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Abstract

Recent releases of population-scale biomedical repositories such as the UK Biobank have
enabled unprecedented access to prospectively collected medical imaging data. Applying
machine learning methods to analyze these data holds great promise in facilitating new
insights into the genetic and epidemiological associations between anatomical structures
and human health. However, the majority of these imaging data are unlabeled and
deriving insights is hindered by the cost of manually annotating data at sufficient scale
to train state-of-the-art deep learning models. In this work, we develop a weakly
supervised deep learning model for Bicuspid Aortic Valve (BAV) classification using up
to 4,000 unlabeled cardiac MRI sequences, comprising a total of 120,000 images.
Instead of requiring manually labeled training data, weak supervision relies on noisy
heuristic functions defined by domain experts to automatically generate large-scale,
imperfect training sets. By leveraging new theoretical work on coping with label noise,
models can use weaker supervision sources than was previously possible. In our BAV
models, this approach substantially outperforms a traditional supervised baseline
trained on hand-labeled data alone, with a 64% improvement in mean F1 score (37.8 to
61.4) on held out test data. In a validation experiment using 9,230 individuals with
MRIs and long-term outcome data from the UK Biobank, applying the best-performing
BAV classification model identified a subset of individuals with a 1.8-fold increase in
risk of a major adverse cardiac event (p <0.001). This work formalizes the first deep
learning baseline for aortic valve classification and outlines a general strategy for using
weak supervision to analyze large collections of unlabeled medical images.
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Author summary

We developed a deep learning model for Bicuspid Aortic Valve (BAV) classification
using up to 4,000 unlabeled cardiac MRI sequences, comprising a total of 120,000
images. Instead of requiring manually labeled training data, as is typical in machine
learning, our approach relies on noisy heuristic functions defined by domain experts to
automatically generate large-scale, imperfect training sets. In our experiments, this
approach substantially outperforms a traditional supervised baseline trained on
hand-labeled data alone. In a validation experiment using 9,230 individuals with MRIs
and long-term outcome data from the UK Biobank, applying the best-performing BAV
classification model identified a subset of individuals with a 1.8-fold increase in risk of a
major adverse cardiac event. This work formalizes the first deep learning baseline for
aortic valve classification and outlines a general strategy for using weak supervision to
analyze large collections of unlabeled medical images.
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Introduction 1

Bicuspid Aortic Valve (BAV) is the most common congenital malformation of the heart, 2

occurring in 0.5-2% of the general population [1] and is associated with a variety of poor 3

health outcomes [2]. In isolation, valvular dysfunction in BAV often leads to substantial 4

cardiovascular pathology requiring surgical replacement of the aortic valve [3]. Machine 5

learning models for automatically identifying aortic valve malformations via medical 6

imaging could enable new insights into genetic and epidemiological associations with 7

cardiac morphology. However, our understanding of the etiologies of BAV and its 8

disease correlates are limited by the variability in age of diagnosis and the absence of 9

large, prospectively collected imaging datasets. 10

Recently, the UK Biobank released a dataset of >500,000 individuals with 11

comprehensive medical record data prior to enrollment along with long-term followup. 12

Importantly these data also include prospectively obtained medical imaging and 13

genome-wide genotyping data on 100,000 participants [4], including the first 14,328 14

subject release of phase-contrast cardiac magnetic resonance imaging (MRI) sequences. 15

Phase-contrast cardiac MRI sequences are multi-view video clips that measure blood 16

flow. Their high-dimensionality and overall complexity makes them appealing 17

candidates for use with deep learning [5]. However, these prospectively collected MRIs 18

are unlabeled, and the low prevalence of BAV introduces considerable challenges in 19

building labeled datasets at the scale required to train deep learning models. 20

Obtaining labeled training data is one of the largest practical roadblocks to building 21

deep learning models for use in medicine [6]. State-of-the-art deep learning models 22

obviate manual feature engineering [7] by learning features directly from labeled data. 23

However, constructing massive labeled datasets is a time-consuming and expensive 24

process. Recent deep learning efforts in medical imaging for detecting diabetic 25

retinopathy [8] and cancerous skin lesions [9] each required 130,000 labeled images 26

generated by up to 7 ophthalmologists and 21 dermatologists. Standard scalable 27

labeling approaches such as crowdsourcing are often unsuitable for medical datasets due 28

to the domain expertise required to assign labels and the logistics of working with 29

protected health information. More fundamentally, labels are static artifacts with sunk 30

costs: labels themselves do not transfer to different datasets and changes to annotation 31

guidelines necessitate re-labeling data. 32

An alternative to manual labeling is weak supervision, a collection of approaches that 33

leverage noisy or indirect labels to train machine learning models. Several recent weak 34

supervision frameworks use a generative model to encode domain knowledge provided in 35

the form of noisy heuristics or labeling functions [10, 11] which are applied to unlabeled 36

data to generate imperfect training data. This approach leverages unlabeled data to 37

estimate the unobserved accuracies of labeling sources as well as infer complex 38

statistical dependencies among labeling functions [12,13]. The resulting generative 39

model is then applied to unlabeled data to produce probabilistic labels, which are used 40

to train a discriminative model such as a deep neural network. The deep learning model 41

then learns rich feature representations from the input data, allowing it to generalize 42

beyond the heuristics encoded in labeling functions. Unlike labels, labeling functions are 43

easily modified and shared across datasets, providing a flexible method for generating 44

and refining labeled datasets at the scale required to train deep learning models. 45

