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Abstract1

Motor variability is inevitable in our body movements and is discussed from several various perspectives2

in motor neuroscience and biomechanics; it can originate from the variability of neural activities, it can3

reflect a large degree of freedom inherent in our body movements, it can decrease muscle fatigue, or it4

can facilitate motor learning. How to evaluate motor variability is thus a fundamental question in motor5

neuroscience and biomechanics. Previous methods have quantified (at least) two striking features of motor6

variability; the smaller variability in the task-relevant dimension than in the task-irrelevant dimension7

and the low-dimensional structure that is often referred to as synergy or principal component. However,8

those previous methods were not only unsuitable for quantifying those features simultaneously but also9

applicable in some limited conditions (e.g., a method cannot consider motion sequence, and another10

method cannot consider how each motion is relevant to performance). Here, we propose a flexible and11

straightforward machine learning technique that can quantify task-relevant variability, task-irrelevant12

variability, and the relevance of each principal component to task performance while considering the13

motion sequence and the relevance of each motion sequence to task performance in a data-driven manner.14

We validate our method by constructing a novel experimental setting to investigate goal-directed and15

whole-body movements. Furthermore, our setting enables the induction of motor adaptation by using16

perturbation and evaluating the modulation of task-relevant and task-irrelevant variabilities through17

motor adaptation. Our method enables the identification of a novel property of motor variability; the18

modulation of those variabilities differs depending on the perturbation schedule. Although a gradually19

imposed perturbation does not increase both task-relevant and task-irrelevant variabilities, a constant20

perturbation increases task-relevant variability.21

Introduction22

In our daily life, we can repeatedly achieve desired movements, such as grasping a cup, throwing a ball,23

and playing the piano. To achieve the desired movements, our motor system needs to resolve at least two24

difficulties inherent in our body motion [1]. A difficulty is movement variability. Due to the variability25

inherent in various stages such as sensing sensory information [2], neural activities in motor planning [3],26

or muscle activities in motor execution [4], even sophisticated athletes and musicians cannot repeat the27
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same movements. Our motor systems somehow tame those variabilities to achieve the desired movements28

[5]. Another difficulty is a large degree of freedom (DoF) inherent in our motor system [1, 6]. The number29

of joints, muscles, and neurons are more than necessary to achieve the desired movements, resulting in30

an infinite number of joint configurations, muscle activities, and neural activities that can correspond to31

the desired movement [7-10]. Our motor systems somehow resolve those difficulties (i.e., variability and32

a large DoF) and generate the desired movements.33

Although it remains unclear how we tame movement variability, a possible answer is the decomposition34

of motor variability into task-relevant and task-irrelevant variabilities. We compensate for a portion of35

motor variability that is relevant to achieve the desired movements (i.e., task-relevant variability) [11-15]36

- simultaneously, we do not significantly compensate for a portion of the variability that is irrelevant37

to achieve the desired movements (i.e., task-irrelevant variability). The compensation of task-relevant38

variability can be observed in movement kinematics [11-14], muscle activities [16, 17], and neural activities39

[15]. This striking feature of our motor variability enables the achievement of the desired movements in40

the presence of movement variability.41

Several studies have developed techniques to evaluate task-relevant and task-irrelevant variabilities.42

The uncontrolled manifold (UCM) evaluates the task-relevant and task-irrelevant variabilities (mainly)43

in joint angles and angular velocities. The method focuses on kinematic parameters relevant to task44

achievements, such as hip joint position in stand-and-sit motion [11] or hand position in arm-reaching45

movements [18]. The Jacobian matrix, the derivatives of those kinematic parameters concerning joint46

angles or angular velocities, enables the definition of the null space around the joint angles or angular47

velocities averaged across trials. The variability along the null space can be defined as the task-irrelevant48

variability. Those previous studies have revealed that the task-relevant variability of joint angles and49

angular velocities is less than the task-irrelevant variability. Notably, the UCM focused on forward50

kinematics that map joint angles and angular velocities into joint positions and velocities in the external51

coordinate. In contrast, tolerance, noise, and covariation analysis (TNC) [13] and goal-equivalent manifold52

analysis (GEM) [14] focused on task functions that define the relationship between kinematic parameters53

and task performance. For example, a thrown dart or ball can be modeled as a parabola. When the54

release position and velocity in the vertical axis are p and v, respectively, the maximum height of the55

released dart or ball can be written as h = p + v2

2g , where g is the gravitational acceleration. When56

controlling h is a task, the relation among h, p, and v can be task function. For example, with a small57

value d (i.e., d2 ≃ 0), a slight change in the release position p+ v
gd and the release velocity v−d does not58

cause any change in h; thus, the variability along these slight changes to be regarded as the task-irrelevant59

variability. TNC and GEM evaluate the task-relevant and task-irrelevant variabilities based on the task60

functions.61

Those techniques have pros and cons. UCM enables the evaluation of motion sequence, but it does62

not consider the task function. The framework is thus not always suitable for the situation when kine-63

matic parameters are nonlinearly relevant to task achievements, such as the quadratic function of v64

in the parabolic mentioned above. Because forward kinematics are nonlinear functions of joint angles65

and angular velocities, UCM requires local linear approximation around representative joint angles or66

angular velocities based on the Jacobian matrix. Due to the linear approximation, UCM assumed the67

variability around the kinematics averaged across all the trials. The approximation results in difficulty68

simultaneously considering the motor variability when the averaged kinematics change, such as those69

before, during, and after motor learning (although it is possible to discuss those situations separately70

[18]). GEM also considers the local linear approximation of the nonlinear task function; thus, the method71

also considers the variability around the task parameters averaged across all the trials. Although GEM72

can deal with the task function, it is difficult to consider motion sequence in several cases. For example,73

to consider the motion sequence, the GEM framework needs to define how the dart or ball position and74

velocity 100 msec before the release are relevant to the maximum height in the example, as mentioned75

above. TNC enables the simultaneous discussion of the motor variability before, during, and after motor76
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learning because the framework captures the whole variability in a nonparametric manner without local77

linear approximation; however, TNC is not always suitable for considering motion sequence based on a78

similar reason to GEM - it requires an explicit definition of the task function. In total, each method has79

pros and cons; thus, no single framework can simultaneously evaluate task-relevant and task-irrelevant80

variabilities when the averaged kinematics or task parameters change while considering both the motion81

sequence and task function.82

Motor variability has another striking feature: the variability is embedded in a low-dimensional space83

that is referred to as synergy [6, 19-22]. It is suggested that to overcome a larger DoF, our motor system84

controls not all the DoFs but only those in low-dimensional space. Synergy has been (mainly) discussed85

for kinematics data [20, 22-24] and EMG data [19, 21]. In both kinematics and EMG, low-dimensional86

space that can capture a high portion of motor variability has been found. Several methods have been87

developed to extract the synergy, such as principal component analysis (PCA) [20, 22], nonnegative88

matrix factorization [21, 25] or spatial-temporal decomposition of EMG data [19].89

