slope by adding a random value sampled from a normal 483

distribution with mean µ = 0 and standard deviation equal to mutation size (σµ = 0.01 484
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unless otherwise specified). We repeat this process until we generate a number of 485

offspring equal to the set population size. The parameters a and b are initialized at zero. 486

1.4 Evaluation of Fitness 487

Following previous work [31, 35, 37], we define an organism’s overall fitness f in terms of 488

a benefit-minus-cost function, which allows us to consider both positive (benefits) and 489

negative (costs) contributions to its fitness. The benefit of a given genotype, bEi , for 490

each environment, Ei, is determined based on how close the developed adult phenotype, 491

P a, is to the target phenotype, PEi , of the given selective environment, Ei. Since we 492

deal with an univariate phenotype, we can calculate this amount as 493

bEi = w(P a, PEi) = −|P a − PEi |, (1)

where | ∗ | corresponds to the absolute distance between the two phenotypes. Note that 494

the selective advantage of respective genotypes is solely determined by its immediate 495

fitness benefits on the currently encountered selective environment(s). We consider that 496

individuals experience a distribution of selective environments during their lifetime with 497

occurring probabilities, qE1 , qE2 , .., qEN . Each environment contributes to the selection 498

process in proportion to its occurrence [43]. The overall fitness benefits of an individual 499

over all experienced environments in its lifetime, bE is determined by the arithmetic 500

mean of the fitness benefits in each environment, bEi , weighted by the occurrence, qEi , 501

of each environment: 502

bE =
∑
i

qEibEi . (2)

In cases of coarse-grained environmental variability, where each individual encounters a 503

single environment in its lifespan, qEi = 1 for the respective environment, i = j, and 504

qEi = 0 for i 6= j. On the other hand, in cases of fine-grained environmental variability, 505

we assume a uniform distribution of environments experienced during individual’s 506

lifespan, that is, qEi = 1/K. The cost represents how maintaining plasticity reduces the 507

organism’s fitness. Unlike the benefit, the cost of plasticity is a property of the 508

genotype and does not change in different environments. Thus, we can calculate the 509

overall performance, d, of a genotype over a range of selective environments as 510

d = bE − λb, (3)

where parameter λ indicates how steeply fitness decreases in proportion to the reaction 511

norm slope b. The final fitness score is calculated with the following formula: 512

f = exp(
d

2ω
), (4)

which penalizes lower performances exponentially and re-scales them to a 0-1 range. ω 513

is a scaling factor on the relation between f and d. Lower ω values cause greater loss of 514

fitness per loss of performance, and correspond to steeper selection gradients. We 515

choose ω = 0.2, which corresponds to a scenario of strong selection (see [37]). 516

1.5 Evaluation of Reaction Norms 517

We evaluate the adaptive potential of the population due to plasticity by estimating 518

how close the reaction norm of each individual in the population is to the (theoretical) 519

optimal reaction norm. The optimal reaction norm here corresponds the function that 520

given any environmental cue, CEi , produces the appropriate target phenotype, PEi , 521

which best matches the local selective environment, Ei (Evaluation of Fitness). We 522
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evaluate the performance of reaction norms based on how well they fit the optimal 523

reaction norm. The goodness of fit, PerfD of a given reaction norm, D, is estimated as 524

a function of the phenotypic trait values in each of the past selective environments (here 525

10), Ei, that quadratically decreases with the distance from each phenotypic optimum, 526

PEi : 527

PerfD = −
∑
Ei

[D(eEi)− PEi ]2, (5)

The evaluation of goodness of fit is performed for each individual at the end of each 528

environmental period. We report the average and best performance in the population. 529

1.6 Hill-climbing Model 530

A hill-climbing evolutionary model simulates a scenario of strong selection and weak 531

mutation, where each new mutation is either fixed or lost before a new one can arise. 532

Therefore, the entire population shares the same values of a and b. Each evolutionary 533

step introduces a single mutant genotype with parameters a′ and b′ equal to a and b 534

plus a random value sampled from a normal distribution with mean 0 and standard 535

deviation equal to mutation size. We develop both the reference and mutant phenotypes 536

P and P ′ (section 1.2) and compare their fitness values f and f ′ (section 1.4). If f ′ > f , 537

the mutation is beneficial and therefore adopted so that at+1 = a′ and bt+1 = b′. 538

Otherwise, the mutation is deleterious and a and b remain unchanged. 539

Supporting information 540

S1 Appendix. Fitness Cost of Plasticity and Tracking Numerical calculations 541

of the expected long-term fitness costs of adaptively plastic and adaptive tracking 542

populations. 543
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