Weakly supervised machine learning methods are promising for cardiac medical 46

imaging, a speciality that poses many computational challenges. The heart is a dynamic 47

anatomical structure with chambers and valves, each moving in 3 dimensions with 48

periodicity that may range from 1 to 3 Hz depending on age and health status. Cardiac 49

imaging entails complex manual alignment to cardiac structures and the capture of 50

multiple sequences coordinated to cardiac cycle and patient respiration. Due to the 51

complexity of imaging output and need for human interpretation, studies utilizing 52
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cardiac MRI are mostly limited to single centers relying on human readers of clinically 53

obtained data for functional information. For these reasons, obtaining large-scale 54

labeled data for the space of possible cardiac pathologies is especially challenging. 55

We build on recent weak supervision techniques to train a state-of-the-art hybrid 56

Convolutional Neural Network / Long Short Term Memory (CNN-LSTM) model for 57

BAV classification. Our pipeline closely matches a realistic application setting, where 58

we combine a small set of hand-labeled data with a large repository of unlabeled MRI 59

sequences from the UK Biobank. This approach allows us to train deep learning models 60

without manually constructing massive labeled datasets, substantially lowering the time 61

and cost required to construct state-of-the-art imaging models. 62

Finally, to assess the real-world relevance of our image classification model, we 63

applied the CNN-LSTM to a cohort of 9,230 new patients with long-term outcome data 64

and MRIs from the UK Biobank. For patients identified as having BAV we found a 65

1.8-fold increase in risk of a major adverse cardiac event. Our approach demonstrates 66

how real-world health outcomes can be learned directly from large-scale, unlabeled 67

medical imaging data. 68
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Materials and methods 69

Dataset 70

From 2006-2010, the UK Biobank recruited 502,638 participants aged 37-73 years in an 71

effort to create a comprehensive, publicly available health-targeted dataset. The initial 72

release of UK Biobank imaging data includes cardiac MRI sequences for 14,328 73

subjects [14], including eight cardiac imaging sets. Three sequences of phase-contrast 74

MRI images of the aortic valve registered in an en face view at the sinotubular junction 75

were obtained. Fig 1 shows example MRI videos in all encodings: raw anatomical 76

images (CINE); magnitude (MAG); and velocity encoded (VENC) [15]. Video examples 77

are available in S1 Videos. In MAG and VENC series, pixel intensity directly maps to 78

velocity of blood flow. This is performed by exploiting the difference in phase of the 79

transverse magnetism of protons within blood when flowing parallel to a gradient 80

magnetic field, where the phase difference is proportional to velocity. CINE images 81

encode anatomical information without capturing blood flow. All phase contrast MRI 82

sequences are 30 frames, 12-bit grayscale color, and 192 x 192 pixels. 83

Fig 1. Example MRI sequence data for BAV and TAV subjects. (Top)
Uncropped MRI frames for CINE, MAG, and VENC series in an oblique coronal view of
the thorax centered upon an en face view of the aortic valve at sinotubular junction (red
boxes). (Middle) 15-frame subsequence of a phase-contrast MRI for all series, with peak
frame outlined in blue. (Bottom) MAG frames at peak flow for 12 patients, broken down
by class: (left) bicuspid aortic valve (BAV) and (right) tricuspid aortic valve (TAV).

MRI preprocessing 84

All MRIs were preprocessed to: (1) localize the aortic valve to a 32x32 crop image size; 85

and (2) align all image frames by peak blood flow in the cardiac cycle. Since the MAG 86

series directly captures blood flow —and the aorta typically has the most blood 87

flow—both of these steps are straightforward using standard threshold-based image 88

processing techniques when the series is localized to a cross-sectional plane at the 89

sinotubular junction. Selecting the pixel region with maximum standard deviation 90

across all frames localized the aorta, and selecting the frame with maximum z-score 91

identified peak blood flow. See S1 Appendix for implementation details. Both heuristics 92

were very accurate (>95% as evaluated on the development set) and selecting a ±7 93

frame window around the peak frame fpeak captured 99.5% of all aorta variation. All 94

three MRI series were aligned to this peak before classification. 95

Gold standard annotations 96

We created a set of gold standard labels for 412 patients (12,360 individual MRI 97

frames): a development set (100 controls and 6 BAV patients); a validation set (208 98

controls and 8 BAV patients); and a held-out test set (88 controls and 3 BAV patients). 99

The development set was selected via chart review of administrative codes (ICD9, 100

ICD10, or OPCS4) consistent with BAV and followed by manual annotation. The 101

validation and test sets were sampled at random with uniform probability from all 102