The motor variability thus has at least two characteristics: compensation of the task-relevant vari-90

ability and low-dimensional structure. Most of the techniques, however, deal with only one aspect.91

It is difficult to detect the low-dimensional structure of motor variability by the methods to evaluate92

task-relevant and task-irrelevant variabilities. Similarly, it is difficult to evaluate task-relevant and task-93

irrelevant variabilities by the techniques to extract low-dimensional structure of motor variability. Thus,94

the 1st principal component, the dimension that can explain the most significant portion of variabil-95

ity among all dimensions, is not always the most relevant or irrelevant to task performance. Although96

UCM has been used to extract synergy [8], the primary advantage of UCM is not the extraction of the97

low-dimensional structure but the evaluation of task-relevant and task-irrelevant variabilities. Although a98

few studies have focused on linear discrimination analysis (LDA) to discuss task-relevant low-dimensional99

space [26, 27], LDA enables only discrimination, e.g., success or failure of the movement [28], in contrast100

to TNC and GEM, which can discuss motor performance based on continuous performance value. In101

summary, few methods simultaneously quantify two striking features of movement variability.102

Here, we propose a flexible and straightforward machine learning technique that can evaluate move-103

ment variability by unifying the advantages of previous techniques: our framework can evaluate not only104

task-relevant and task-irrelevant variabilities even when averaged kinematics or task parameters change105

(e.g., before, during, and after motor learning) while considering motion sequence and task function but106

also how each synergy is relevant to task performance by extending PCA. The current study relied on a107

ridge regression [29], a linear regression technique that is robust in the presence of measurement noise,108

has a definite relation to PCA, and can evaluate how the motion of each body part at each time is relevant109

to task performance in a data-driven manner [30]. Our technique can thus enable the identification of110

task functions in a data-driven manner without any explicit function such as the parabola or the forward111

kinematics. First, we formalize the dissociation of motion sequence data into task-relevant components112

and task-irrelevant components by extending a ridge regression. Second, we construct a novel experimen-113

tal paradigm to discuss the relation of a motion sequence to task performance based on goal-directed and114

whole-body movements. We further discuss motor adaptation in the current experimental setting. Third,115

we validate the decomposition of motion sequence data into task-relevant and task-irrelevant components116

based on our experimental data. Fourth, we clarify the relation between ridge regression and PCA, a117

popular method to extract the low-dimensional space of motor variability. In particular, we analytically118

reveal how each principal component is relevant to performance in the ridge regression. We also validate119

the analytical calculations based on our experimental data. Finally, we apply our method to motion120

sequence data in whole-body and goal-directed movements before and after motor adaptation. Because121

our method enables to discuss the modulation of movement variability before and after motor adaptation,122

we discuss the dependence of the modulation on the perturbation schedule.123
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Results124

Downloading our program code on our website is possible.125

Linear regression. The current study relied on linear regression to determine the relationship126

between motion data X ∈ RT×D (the current study focused on the temporal sequence of joint angles127

and angular velocities) and performance data d ∈ RT×1 following h = Xw, where T and D denoted the128

number of trials and the number variables in the motion data, h ∈ RT×1 is the predicted performance,129

and w ∈ RD×1 is the best linear coefficients to predict the performance [30]. Xt, the tth row of X or130

the motion data at the tth trial, consists of vectorized motion data (e.g., after measuring joint angles131

of knee qk,t ∈ R1×F and hip qh,t ∈ R1×F for F time frames at the tth trial, Xt = (qk,t, qh,t)). We132

relied on a ridge regression to predict performance; the method enabled to predict the performance133

with higher accuracy than the conventional method as mentioned below. Ridge regression is a linear134

regression technique that is robust against observation noise, is applicable to data with multicollinearity135

(see Materials and Methods for details). Although we relied on a ridge regression to estimate w, the136

following decomposition of input data into the task-relevant and task-irrelevant components could be137

applied to any linear regression technique.138

Decomposition into task-relevant and task-irrelevant components. After estimating the139

best linear coefficients w based on measured performance data y ∈ RT×1 and motion data X, the140

estimated w enabled not only the prediction of performance but also the decomposition of motion data141

into a task-relevant componentXrel and task-irrelevant componentX irr. By minimizing the cost function142

1

2
(Xw −Xrelw)T (Xw −Xrelw), (1)

under the constraint X ̸= Xrel to avoid the self-evident answer, Xrel can be written as143

Xrel = XwwT (wwT )† = X
wwT

|w|2
, (2)

where (wwT )† is a pseudo-inverse of wwT and |w| =
√
wTw. The equality wT (wwT )† = wT

|w|2 holds144

when w ∈ RD×1. Under the decomposition X = Xrel +X irr, X irr can be written as145

X irr = X −Xrel = X

(
I − wwT

|w|2

)
, (3)

where I ∈ RD×D is an identity matrix. Under the appropriate normalization (i.e., mean and standard146

deviation of each component of X and y were set to be 0 and 1, respectively, see Materials and Methods147

for details), Xrelw = Xw = h and X irrw = 0, indicating that Xrel and X irr denoted task-relevant148

and task-irrelevant components under the framework of linear regression. An important point of this149

framework is that it does not require any explicit function (e.g., forward kinematics such as in UCM or150

task function such as in GEM and TNC) but require only data X and y.151

Figs. 1A and 1B demonstrate typical examples of the decomposition when X includes only 2 elements152

and constrains the task by setting h = X1 −X2 (i.e., w1 = 1 and w2 = −1) to some certain values (e.g.,153

y = 2, 0, -2 in the simulated task 1, 2, 3, respectively). Because the constrained task was one dimensional154

and input data were two dimensional, an infinite patterns of X values resulted in an identical h value. In155

this case, Xrel = X 1√
2

(
1 −1
−1 1

)
= 1√

2
(X1 −X2,−(X1 −X2)) and X irr = X −Xrel. The simulated156

data points on the dotted line in Fig. 1B indicated Xrel. On the dotted line, the data points can be157

clearly separated into three parts corresponding to the simulated tasks 1, 2, and 3. In contrast X irr158

plotted on the solid line is not separated based on task.159

Goal-directed whole-body movements and motor adaptation. The current study focuses160

on goal-directed and whole-body movements in which subjects manage to achieve the desired movement161
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by controlling a large number of DoFs. We focus on a simplified version of whole-body movements:162

a vertical jump while crossing arms in front of the trunk (Fig. 2A). This goal-directed whole-body163

movement enabled us to focus on lower limb and trunk motions and assess task-relevant variability, task-164

irrelevant variability, and the low-dimensional spaces in which a high portion of the motor variability165

was embedded. We proposed a machine learning technique to simultaneously evaluate these features of166

variability while considering motion sequence and the relevance of each motion to jumping height.167