14,328 MRI sequences to capture the distribution of classes expected at test time. 103

Development and validation set MRIs were annotated by a single cardiologist (JRP). 104

All test set MRIs were annotated by 3 cardiologists (JRP, HC, SM) and final labels 105

were assigned based on a majority vote across annotators. For inter-annotator 106

agreement on the test set, Fleiss’s Kappa statistic was 0.354. This reflects a fair level of 107

May 31, 2018 5/20

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 5, 2018. ; https://doi.org/10.1101/339630doi: bioRxiv preprint 

https://doi.org/10.1101/339630
http://creativecommons.org/licenses/by/4.0/


agreement amongst annotators given the difficulty of the task. Test data was withheld 108

during all aspects of model development and used solely for the final model evaluation. 109

Weak supervision 110

There is considerable research on using indirect or weak supervision to train machine 111

learning models without relying entirely on manually labeled data [10,16,17]. One 112

longstanding approach is distant supervision [18, 19], where indirect sources of labels are 113

used to to generate noisy training instances from unlabeled data. For example, in the 114

ChestX-ray8 dataset [20] disorder labels were extracted from clinical assessments found 115

in radiology reports. Unfortunately, we often lack access to patient notes or, as in the 116

case of BAV, the class of interest itself may be rare and underdiagnosed in existing 117

medical records. Another strategy is to generate noisy labels via crowdsourcing [21,22], 118

which in some medical imaging tasks can perform as well as trained experts [23,24]. In 119

practice, however, crowdsourcing is logistically difficult when working with protected 120

health information such as MRIs. A significant challenge in all weakly supervised 121

approaches is correcting for label noise, which can negatively impact end model 122

performance. Noise is commonly addressed using rule-based and generative modeling 123

strategies for estimating the accuracy of label sources [25,26]. 124

In this work, we use the recently proposed data programming [10] method, a 125

generalization of distant supervision that uses a generative model to learn both the 126

unobserved accuracies of labeling sources and statistical dependencies between those 127

sources [12,13]. In this approach, source accuracy and dependencies are estimated 128

without requiring labeled data, enabling the use of weaker forms of supervision to 129

generate training data, such as using noisy heuristics from clinical experts. For example, 130

in BAV patients the phase-contrast imaging of flow through the aortic valve has a 131

distinct ellipse or asymmetrical triangle appearance compared to the more circular aorta 132

in TAV patients. This is the reasoning a human might apply when directly examining 133

an MRI. In data programming these types of broad, often imperfect domain insights are 134

encoded into functions that vote on the potential class label of unlabeled data points. 135

This allows us to weakly supervise tasks where indirect label sources, such as patient 136

notes with assessments of BAV, are not available. 137

The idea of encoding domain insights is formalized as labeling functions —black box 138

functions which vote on unlabeled data points. The only restriction on labeling 139

functions is that they vote correctly with probability better than random chance. The 140

output of these labeling functions is used to learn a generative model of the underlying 141

annotation process, where each labeling function is weighted by its estimated accuracy 142

to generate probabilistic, training labels yi ∈ [0, 1]. These probabilistically labeled data 143

are then used to train an off-the-shelf discriminative model such as a deep convolutional 144

neural network. Critically, the final discriminative model learns features from the entire 145

MRI sequence, rather than the restricted space of inputs used by labeling functions. 146

This allows the model to generalize beyond the heuristics encoded in labeling functions. 147

Generative model 148

In our setting, patient MRIs are represented as a collection of m frames 149

X = {x1, ..., xm}. Each frame is modeled as an unlabeled data point xi and latent 150

random variable yi ∈ {−1, 1}, corresponding to the true (unobserved) frame label. 151

Supervision is provided as a set of n labeling functions λ1, ..., λn that define a mapping 152

λj : xi → Λij where Λi1, ...,Λin is the vector of labeling function votes. In binary 153

classification, Λij is in the domain {−1, 0, 1}, i.e., false, abstain, and true, resulting in a 154

label matrix Λ ∈ {−1, 0, 1}m×n. 155
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The relationship between unobserved labels y and the label matrix Λ is modeled 156

using a factor graph [27]. We learn a probabilistic model that best explains Λ̂, the 157

empirical matrix observed by applying labeling functions to unlabeled data. In the basic 158

data programing model, this consists of n accuracy factors between λ1, ..., λn and y 159

φAccj (Λi, yi) := yiΛij (1)

Other dependencies among labeling functions (e.g., pairwise similarities) can be learned 160

by defining additional factors. These factors may be specified manually or inferred 161

directly from unlabeled data. The generative model’s factor weights θ are estimated by 162

minimizing the negative log likelihood of pθ(Λ̂) using contrastive divergence [28]. 163