Subjects stood in a fixed position and were instructed to look at a computer monitor located in front168

of them and perform a sub-maximum vertical jump according to a target height (40, 45, 50, 55, or 60%169

of the maximum jumping height of each subject, Fig. 2B, see Materials and Methods section for details).170

Three beeps sounded, and the subjects needed to perform the jump at the timing of the third beep. The171

interval between each beep was one second. At the beginning of each trial (i.e., one second before the172

first beep), the target height was indicated by a black bar displayed on a computer monitor. At the173

end of the tth trial, the actual jumping height kt (the y-position of the marker attached to the back)174

was displayed as a blue cursor on the monitor, where t = 1, ..., T and T was the number of trials to be175

analyzed. By manipulating the displayed jumping height (we called this manipulation as a perturbation176

pt), it was possible to induce sensory prediction error between the predicted and actual jumping heights.177

This perturbation paradigm was similar to a protocol of motor gain adaptation as reported mainly in178

saccade and arm-reaching movements [31, 32]. We expected subjects to modify their motion sequences179

to minimize the sensory prediction error.180

First, we determined whether the subjects could perform goal-directed whole-body movements in our181

experimental setting. In 50 baseline trials in experiment 1 (Fig. 2C), the target height pseudorandomly182

changed in each trial. There was a significant main effect of target height in jumping height (Fig. 2D,183

one-way repeated measure ANOVA, p = 6.114×10−24). The subjects could thus perform goal-directed184

vertical jump depending on target height.185

Second, we determined whether the subjects showed motor adaptation in the experimental setting.186

In 96 learning trials in experiment 1 (Fig. 2C), the subjects experienced perturbations once in every five187

trials; the perturbation was pseudorandomly set to pt = 0.05 or pt = −0.05 in every five trials and pt = 0188

in other trials (Figs. 3A and B). We observed the modification of jumping height after each perturbation189

(Fig. 3C, paired t-test, p = 0.0026 for motor adaptation when pt = 0.05; and p = 0.0014 for motor190

adaptation when pt = −0.05). Additionally, we confirmed whether fatigue influenced the adaptation by191

comparing the magnitudes of the modification in the former part of the learning trials to those in the192

latter part. There was no significant difference in the magnitudes of the modification between the former193

and the latter parts of the learning trials (paired t-test, p = 0.4382). Motor adaptation could thus be194

observed in the goal-directed vertical jump without significant effect of fatigue.195

Validation of ridge regression and decomposition into task-relevant and task-irrelevant196

components. The current study focuses on the evaluation of motor variability, especially task-relevant197

variability, task-irrelevant variability, and the relevance of low-dimensional structures to task performance,198

by extending ridge regression (the details of ridge regression were provided inMaterials and Methods). We199

needed to validate the ridge regression in the current experimental setting before evaluating variability.200

Notably, we have already validated the efficiency of ridge regression to predict performance not only in201

jumping movements but also in throwing movements [30].202

Ridge regression requires selecting input data because a careful selection of input data is indispensable203

to discussing the linear relation between input and output data. Prediction power is a sophisticated204

measure for selecting input data while avoiding overfitting [28]. The current study focused on prediction205

error between actual and predicted jumping height using 10-fold cross-validation. We compared the206

following three types of input data (see Materials and Methods for details). The first candidate is207

joint angles {qi} and angular velocities {q̇i}: X = ({qi}, {q̇i}), where {ai} = (a1, a2, a3, a4) and q̇i208

denotes the derivative of qi concerning time (the definitions of each qi are given in Fig. 2A). The second209

candidate is the functions of qi and q̇i, which describe the position and velocity of back joint in the y-axis210
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and are relevant to jumping height: X = ({sin qi}, {q̇i cos qi}). The third candidate is the functions211

describing the jumping height based on parabolic approximation: X = ({sin qi}, {q̇iq̇j cos qi cos qj}),212

where {aiaj} = (a21, a1a2, a1a3, a1a4, a
2
2, a2a3, a2a4, a

2
3, a3a4, a

2
4). By comparing these three candidates,213

we found that the first candidate (i.e., X = ({qi}, {q̇i})) showed the lowest prediction error (Fig. 4A). In214

particular, the first candidate, with four-time frames before release, yielded the lowest prediction error.215

If the prediction error equals 1, the method cannot predict the output data. In contrast, if the prediction216

error equals 0, the method can predict the output data with 100% accuracy. As shown in Fig. 4A, the217

first candidate with four-time frames resulted in a prediction error of 0.174, indicating that the ridge218

regression enables prediction of jumping height with an 82.6±2.28% (mean ± standard error of the mean219

[s.e.m.], N=13) accuracy in the current setting. In the following, we refer to the first candidate with220

four-time frames as the motion sequence. In our experimental setting with goal-directed vertical jump,221

X included 32 elements in each trials (4(dim)×4(time frames) for {qi}, and 4(dim)×4(time frames) for222

{q̇i}. Because the parabolic approximation of jumping height (h = p + v2

2g , the detailed definition is223

given in the Introduction) enables prediction of the jumping height with a 76±2.96% (mean ± s.e.m.,224

N=13) accuracy (purple line in Fig. 4A), the ridge regression enables prediction of jumping height with225

higher accuracy than the approximation. The reasons the ridge regression shows higher prediction power226

are its robustness against observation noise and consideration of the motion sequence rather than the227

representative motion data at a single time frame (i.e., the position and velocity of the hip joint only at228

the time of release). The ridge regression thus enables the discussion of the linear relation between the229

motion sequence and jumping height with appropriate precision.230

Variability in task-relevant and task-irrelevant space. We calculated the task-relevant and231

task-irrelevant variabilities in a goal-directed vertical jump based on both the ridge regression and the232

decomposition of input data into task-relevant and task-irrelevant dimensions. The current study cal-233

culated the variability (variance) of each element of Xrel and X irr in focused trials (see Materials and234

Methods for details). The representative values of the variability, task-relevant variability Varrel and235

task-irrelevant variability Varirr, were calculated by averaging the variability across all the elements.236

We found that the task-relevant variability was smaller than the task-irrelevant variability in all par-237

ticipants (N = 13, red dots in Fig. 4B). Because previous methods, such as the UCM (blue crosses) and238

GEM (green crosses), found similar task-relevant and task-irrelevant variabilities, our method enabled239

the extraction of lower task-relevant variability and higher task-irrelevant variability. Because the nor-240

malization procedures of our method and previous methods differ (see Materials and Methods), there241

was a slight difference in the calculated variabilities. Our methods can quantify task-relevant and task-242

irrelevant variabilities by considering the motion sequence and the relevance of the sequence to the task.243

Our method does not require any explicit task function, such as the parabolic approximation of jumping244

height, but it determines the relevance of the motion sequence to the task in a data-driven manner.245

Further, our method is robust against observation noise due to the properties of ridge regression.246

Relevance of each principal component to task performance. Movement variability shows not247

only less task-relevant variability than task-irrelevant variability but also a low-dimensional structure. The248

current study compares our method to PCA, a conventional method to extract low-dimensional structure.249

Because the low-dimensional structure is considered to represent some features of motor control, it can250

be expected to be correlated to task performance. We decomposed the motion sequence X into principal251

components (PCs, i.e., eigenvectors) and calculated the correlation of each PC to jumping height (see252

Materials and Methods for detail). In our setting, there was no clear relation between the number of253

PCs for the decomposition and the correlation between the decomposed motion data and performance254

data (Fig. 4C). If averaged across all participants, the 1st PC could explain approximately 30% of255

the movement variability (blue line in Fig. 4D). Corresponding to the explained movement variability,256

the 1st PC showed the highest correlation to jumping height (red line in Fig. 4D) if averaged across all257

participants. In a typical subject, however, the 2nd rather than the 1st PC showed the highest correlation258

to jumping height (red line in Fig. 4E). This typical subject was not an exception; Fig. 4F shows the PC259
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number with the highest correlation to jumping height. In 6 out of 13 subjects, the 1st PC showed the260

highest correlation to performance. In 3 out of 13 subjects, the 2nd PC showed the highest correlation,261

and the 3rd PC showed the highest in 4 out of 13 subjects. These results indicate that the explained262

movement variability did not correspond to the relevance to task performance.263

Ridge regression enabled the prediction of jumping height with higher accuracy than PCA (red line264

in Fig. 4C) because the ridge regression weights each PC based on both the explained movement vari-265

ability and the task relevance. In PCA (or equivalently singular value decomposition (SVD)), the motion266

sequence at the tth trial is decomposed as Xt =
∑N

i=1 λiui,tvi, where N is the number of PCs, λi is267

the ith eigenvalue corresponding to the ith PC vi, and ui,t indicated how the ith PC appeared at the268

trial. The correlation of the ith PC to task performance was thus calculated based on ui,t, and it did269

not reflect the relevance of the ith PC to task performance. In contrast, the ridge regression enables the270

prediction of task performance as ht =
∑N

i=1 f(λi)Corr(ui,t, yt)ui,t, where f(λi) is a sigmoidal function271

of λi and Corr(ui,t, yt) is the correlation between the contribution of the ith PC at the tth trial ui,t and272

observed jumping height yt (see Materials and Methods for details). The ridge regression thus enables273

the prediction of performance by weighting each PC based on both explained movement variability and274

task relevance. In other words, our method enables the consideration of the low-dimensional structure of275

movement variability by weighting each PC suitable for predicting task performance.276

Influence of motor adaptation on variability in the task-relevant and task-irrelevant di-277

mension. An advantage of our method is its linearity, which enables the simultaneous comparison of278

the task-relevant and task-irrelevant variabilities among the conditions where mean kinematics or task279

parameters change (e.g., before, during, and after motor learning). It was previously unclear how task-280

relevant and task-irrelevant variabilities are modulated by motor adaptation. The modulation of these281

variabilities has been investigated for arm-reaching movements and motor adaptation to a constant per-282

turbation [5, 33]. Although there are some differences between adaptation to a constant perturbation and283

that to a gradually imposed perturbation, e.g., retention rate or awareness [34], the means by which those284

variabilities are modulated in the two types of adaptations have not been investigated. Further, it was285

previously unclear whether such modulation of variability could be observed in whole-body movements.286

Our method without linear approximation enabled the discussion of how task-relevant and task-irrelevant287

variabilities are modulated before and after motor adaptation in whole-body movements. We thus applied288

our method to motor adaptation in response to constant and gradually imposed perturbations.289

In experiment 2 (two days for each subject), subjects experienced gradually increased or decreased290

perturbations. Each subject underwent ten learning trials without any perturbation. The perturbation291

was gradually imposed for ten trials and was set to 0.05 or -0.05 for ten trials (Figs. 5A, B). The gradually292

imposed perturbation required not abrupt but gradual compensation (i.e., subjects were required to293

modify their motions slightly in each trial). In a total of 30 trials, the target height was set to 50% of294

the subject’s maximum jumping height. Subjects who experienced a pt > 0 on the first day experienced295

a pt < 0 on the 2nd day and vice versa. The order of perturbation was counterbalanced across subjects.296

The subjects could adapt to the gradually increased or decreased perturbations (Fig. 5C).297

In experiment 3, the subjects experienced constant perturbations. Each subject underwent five learn-298

ing trials without any perturbation. The perturbation was set to 0.05 or -0.05 for 15 trials, 0 for ten trials299

for washout and -0.05 or 0.05 for 15 trials (Figs. 5D, E). In contrast to experiment 2 where the pertur-300

bation was gradually imposed, subjects were required to modify their motions abruptly in experiment 3.301

Subjects who experienced a pt = 0.05 on the 6th-20th trials experienced a pt = −0.05 on the 31st-45th302

trials and vice versa. The order of perturbation was counterbalanced across subjects. In a total of 45303

trials, the target height was set to 50% of the subject’s maximum jumping height. In both experiments304

2 and 3, the subjects adapted to the perturbations (Fig. 5F).305

We calculated the task-relevant and task-irrelevant variabilities before and after adaptation in exper-306

iments 2 and 3 (Figs. 6A and B). For task-relevant variability, there was no significant difference before307

and after the adaptation to gradually increasing or decreasing perturbations (blue dots in Fig. 6A, N =308
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13, Wilcoxon signed rank test, p = 0.1909). In contrast, in adapting to a constant perturbation, there309

was a significant difference in task-relevant variability before and after adaptation (red dots in Fig. 6A,310

N = 13, Wilcoxon signed rank test, p = 0.0034). For task-irrelevant variability, there was no significant311

difference before and after adaptation to gradually increasing or decreasing perturbations (blue dots in312

Fig. 6B, N = 13, Wilcoxon signed rank test, p = 0.1677) and a constant perturbation (red dots in313

Fig. 6B, N = 13, Wilcoxon signed rank test, p = 0.3396). These results could be interpreted based on314

a simulated and two-dimensional case similar to that shown in Fig. 1 (Figs. 6C, D). In adapting to315

perturbations, the subjects needed to modify their output (i.e., jumping height) by determining an ap-316

propriate input (i.e., motion sequence). In adapting to gradually increasing or decreasing perturbations,317

there was no modulation in both task-relevant and task-irrelevant variabilities (Fig. 6C). In adapting to318

a constant perturbation, the task-relevant variability increased, while the task-irrelevant variability was319

not be modulated (Fig. 6D). Notably, Figs. 6C and 6D were not real data but simulated examples to320

interpret our results. In summary, the modulation of task-relevant variability depends on the schedule of321

perturbation.322

Discussion323

We proposed a flexible and straightforward machine learning technique that quantified task-relevant324

variability, task-irrelevant variability, and the relevance of each principal component to task performance325

in a noise-robust manner while considering motion sequence and how each motion sequence was relevant to326

task performance (Fig. 4). Our method can find the relevance of each motion sequence to performance327