Optimization is done using standard stochastic gradient descent with Gibbs sampling 164

for gradient estimation. 165

Learning dependencies automatically from unlabeled data is critical in imaging tasks, 166

where labeling functions are dependent on a complex space of domain features or 167

primitives, including edges, textures, and semantic objects such as segmentations of 168

anatomical structures. We use the generative model enhancements proposed in Varma 169

et al. [12] to infer higher order dependency structure between labeling functions based 170

on their interactions with domain primitives. This approach requires defining a space of 171

feature primitives (e.g., the area of a segmentation mask) that serves as an additional 172

input to the generative model. These features can come from any source, but in this 173

work we use simple shape statistics and pixel intensity values. 174

The final weak supervision pipeline requires two inputs: (1) primitive feature matrix; 175

and (2) observed label matrix Λ̂. For generating Λ̂, we take each patient’s frame 176

sequence x̄i = {x1i, ...x30i} and apply labeling functions to a window of t frames 177

{x(fpeak−t/2), ..., x(fpeak+t/2)} centered on fpeak , i.e., the frame mapping to peak blood 178

flow. Here t = 6 performed best in our generative model experiments. The output of 179

the generative model is a set of per frame probabilistic labels {y1, ..., ym} where 180

m = t×N , the number of patients . To compute a single, per patient probabilistic label, 181

ȳi, we assign the mean probability of all t patient frames if mean({y1i, ..., yti}) > 0.9 182

and the minimum probability if min({y1i, ..., yti}) < 0.5. Patient MRIs that did not 183

meet these thresholds, 7% (304/4543), were removed from the final weak label set. The 184

final weakly labeled training consists of all MRI frames and per-patient labels: 185

X̂ = {x̄i, ..., x̄N} and Ŷ = {ȳi, ..., ȳN}. 186

Extracting domain primitives 187

All primitives are generated using a binarized segmentation mask of the aortic valve for 188

each frame in a patient’s MAG series. Since the generative model can handle noisy 189

labeling functions and primitives, we use simple threshold techniques such as Otsu’s 190

method [29] to generate binary segmentation masks. All masks were used to compute 191

primitives for: (1) area; (2) perimeter ; (3) eccentricity (a [0,1) measure comparing the 192

mask shape to an ellipse, where 0 indicates a perfect circle); (4) pixel intensity (the 193

mean pixel value for the entire mask); and (5) ratio (the ratio of area over perimeter 194

squared). Since the size of the heart and anatomical structures correlate strongly with 195

patient sex, we normalized these features by two population means stratified by sex in 196

the unlabeled set. All image preprocessing was computed using scikit-image [30]. 197

Designing labeling functions 198

Primitives define semantic abstractions over raw pixel data and allow domain experts to 199

more easily encode heuristics for BAV classification using labeling functions. For 200

example, geometric features capture the domain intuition that the prototypical TAV 201

case has a symmetrical circular or triangular shape while BAV has the appearance of an 202
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ellipse or asymmetrical triangle. The ratio feature, on the other hand, is a 203

size-independent measure of circularity, and BAV valves tend to be non-circular. These 204

insights are cumbersome to encode using pixel information alone. 205

We designed 5 labeling functions using the primitives described above. For model 206

simplicity, labeling functions were restricted to using threshold-based, frame-level 207

information for voting. All labeling function thresholds were selected manually using 208

distributional statistics computed over all primitives for the expert-labeled development. 209

(See S1 Table for complete labeling function implementations). The complete weak 210

supervision pipeline is shown in Fig 2. 211

Fig 2. Weak supervision workflow. Pipeline for probabilistic training label
generation based on user-defined primitives and labeling functions. Primitives and
labeling functions (step 1) are used to weakly supervise the BAV classification task and
programmatically generate probabilistic training data from large collections of unlabeled
MRI sequences (step 2), which are then used to train a noise-aware deep learning
classification model (step 3).

Discriminative model 212

Our discriminative model classifies BAV/TAV status using t contiguous MRI frames 213

(5 ≤ t ≤ 30, where t is a hyperparameter) and a single probabilistic label per patient. 214

This model consists of two components: a frame encoder for learning frame-level 215

features and a sequence encoder for combining individual frames into a single feature 216

representation vector. For the frame encoder, we use a Dense Convolutional Network 217

(DenseNet) [31] with 40 layers and a growth rate of 12, pretrained on 50,000 images 218

from CIFAR-10 [32]. We tested two other common pretrained image neural networks 219

(VGG16 [33], ResNet-50 [34]), but found that a DenseNet40-12 model performed best 220

overall, aligning with previous reports [31]. The DenseNet architecture takes advantage 221

of low-level feature maps at all layers, making it well-suited for medical imaging 222

applications where low-level features (e.g., edge detectors) often carry substantial 223

explanatory power. 224

For the sequence encoder, we used a Bidirectional Long Short-term Memory 225

(LSTM) [35] sequence model with soft attention [36] to combine all MRI frame 226

representations. Soft attention provides a fully differentiable layer for optimizing the 227

weighted mean of frame representations, allowing the network to automatically identify 228

the most informative frames in MRI sequences. We explored simpler feature pooling 229

architectures (e.g, mean/max pooling), but each of these methods was outperformed by 230

the LSTM in our experiments. The final hybrid CNN-LSTM architecture aligns with 231

recent methods for state-of-the-art video classification [37,38] and 3D medical 232

imaging [39]. 233

The CNN-LSTM model is trained using noise-aware binary cross entropy loss L: 234

ŵ = argminw
1

N

N∑
i=1

Ey∼Ŷ [L(w, xi, y)] (2)