(i.e., task function) in a data-driven manner; our method does not require any explicit task function,328

such as the parabolic approximation of jumping height. Further, our method does not require any linear329

approximation, which enables the simultaneous consideration of the variabilities when the kinematics or330

task parameters averaged across trials change (e.g., before, during, and after adaptation). By applying331

our method to the motion sequence before and after motor adaptation, we found that the perturbation332

schedules affected the modulation of movement variability in motor adaptation (Figs. 6A and 6B). These333

advantages enable the methods to be flexibly applied to a wide range of goal-directed movements.334

Our method can be regarded as a generalized method including UCM and GEM. When we define335

Xi = qi−q̄i (qi and q̄i indicated the ith joint angle and the averaged joint angle across all the focused trials,336

respectively [i=1, ..., 4 in our setting]), and Xi+4 = q̇i − ¯̇qi (q̇i and ¯̇qi indicated the joint angular velocity337

and averaged joint angular velocity across all the focused trials, respectively), and the corresponding338

weight w as the Jacobian matrix of forward kinematics p = p(q) (the back position) and v = v(q, q̇)339

(the back velocity) around the averaged joint angles and angular velocities across all the focused trials340

q̄, ¯̇q, our framework corresponds to UCM. When we define w1 = 1, w2 = v̄
g , X1 = p− p̄, and X2 = v − v̄,341

h = Xw = p− p̄+ v̄
g (v− v̄), our framework corresponds to the GEM in the cases when the task function342

can be defined by the parabolic function, where g denotes the gravitational acceleration. Because the343

UCM and GEM can be regarded as a special case of our method, our method can be considered as a344

generalized version of those methods.345

Another advantage of our method is the ability to select appropriate input based on predictive power346

(Fig. 4A). The predictive power also enables the selection of a proper coordinate to define the task347

performance. A previous study has demonstrated that the UCM and TNC frameworks are sensitive348

and insensitive to how to select the coordinate (e.g., either relative or absolute angle), respectively [35].349

Our framework is likely sensitive to how to choose the coordinate; however, in contrast to the UCM350

framework, our method enables the selection of the appropriate coordinate for discussing the relationship351

between motion and performance based on predictive power. Although we considered one-dimensional352

performance in the current study (i.e., jumping height), two-dimensional performance requires the defi-353

nition of an appropriate coordinate to discuss performance [30, 36]. Predictive power plays a vital role354

in selecting the proper coordinate not only in motion but also in the performance space [30]. How to355
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select the length of time frames is another crucial problem (Fig. 4A). In our data, the motion data with356

four-time frames (approximately 33 ms) was chosen for the best predictive power. Although the motion357

data with four-time frames sound motion fragments rather than motion sequences, our method can be358

applied independently of the length of time frames. In our case, four-time frames were chosen to increase359

the predictive power.360

Although we compared our method to UCM and GEM (Fig. 4B), we needed to compare it to the361

TNC method [13,37], the other method used to quantify motor variability from a different perspective.362

TNC enables the extraction of three types of information from motion data: T-cost, which quantifies363

how the mean motion data deviate from the optimal motion; N-cost, which quantifies how the motor364

variability deviates from the optimal variability; C-cost, which quantifies how the covariance among365

motion data deviates from the optimal covariance. Although the TNC does not consider task-relevant366

and task-irrelevant variabilities, it can quantify other interesting features (i.e., T-, N-, C-costs) embedded367

in motion data and variations of those costs during the learning process. Due to the computational cost,368

we could not apply the TCN method to our data. The TCN requires a grid search in the calculation369

of T-cost. Because the number of the grid was 200 and that of focused variables was eight in our case370

(four joint angles and angular velocities), it required 2008 calculations. Due to this too burdensome371

computational cost in calculating not only T-cost but also C-cost, we could not apply the TNC method372

to our case. When the number of focused variables is two, the TNC could be a promising method and373

work well [13,37].374

A potential extension of our method is to yield a state-space model for motor adaptation during375

whole-body movements. The state-space model was previously proposed as a model of motor adaptation376

mainly in arm-reaching movements [38-46]. In the current study, the modification of jumping height at377

the tth trial, ht − ht−1, was significantly correlated with the error, et−1, caused by perturbation and378

motor noise (in experiment 1, the correlation between ht−ht−1 and et−1 averaged across all participants379

was 0.5118 and p < 0.01 for all the participants). The state-space model of jumping height can thus be380

written as ht = ht−1 + ηet−1, where η(> 0) is the learning rate. The jumping height ht was predicted381

well by ht ≃ Xtw = Xrel,tw, which enabled us to approximately rewrite the state-space model as382

Xrel,tw = Xrel,t−1w + ηet−1. The model indicated that the jumping height was modified via modifying383

the motion sequence in the dimension alongw. Because this is a possible future extension of our approach,384

we need to further investigate the above-mentioned frameworks.385

An advantage of our method is the linearity (i.e., h = Xw) in contrast to nonlinearity inherent in our386

body dynamics. A likely explanation for why linear regression works well is by analogy with the motor387

primitive framework, a successfully used framework in motor adaptation with goal-directed arm-reaching388

movements [38-46]. In this framework, a nonlinear motor command u is modeled as the linear weighted389

sum of nonlinear neural activities A; u =
∑

i WiAi and Wi are modified to minimize the movement error390

between the actual hand position and the desired movement position. When Ai is a nonlinear function of391

the desired movement and appropriately high-dimensional, nonlinear motor commands can be generated392

by appropriate linear combinations of nonlinear neural activities, which has been theoretically validated in393

the framework of a basis function network [47]. Motion data X can be a nonlinear function of movement394

performance because our body dynamics are nonlinear. Additionally, the motion data are appropriately395

high-dimensional (32 dimensions for 1-dimensional performance). Thus, an appropriate linear summation396

Xw could predict the actual movement performance, which resulted in an appropriately estimated w397

that represented the relevance of motion elements to performance.398

We relied on a simple linear regression (i.e., ridge regression). It is possible to use a more complicated399

machine learning technique, such as a mixture model [28, 48-50], sparse regression technique [51], or non-400

linear regression technique [52]. We have shown that a nonlinear regression technique, such as Gaussian401

process regression, is not effective in predicting performance based on motion data [30], likely because the402

number of data is limited. Although sparse regression, nonlinear regression, or a mixture model can show403

better predictive performance if the number of the data is high enough in general, it is difficult to find404

9

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 14, 2018. ; https://doi.org/10.1101/339648doi: bioRxiv preprint 

https://doi.org/10.1101/339648
http://creativecommons.org/licenses/by/4.0/


certain relations between the principal components and estimated parameters via those methods. Ridge405

regression enables the determination of not only task-relevant and task-irrelevant variabilities but also406

the relevance of each PC to performance. Because some previous studies have discussed the relevance of407

each PC to performance [53,54], it could be a promising research topic to evaluate the functional roles of408

low-dimensional structured from a different viewpoint.409

To our knowledge, only a few studies have investigated how variability is modulated through motor410

adaptation [5, 33]. A previous study clarified that the variability is modulated after motor adaptation411

by utilizing a constant force field [33]. To our knowledge, it was not clarified whether the perturbation412

schedule affected the modulation. The current study suggests that the perturbation schedule changes the413

modulation of variability (Figs. 6A and B). Because the variability can facilitate exploration [33], the414

current study also suggests that constant perturbations facilitate exploration in task-relevant space and415

that gradually applied perturbations do not affect the exploration. Recent studies have suggested that416

the variability plays essential roles in sports performance [55], injury prevention [56], and the development417

of children with developmental coordination disorder [57]. The current result provides a hint about how418

to assist those functions through the facilitation of the exploration using false feedback.419

Materials and Methods420

Participants. Thirteen healthy volunteers (aged 18-22 years, two females) participated in all of our421

experiments. On the first day, the participants underwent ten practice trials and 160 baseline trials422

with pseudorandomly changing targets (40%, 45%, 50%, 55%, or 60% of the maximum jump height)423

and became accustomed to the experimental setting. At the second, third, fourth, and fifth days (not424

consecutive), they joined experiments 1, 2, and 3. They joined experiment 2 for two days. All participants425

were informed of the experimental procedures and their confirmation with the Declaration of Helsinki, and426

all participants provided written informed consent before the initiation of the experiments. All procedures427

were approved by the ethics committee of the Tokyo University of Agriculture and Technology.428

Data acquisition and processing. Jumping motions were recorded at 120 Hz using six cameras429

(Optitrack Flex 13, NaturalPoint Inc., Corvallis, Oregon). Markers were attached to the back (TV10),430

right hip joint (Femur greater Trochanter), right knee (Femur Lateral Epicondyle and Femur Medial431

Epicondyle), right heel (Fibula Apex of Lateral Malleolus and Tibia Apex of Medial Malleolus), and432

right toe (Head of 2nd Metatarsus) of the participants. Marker position data were filtered using a 12th-433

order, 10 Hz zero-phase Butterworth filter using MATLAB 2016a. Joint angles between the right toe434

and heel (q1), right heel and shank (q2), right shank and thigh (q3), and right thigh and trunk (q4)435

were calculated in the sagittal plane (Fig. 2A). Because the current study focused on a vertical jump436

while crossing arms in front of the trunk, it was possible to focus only on lower limb and trunk motions.437

Throughout the current study, we focused on the four-link model of the lower limbs in the sagittal plane.438

Release timing was detected based on the moment at which the vertical toe position exceeded 10% of439

the maximum height in each trial. The predictive power was calculated using various time-bin lengths440

including the release timing (Fig. 4A). When the time bin length was four, the fourth time frame441

corresponded to the release timing, the third time frame corresponded to one time frame before the442

release timing, and the other time frames followed accordingly.443

Experimental setup. At the beginning of each trial, the subjects were instructed to stand at a444

fixed position. In each trial, subjects listened to three beeps separated by one-second intervals; the first445

beep indicated the start of each trial, and the subjects were required to jump at the timing of the third446

beep.447

We measured the position of the marker attached to the subject’s back using MATLAB at 30 Hz. In448

front of the subject (1.5 meters ahead, 1.7 meters above the floor), there was a monitor to display a blue449

cursor that indicated the height of the marker attached to subject’s back and a black bar that indicated450

target height (Fig. 2B). Those cursors and bars were displayed one second before the first beep sounded.451
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The blue marker could move only in the vertical axis because the current study focused on the vertical452

height of the jumping motion. The marker position at time s in the y-axis (Fig. 2A), ks, was displayed453

on the monitor after being normalized for each subject as ks =
k̂s−k0

kmax−k0
, where k̂s is the marker position454

without normalization, k0 indicates the initial marker position that was evaluated at an upright standing455

position in each trial, and kmax indicates the jumping height with maximum effort in each subject (Fig.456

2C). For the two trials that required the subjects to jump with maximum effort, there was no cursor457

feedback. One second before the first beep, ks = 0, the blue circle was displayed on the black baseline on458

the monitor. Additionally, the target height d was indicated by a black line. Before the baseline trials,459

the subjects underwent ten practice trials. In those trials, the marker position in each time frame was460

displayed on the monitor and d was pseudorandomly chosen from 0.40, 0.45, 0.50, 0.55, or 0.60 (each461

value was randomly chosen only once in every five trials). This method enabled the subjects to become462

acquainted with the experimental setting by confirming the motion trajectory of the marker attached to463

their back. In baseline trials, the marker position was displayed only at the start and end of each trial.464

One second before the first beep, the cursor was displayed on baseline position, and a black line was465

corresponding to d was displayed as pseudorandomly chosen from 0.40, 0.45, 0.50, 0.55, or 0.60. At the466

end of each trial, the cursor was displayed at the maximum value of ks within each trial (i.e., max ks),467

which indicated jumping height (Fig. 2B). When the subjects achieved a jumping motion that was close468

to the target height (|d−max ks| < 0.02), they heard a coin-getting sound to indicate that the jumping469

motion was successful. After the baseline trials, the subjects underwent 96 learning trials in experiment470

1, 30 trials in experiment 2 (the same set of practice and main trials was imposed for two days), and 45471

trials in experiment 3.472

We utilized a perturbation paradigm to investigate how subjects modify their jumping motion via473

experiencing sensory prediction errors. For trials with perturbation p, the position of the cursor was474

displayed at max ks + p. The subjects needed to modify their jumping motion to achiever a lower (when475

p > 0) or higher jumping height (when p < 0). When the displayed jumping height was close to the476

target height (|d − (max ks + p)| < 0.02), the subjects heard a coin-getting sound to indicate that the477

jumping motion was successful.478

Task-relevant and task-irrelevant variabilities Under the condition X = Xrel+X irr (see Results479

for details), the variance of the ith component of X, Xi, can be calculated as480

Var(Xi) =
1

T

T∑
t=1

X2
i,t =

1

T

T∑
t=1

(Xrel
i,t +X irr

i,t )
2 = Var(Xrel

i ) + Var(X irr
i ) + 2Cov(Xrel

i , X irr
i ), (4)

whereXi,t isXi at the tth trial, Xrel
i,t is the ith component ofXrel at the tth trial, X irr

i,t is the ith component481

of X irr at the tth trial, and Cov(Xrel
i , X irr

i ) is the covariance between Xrel
i and X irr

i . Notably, in the482

current experimental setting, Cov(Xrel
i , X irr

i ) in the analyzed trials was close to 0. We thus considered483

only Var(Xrel
i ) and Var(X irr

i ).484

Ridge regression The ridge regression enabled us to determine the best one-dimensional linear space485

w ∈ RD×1 in the input data X ∈ RT×D to predict the output data y ∈ RT×1 by minimizing the cost486

function:487

E =
1

2
(y −Xw)T (y −Xw) +

λ

2
wTw. (5)