This is analogous to standard supervised learning loss, except we are now minimizing 235

the expected value with respect to Ŷ [10]. This loss enables the discriminative model to 236

take advantage the more informative probabilistic labels produced by the generative 237

model. Fig 3 shows the complete discriminative model pipeline. 238
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Fig 3. Deep neural network for MRI sequence classification. Each MRI frame
is encoded by the DenseNet into a feature representation fxi. These frame features are
fed in sequentially to the LSTM sequence encoder, which uses a soft attention layer to
learn a weighted mean of all frames Semb. This forms the final representation used for
binary classification

Training and hyperparameter tuning 239

The development set was used to write all labeling functions and the validation set was 240

used for all model hyperparameter tuning. All models were evaluated with and without 241

data augmentation. Data augmentation is typically used in deep learning models as a 242

way to increase available training data and encode known invariances into the final 243

model, e.g., BAV/TAV status does not change under translation so generating shifted 244

MRI training images should not change the class label. We used a combination of crops 245

and affine transformations commonly used by state-of-the-art image classifiers [40]. We 246

tested models using all 3 MRI series (CINE, MAG, VENC with a single series per 247

channel) and models using only the MAG series. The MAG series performed best, so we 248

only report those results here. 249

Hyperparameters were tuned for L2 penalty, dropout, learning rate, and the 250

representation size of our last hidden layer before classification. Augmentation 251

hyperparameters were tuned to determine final translation, rotation, and scaling ranges. 252

All models use validation-based early stopping with F1 score as the stopping criterion. 253

The probability threshold for classification was tuned using the validation set for each 254

run to address known calibration issues when using deep learning models [41]. 255

Architectures were tuned using a random grid search over 10 models for non-augmented 256

data and 24 for augmented data. 257

Evaluation metrics 258

Classification models were evaluated using positive predictive value (precision), 259

sensitivity (recall), F1 score (i.e., the harmonic mean of precision and recall), and area 260

under the ROC curve (AUROC). Due to the extreme class imbalance of this task we 261

also report discounted cumulative gain (DCG) to capture the overall ranking quality of 262

model predictions [42]. Each BAV or TAV case was assigned a relevance weight r of 1 or 263

0, respectively, and test set patients were ranked by their predicted probabilities. DCG 264

is computed as
∑n
i

ri
logr(i+1) where n is the total number of instances and i is the 265

corresponding rank. This score is normalized by the DCG score of a perfect ranking 266

(i.e., all true BAV cases in the top ranked results) to compute normalized DCG (NDCG) 267

in the range [0.0,1.0]. Higher NDCG scores indicate that the model does a better job of 268

ranking BAV cases higher than TAV cases. 269

All scores were computed using test set data, using the best performing models 270

found during grid search, and reported as the mean and 95% confidence intervals of 5 271

different random model weight initializations. 272

For labeling functions, we report two additional metrics: coverage (Eq. 3) a measure 273

of how many data points a labeling function votes {−1, 1} on; and conflict (Eq. 4) the 274

percentage of data points where a labeling function disagrees with one or more other 275

labeling functions. 276

coverageλj
=

1

N

N∑
i=1

1(λj(xi) ∈ {−1, 1}) (3)
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277

conflictλj
=

1

N

N∑
i=1

1(

λn∑
k 6=j

1(λj(xi) ∈ {−1, 1} ∧ λj(xi) 6= λk(xi))) > 0 (4)

Model evaluation with clinical outcomes data 278

To construct a real-world validation strategy dependent upon the accuracy of image 279

classification but completely independent of the imaging data input, we used 280

model-derived classifications (TAV vs. BAV) as a predictor of validated cardiovascular 281

outcomes using standard epidemiological methods. For 9,230 patients with prospectively 282

obtained MRI imaging who were excluded from any aspect of model construction, 283

validation, or testing we performed an ensemble classification with the best performing 284

CNN-LSTM model. 285

For evaluation we assembled a standard composite outcome of major adverse 286

cardiovascular events (MACE). Phenotypes for MACE were inclusive of the first 287

occurrence of coronary artery disease (myocardial infarction, percutaneous coronary 288

intervention, coronary artery bypass grafting), ischemic stroke (inclusive of transient 289

ischemic attack), heart failure, or atrial fibrillation. These were defined using ICD-9, 290

ICD-10, and OPCS-4 codes from available hospital encounter, death registry, and 291

self-reported survey data of all 500,000 participants of the UK Biobank at enrollment 292

similar to previously reported methods [43]. 293

Starting 10 years prior to enrollment in the study, median follow up time for the 294

participants with MRI data included in the analysis was 19 years with a maximum of 22 295

years. For survival analysis, we employed the “survival” and “survminer” packages in R 296

version 3.4.3, using aortic valve classification as the predictor and time-to-MACE as the 297

outcome, with model evaluation by a simple log-rank test. 298

To verify the accuracy of the CNN-LSTM’s predicted labels, 36 MRI sequences (18 299

TAV and BAV patients) were selected randomly for review by a single annotator (JRP). 300

The output of the last hidden layer was visualized using a t-distributed stochastic 301

neighbor embedding (t-SNE) [44] plot to assist error analysis. 302
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Results 303

Baseline models 304

We compare our weakly supervised models against two traditionally supervised 305

baselines using identical CNN-LSTM architectures: (1) expert labels alone and (2) 306

expert labels with data augmentation. In these experiments, the expert labeled 307

development set was used as the training set. Due to class imbalance (6:100), training 308

data was rebalanced by oversampling BAV cases with replacement. 309

Weak supervision performance at scale 310

We evaluate the impact of training set size on weak supervision performance. These 311

models are trained using only weakly labeled training data, i.e., no hand-labeled MRIs. 312

All probabilistic labels are split into positive and negative bins using a threshold of 0.5 313

and sampled uniformly at random with replacement to create balanced, training sets, 314

e.g., sample 50 BAV and 50 TAV for a training set size of 100. We used balanced 315

samples sizes of {50, 250, 500, 1000, 2000, 4000}. The final class balance for all 4,239 316

weak labels in the training set was 264/3975 BAV/TAV. Full scale-up metrics for weak 317

labels are shown in Fig 4. 318

Fig 4. Weak supervision scale up performance metrics. Metrics include
positive predictive value (precision), sensitivity (recall), area under the ROC curve
(AUROC), and normalized discounted cumulative gain (NDCG). The y-axis is the score
in [0,100] and the x-axis is the number of unlabeled MRIs used for training. The dashed
horizontal line indicates the expert-labeled baseline model. Shaded regions indicate 95%
confidence intervals. Mean precision increased 128% (30.7 to 70.0) using 4,239 weakly
labeled MRIs; sensitivity (recall) matched performance of the expert-labeled baseline
(53.3 vs. 60.0). At ≥ 1264 weak training examples, all models exceeded the performance
of a model trained on 106 expert-labeled MRIs.

Models trained with 4,239 weak labels and augmentation performed best overall, 319

matching or exceeding all metrics compared to the best performing baseline model, 320

expert labels with augmentation. The best weak supervision model had a 64% 321

improvement in mean F1 score (61.4 vs. 37.8) and 128% higher mean precision (30.7 to 322

70.0). This model had higher mean area under the ROC curve (AUROC) (+13%) and 323

normalized discounted cumulative gain (NDCG) (+57%) scores. In Table 1, we report 324

baseline model performance and the best weak supervision models found across all 325

scale-up experiments. See S3 Fig for ROC plots across all scale-up sizes. 326

Table 1. Best Performing Weak Supervision Models vs. Baselines

Model Train Size
Precision
[95% CI]

Recall
[95% CI]

F1
[95% CI]

AUROC
[95% CI]

NDCG
[95% CI]

BASELINE:
Labels

106
19.5

[12.5, 28.6]
40.0

[33.3, 66.7]
26.1

[18.2, 40.0]
87.4

[70.0, 92.7]
44.4

[37.2, 50.8]
BASELINE:
Labels + Augmentation

106
30.7

[20.8, 40.6]
53.3

[38.7, 68.0]
37.8

[27.7, 47.9]
83.4

[79.5, 87.3]
55.7

[51.5, 59.9]

Weak Supervision 4239
83.3

[64.5, 100.0]
53.3

[38.7, 68.0]
60.8

[50.6, 71.0]
91.4

[87.8, 95.0]
84.5

[81.1, 88.0]
Weak Supervision +
Augmentation

4239
70.0

[55.4, 84.6]
60.0

[48.1, 72.0]
61.4

[55.3, 67.5]
94.4

[91.3, 97.6]
87.3

[83.6, 91.0]
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Labeling Function Scores 327

Table 2 shows individual labeling function performance on test data, where metrics were 328

computed per-frame. Precision, recall, and F1 scores were calculated by counting 329

abstain votes as TAV labels, reflecting a strong prior on TAV cases. Individually, each 330

function was a very weak classifier with poor precision (0 - 25.0) and recall (0 - 69.1), as 331

well as mixed coverage (9.8% - 90%) and substantial conflict with other labeling 332

functions (8 - 41.7%). Note that labeling functions provide both negative and positive 333

class supervision, and sometimes performed best with a specific class, e.g., LF Intensity 334

targets negative cases while LF Perimeter targets positive. 335

Table 2. Frame-level Labeling Function Performance Metrics

Labelers Coverage% Conflict% Pos. Acc. Neg. Acc. Precision Recall F1

LF Area 22.6 11.5 76.5 62.9 25.0 31.0 27.7
LF Perimeter 9.8 8.0 100.0 0.0 20.8 26.2 23.2
LF Eccentricity 87.4 38.9 85.7 42.3 12.7 85.7 22.1
LF Intensity 28.9 24.1 0.0 69.0 0.0 0.0 0.0
LF Ratio 90.4 41.7 67.5 49.6 10.7 64.3 18.3