The first term on the right-hand side indicates the fitting error, the second term indicates the regulariza-488

tion ofw, and λ is a regularization parameter. The current study determined λ to minimize the prediction489

error based on a 10-fold cross validation, which enabled us to avoid overfitting [28]. Overfitting, which490

can appear without any regularization, leads to the selection of a model that is more complicated than491

the true one. Minimization of the cost function concerning w leads to the optimal value for w:492

w∗ =
(
XXT + λI

)−1

XTy, (6)
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where I was an identity matrix. When XXT has multicollinearity, it is difficult to calculate the inverse493

of XXT because of the rank deficit. The identity matrix with a regularization parameter λ enables to494

calculate the inverse of XXT + λI and predict output data with a certain accuracy.495

The ridge regression showed high prediction power under the existence of measurement noise in X.496

Under the existence of measurement Gaussian noise ξ with a mean of 0, the standard deviation is σo,497

covariance is 0, and the cost function averaged across all the possible noise can be written as498

⟨E⟩ = 1

2
(y −Xw)T (y −Xw) +

σ2
o

2
wTw. (7)

The equivalence between equations (5) and (7) indicates that the ridge regression enabled the selection of499

the best w to predict y under the existence of measurement noise while avoiding overfitting. The equiv-500

alence also suggests that the regularization parameter λ corresponds to the variance of the observation501

noise σ2
o .502

The ridge regression enabled the estimation of an appropriate w based on the normalized y and X,503

i.e., the mean and standard deviation of y and X should be normalized to be 0 and 1, respectively;504

1
T

∑T
t=1 yt = 0, 1

T

∑T
t=1 y

2
t = 1, 1

T

∑T
t=1 Xi,t = 0, and 1

T

∑T
t=1 X

2
i,t = 1 (d = 1, ..., D). All the results in505

the current study depended on the normalized data. Without normalization, wi is estimated to be large506

when Xi,t shows small fluctuations and vice versa, although regularization with parameter λ was imposed507

equally to all the wi; therefore, normalization, especially in X, is indispensable for estimating appropriate508

w. Notably, the normalization did not affect interpretation at all because it was possible to restore the509

original unnormalized data by adding the original mean mi = 1
T

∑
t=1 X

original
i,t and multiplying the510

original standard deviation σi =
√

1
T

∑
t=1(X

original
i,t )2 −m2

d. To satisfy
∑D

i=1 wiXi,t =
∑D

i=1 w̃iX
original
i,t ,511

w̃, where w corresponds to unnormalized data, should be divided by σi (w̃i =
wi

σi
) and

∑D
i=1 w̃imi should512

be subtracted. In total, the normalization is indispensable for estimating an appropriate w; however, it513

did not affect the results at all.514

Parabolic representation of jumping height, three candidates of input data, the UCM515

and GEM The vertical position of the marker attached to the subject’s back determined the jumping516

height in the current study. We expected that the jumping height could be predicted well based on the517

back position p and velocity v of the marker at the release timing as follows518

h = p+
v2

2g
, (8)

where g ≃ 9.8(m/s2). In the joint angle representation, p and v were written as follows:519

p =
4∑

i=1

li sin qi (9)

and520

v =
4∑

i=1

liq̇i cos qi, (10)

where li indicated the length of the ith limb (i.e., l1 indicated the length between right toe and heel, l2521

indicated the length between right heel and knee, l3 indicated the length between right knee and hip, and522

l4 indicated the length between hip and back). In the UCM (blue crosses in Fig. 4B), we calculated the523

task-relevant and task-irrelevant variabilities based on equations (9) and (10).524

Using the equations (9) and (10), the predicted jumping height h can be written as525

h =

4∑
i=1

li sin qi +
1

2g

4∑
i=1

4∑
j=1

lilj q̇iq̇j cos qi cos qj . (11)
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The first candidate input data for the ridge regression were the joint angles and angular velocities (blue526

line in Fig. 4A). The second candidate data were the functions in the forward kinematics of the position527

and velocity of the hip joint (equations (9) and (10), red line in Fig. 4A). The third candidate data were528

the functions that appeared in equation (11) (orange line in Fig. 4A). In GEM (blue crosses in Fig. 4B),529

we calculated the task-relevant and task-irrelevant variabilities based on equation (11).530

Relation between ridge regression and principal component analysis It was possible to531

analytically determine the relation between the ridge regression and principal component analysis (PCA)532

by decomposing X using singular value decomposition (SVD), X = UDV T , where U ∈ RT×T is an533

orthogonal matrix, D ∈ RT×D includes the square root of the ith eigenvalue of XTX at (i, i) element534

and Di,j = 0 when i ̸= j, and V ∈ RD×D is an orthogonal matrix. Using the SVD and equation (6), the535

predicted output ht can be written as536

ht = Xtw
∗ = UD(DTD + λI)−1DTUTy =

min(T,D)∑
i=1

λ2
i

λ2
i + λ

Corr(Xvi,y)ui,t, (12)

where min(T,D) determines the rank ofX, λ2
i is an eigenvalue ofXTX, Corr(·, ·) indicates the correlation537

between two vectors, vi is the eigenvector of XTX corresponding to λ2
i , and ui,t is the (i, t) component538

of U . On the other hand, PCA enables the decomposition of Xt as539

Xt =

min(T,D)∑
i=1

λiui,tvi. (13)

This equation indicates that the motion data can be decomposed into eigenvectors (principal components)540

with weight λiui,t. By comparing equations (12) and (13), the ridge regression enables the prediction541

of output data by weighting based on the ith eigenvector with weight
λ2
i

λ2
i+λ

ui,t (notably,
λ2
i

λ2
i+λ

was a542

monotonic function concerning λi). An important difference between PCA and the ridge regression is543

whether the task relevance of the ith eigenvector, Corr(Xvi,y), should be considered. Although PCA544

relies only on the eigenvalue, the ridge regression considers both (nonlinearly transformed) eigenvalue and545

task relevance. The ridge regression could thus be considered an extended version of PCA to determine546

how each principal component is relevant to the task.547

In PCA, we found the relation between the explained variance and prediction power to be as fol-548

lows: at a z% explained variance, we determine the number of principal components based on nz =549

minn
∑n

i=1 λ2
i∑min(T,D)

i=1 λ2
i

> z
100 (i.e., the minimum number of principal components that exceed z% explained550

variance). After determining nz, motion data can be reconstructed as X̃t =
∑nz

i=1 λiui,tvi. We then551

multiply
∑nz

i=1 v
T
i by the X̃t from the right-hand side, resulting in ỹt = X̃t

∑nz

i=1 v
T
i =

∑nz

i=1 λiui,t.552

Finally, we calculate the correlation between observed jumping height yt and ỹt in Figs. 4D-4F.553
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Figure legends681

Figure 1. The concept of our method. A: An example of decomposing input data X into task-relevant682