Orthogonal model validation using clinical outcomes data 336

In a time-to-event analysis encompassing up to 22 years of follow-up on the 9,230 337

included participants with cardiac MRI data, the individuals with model-classified BAV 338

showed a significantly lower MACE-free survival (Hazard Ratio 1.8; 95% confidence 339

interval 1.3-2.4, p = 8.83e-05 log-rank test) (see Fig. 5) consistent with prior knowledge 340

of co-incidence of BAV with comorbid cardiovascular disease [45,46]. In a linear model 341

adjusted for age, sex, smoking, hyperlipidemia, diabetes, and BMI, individuals with 342

model-classified BAV displayed a 2.5 mmHg increase in systolic blood pressure (p < 343

0.001). 344

Fig 5. Unadjusted Survival from MACE in 9,230 Participants Stratified by
Model Classification. MACE occurred in 59 of 570 individuals (10.4%) classified as
BAV compared to 511 of 8660 individuals (5.9%) classified as TAV over the course of a
median 19 years of follow up (Hazard Ratio 1.8; 95% confidence interval 1.3-2.4, p =
8.83e-05 log-rank test).

Fig. 6 shows a t-SNE plot of BAV/TAV clusters using the CNN-LSTM’s last hidden 345

layer output (i.e., the learned representation). In the post-hoc analysis of 36 predicted 346

MRI labels, TAV cases had 94% (17/18) PPV (precision) and BAV cases had 61% 347

(11/18) PPV, with BAV misclassifications occurring most often in cases with visible 348

regurgitation and turbulent blood flow. 349
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Fig 6. Patient clustering visualization. (Left) t-SNE visualization of the last
hidden layer outputs of the CNN-LSTM model as applied to 9,230 patient MRI
sequences and (right) frames capturing peak flow through the aorta for a random
sample of patients. Blue and orange dots represent TAV and BAV cases. The model
clusters MRIs based on aortic shape and temporal dynamics captured by the LSTM.
The top example box (1) contains clear TAV cases with very circular flow shapes, with
(2) and (3) becoming more irregular in shape until (4) shows highly irregular flow
typical of BAV. Misclassifications of BAV (red boxes) generally occur when the model
fails to differentiate regurgitation of the aortic valve and turbulent blood flow through a
normal appearing aortic valve orifice.
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Discussion 350

In this work we present the first deep learning model for classifying BAV from 351

phase-contrast MRI sequences. These results were obtained using models requiring only 352

a small amount of labeled data, combined with a large, imperfectly labeled training set 353

generated via weak supervision. The success of this weak supervision paradigm, 354

especially for a classification task with substantial class-imbalance such as BAV, 355

represents a critical first step in the larger goal of automatically labeling unstructured 356

medical imaging from large datasets like the UK Biobank. For medical applications of 357

machine learning as described here, we propose an additional standard of validation; 358

that the model not only captures abnormal valve morphology, but more importantly the 359

captured information is of real-world medical relevance. In our model, BAV individuals 360

showed more than an 1.8-fold increase in risk for comorbid cardiovascular disease. 361

The current availability of large unstructured medical imaging datasets is 362

unprecedented in the history of biomedical research, but the use of data on cardiac 363

morphology derived from medical imaging depends upon their integration into genetic 364

and epidemiological studies. For most aspects of cardiac structure and function, the 365

computational tools used to perform clinical measurements require the input or 366

supervision of an experienced user, typically a cardiologist, radiologist, or technician. 367

Large datasets exploring cardiovascular health such as MESA and GenTAC which both 368

include imaging data have been limited by the scarcity of expert clinical input in 369

labeling and extracting relevant information [47,48]. Our approach provides a scalable 370

method to accurately and automatically label such high value datasets. 371

Automated classification of imaging data represents the future of imaging research. 372

Weakly supervised deep learning tools may allow imaging datasets from different 373

institutions which have been interpreted by different clinicians, to be uniformly 374

ascertained, combined, and analyzed at unprecedented scale, a process termed 375

harmonization. Independent of any specific research or clinical application, new machine 376

learning tools for analyzing and harmonizing imaging data collected for different 377

purposes will be the critical link that enables large-scale studies to connect anatomical 378

and phenotypic data to genomic information, and health-related outcomes. For the 379

purposes of research, such as genome-wide association studies, higher precision (positive 380

predictive value) is more important for identifying cases. Conversely, in a clinical 381

application the flagging of all possible cases of BAV for manual review by a clinician 382

would be facilitated by a more sensitive threshold. The model presented here can be 383

tuned to target either application setting. 384

Our analytical framework and models have limitations. Estimation of the true 385

prevalence of uncommon conditions such as BAV and ascertainment of outcomes within 386

a given population is complicated by classical biases in population health science. 387