Xrel and task-irrelevant components X irr. In this case, we assumed that the task 1 required X1 −X2 to683

be 2 (green line), task 2 required X1 −X2 to be 0 (red line), and task 3 required X1 −X2 to be -2 (blue684

line). Green, red, and blue dots indicate the typical input data for tasks 1, 2, and 3, respectively. In the685

ridge regression, these tasks can be achieved with w1 = 1 and w2 = −1, i.e., h = w1X1+w2X2 = X1−X2686

should be determined differently in each task. B: The input data were decomposed into a task-relevant687

(black dotted line) component Xrel = XwwT /|w|2 and a task-irrelevant component X irr = X −Xrel688

(solid black line). Xrel was separated depending on the task, and X irr was not separated, which indicates689

that the decomposition enables the discussion of the task-relevant and task-irrelevant components.690
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Figure 2. Summary of our experimental settings. A: Participants were instructed to perform a691

vertical jump at the timing of the third beep. Three beeps sounded at one-second intervals. We measured692

and analyzed joint angles at toe, ankle, knee, and hip in the sagittal plane. The jumping height was693

measured based on the position of the marker attached to the back in the y-axis. B: Task instruction694

and feedback information in each trial. A computer monitor was located in front of the participants (1.5695

meters ahead, 1.7 meters above the floor). One second before the first beep, target height (indicated by696

black bar and texts [e.g., 50% max]), baseline height (indicated by black bar), and initial position (shown697

by blue cursor located on the baseline height) were displayed. When the target height was 60%, the black698

bar and text were presented at the position of the higher black dotted bar. When the target height was699

40%, the black bar and text were displayed at the location of the lower black dotted bar. These black700

dotted bars were used only for the explanation and were not visible throughout the experiments. In the701

practice trials, the blue cursor was displayed during trials to continuously indicate the position of the702

marker attached to the back in the y-axis. These trials enabled the participants to become accustomed to703

the experimental setting. In baseline and learning trials, the blue cursor was displayed at the beginning704

and end of each trial. At the beginning of each trial, the blue cursor was presented at the baseline height.705

At the end of each trial, the cursor was displayed depending on the actual jumping height. When the706

jumping height was close to the target height, the participants heard a coin-getting sound. During the707

experiments, the subjects were provided with the current trial number and the number of successful trials.708

C: The sequence of the experiments. Participants performed a vertical jump with maximum effort for709

two trials. These jumping heights were used to determine the target height. Participants experienced710

20 practice trials, 50 baseline trials, and a number of learning trials specific to each experiment. D:711

Averaged jumping height of each participant in the baseline trials in experiment 1. The jumping height712

depended on the target height (one-way repeated measure ANOVA, p = 6.114×10−24), indicating that713

the participants could perform the goal-directed movement.714

Figure 3. Diagram and results of experiment 1. A: Target height in baseline and learning trials.715

Cyan and magenta circles indicated the trials with perturbations. B: Perturbation sequence. The cyan716

circle indicates the trials with p=0.05, and the magenta circle indicates those with p = −0.05. The717

perturbations were pseudorandomly imposed once in five trials. C: Adaptation effect. The vertical line718

indicates the modification of the jumping height after the perturbation was imposed. Magenta dots719

indicate the averaged difference in each subject corresponding to the perturbation p = −0.05, and cyan720

dots indicate the averaged difference in each subject corresponding to the perturbation p = 0.05.721

Figure 4. Validation of our method and comparison to previous methods. A: Predictive power of the722

ridge regression using three kinds of input data. Horizontal and vertical axes indicate the time bin length723

used for the ridge regression and squared prediction error, respectively. If the ridge regression could not724

make a prediction, the prediction error equaled 1. If the ridge regression could predict the output data725

perfectly, the prediction error equaled 0. These results indicate that ridge regression enables the prediction726

of output data with an 82.6±2.28% (mean ± s.e.m., N=13) accuracy. B: Evaluation of task-relevant and727

task-irrelevant variabilities. Red dots indicate those variabilities evaluated by our method in each subject728

(N = 13). Blue and green crosses indicate the variabilities evaluated by the UCM and GEM, respectively.729

Our method uses a different normalization method from those of the UCM and GEM. C: Correlation730

between predicted and actual jumping height. The red line and the shaded area indicate the mean and731

standard error of the mean (s.e.m.) of the correlation in ridge regression (N = 13), respectively. The732

blue line and shaded area indicate the mean and s.e.m. of the correlation in PCA (N = 13), respectively.733

Horizontal and vertical axes indicate the explained variance or the corresponding number of principal734

components and the correlation, respectively. D: Explained variance and the correlation between the735

predicted and actual jumping height of each principal component. The red line and the shaded area736

indicate the mean and s.e.m. of the correlation (N = 13), respectively. The blue line and the shaded area737

indicate mean and s.e.m. of the variance explained (N = 13), respectively. E: Variance explained and738

the correlation between the predicted and actual jumping height of each principal component in a typical739
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subject. The red and blue lines indicate the correlation and the variance explained, respectively. F: The740

PC number that is most relevant to predicting jumping height. Horizontal and vertical axes indicate the741

subject number and the most relevant PC number, respectively.742

Figure 5. Diagram and results of experiments 2 and 3. A,D: Target height in baseline and learning743

trials. Blue and red circles indicate the trials with perturbations. B,E: Perturbation sequence. Subjects744

joined experiment 2 for two days and experienced two different perturbations (either p > 0 or p < 0). The745

order of perturbation was counterbalanced across subjects. In experiment 3, subjects experienced both746

positive and negative perturbations within one day. Although panel E showed the case when a negative747

perturbation followed a positive one, the order of the perturbation was counterbalanced across subjects.748

C,F: Learning curves. The thin solid lines indicate the learning curves of each subject. The bold solid749

line indicates the learning curve averaged across all subjects.750

Figure 6. Application of our method to the results of experiments 2 and 3. A: Task-relevant751

variabilities of each subject (N = 13) before and after adaptation to perturbation in experiments 2 and752

3. The blue and red dots indicate the variability of each subject in experiments 2 and 3, respectively.753

The blue and red lines show the modulation of the variability due to adaptation. The blue and red754

bars indicate the averaged variability across all subjects. There was a significant difference between the755

variabilities before the adaptation and those after the adaptation in experiment 3 (Wilcoxon signed rank756

test, p = 0.0034). B: Task-irrelevant variabilities of each subject (N = 13) before and after adaptation757

to perturbation in experiments 2 and 3. C,D: Interpretation of our results based on a simple example.758

We assume that the task before adaptation required X1 −X2 to be 2 and that the task after adaptation759

required X1 − X2 to be -2. Panel C indicates an interpretation of our results in experiment 2. In760

experiment 2, there was no modulation in both task-relevant and task-irrelevant variabilities. Panel D761

suggests an explanation of our findings from experiment 3. In the experiment, task-relevant variabilities762

increased after adaptation, and task-irrelevant variabilities remained unchanged.763
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