Registries of BAV typically enroll patients only with clinically apparent manifestations 388

or treatment for disease which may not account for patients who do not come to medical 389

attention. Estimates derived from population-based surveillance are usually limited to 390

relatively small numbers of participants due to the cost and difficulty of prospective 391

imaging, and small cohort sizes impede accurate estimates for rare-conditions such as 392

BAV. Age and predisposition to research participation may also affect estimates of 393

disease prevalence, a documented phenomenon within the UK Biobank [49]. Mortality 394

from BAV is accrued cumulatively over time, thus studies of older participants are 395

missing individuals with severe disease who may have died or been unable to participate. 396

Conversely calcific aortic valve disease, which increases in incidence with age, may 397

result in an acquired form of aortic stenosis difficult to distinguish from BAV by cardiac 398

flow imaging [50]. Given that the 6.2% of individuals receiving a model-classification of 399

BAV is higher than previous population estimates of BAV prevalence (0.5 to 2%), some 400

proportion of BAV-classified individuals almost certainly have age-related calcific aortic 401
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valve disease. Additional scrutiny of model-classified BAV cases show that the model 402

fails to differentiate regurgitation of the aortic valve from turbulent blood flow through 403

an aortic valve with a normal circular or symmetrically triangular appearing orifice (Fig. 404

6). Thus even for the current best-performing model displaying good predictive 405

characteristics for a class-imbalanced problem, misclassification events attributable to 406

discreet failure modes are evident for subsequent iterations of the model. 407

Related Work 408

In medical imaging, weak supervision covers a broad range of techniques using indirect 409

or noisy labels. Multiple instance learning (MIL) is one common weak supervision 410

approach in medical images [51]. Xu et al. [52] simultaneously performs binary 411

classification and segmentation for histopathology images using a variant of MIL, where 412

image-level labels are used to supervise both image classification and a segmentation 413

subtask. ChestX-ray8 [20] was used in Li et al. [53] to jointly perform classification and 414

localization using a small number of weakly labeled examples. Patient radiology reports 415

and other medical record data are frequently used to generate noisy labels for imaging 416

tasks [20,54–56]. 417

Weak supervision shares similarities with semi-supervised learning [57], which 418

enables training models using a small labeled dataset combined with large, unlabeled 419

data. The primary difference is how the structure of unlabeled data is specified in the 420

model. In semi-supervised learning, we make smoothness assumptions and extract 421

insights on structure directly from unlabeled data using task-agnostic properties such as 422

distance metrics and entropy constraints [58]. Weak supervision, in contrast, relies on 423

directly injecting domain knowledge into the model to incorporate the underlying 424

structure of unlabeled data. In many cases, these sources of domain knowledge are 425

readily available in existing knowledge bases, indirectly-labeled data like patient notes, 426

or weak classification models and heuristics. 427

Conclusion 428

This work demonstrates how weak supervision can be used to train a state-of-the-art 429

deep learning model for BAV classification using unlabeled MRI sequences. Using 430

domain heuristics encoded as functions to programmatically generate large-scale, 431

imperfect training data provided substantial improvements in classification performance 432

over models trained on hand-labeled data alone. Transforming domain insights into 433

labeling functions instead of static labels mitigates some of the challenges inherent in 434

the domain of medical imaging, such as extreme class imbalance, limited training data, 435

and scarcity of expert input. Most importantly, our BAV classifier could successfully 436

identify individuals at long-term risk for cardiovascular disease, demonstrating 437

real-world relevance of imaging models built using weak supervision techniques. 438
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Supporting information 439

S1 Videos. Example MRI videos. BAV and TAV subject videos in CINE, MAG, 440

and VENC encodings. 441

S1 Appendix. Aorta localization and cardiac cycle alignment. Detailed 442

overview of MRI preprocessing. 443

S1 Fig. Localizing the aortic valve. (Left) Full, uncropped MAG series MRI 444

frame, showing per pixel standard deviation. (Right) Green box is a zoom of the heart 445

region and the red box corresponds to the aorta – the highest weighted pixel area in the 446

image. 447

S2 Fig. Per-frame z-scores for a random sample of 50 MRI sequences. The 448

majority of series only contains pixel information in the first 15 frames of data. 449

S3 Fig. Area under the ROC curve (AUROC) for all scaleup models. As 450

the CNN-LSTM is trained on more weakly labeled data AUROC generally improves. In 451

very small training set regimes (e.g., 100 - 1000 instances) using only weakly labeled 452

data, performance degrades after > 0.6 true positive rate. 453

S4 Fig. Development set BAV subjects. All 6 BAV subjects used for labeling 454

function development. For the generative model, 6 contiguous frames performed best at 455

classifying training data using labeling functions, while in the discriminative 456

CNN-LSTM model, 10 frames performed best. This shows how the deep learning model 457

was better able to take advantage of subtle features at the start and end of the cardiac 458

cycle, while labeling functions are restricted to less ambiguous features near the peak 459

frame. 460

S1 Table. Complete Labeling Function Implementations. 461

S2 Table. CNN-LSTM Model Hyperparameter Search Grid. 462
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