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Abstract 44 
 45 
Abundant pollinators are often more generalised than rare pollinators. This could be because 46 
abundance drives generalisation: neutral effects suggest that more abundant species will be 47 
more generalised simply because they have more chance encounters with potential interaction 48 
partners. On the other hand, generalisation could drive abundance, as generalised species could 49 
have a competitive advantage over specialists, being able to exploit a wider range of resources 50 
and gain a more balanced nutrient intake. Determining the direction of the abundance-51 
generalisation relationship is therefore a ‘chicken-and-egg’ dilemma. Here we determine the 52 
direction of the relationship between abundance and generalisation in plant-hummingbird 53 
pollination networks sampled from a variety of locations across the Americas. For the first time 54 
we resolve the direction of the abundance-generalisation relationship using independent data 55 
on animal abundance. We find evidence that hummingbird pollinators are generalised because 56 
they are abundant, and little evidence that hummingbirds are abundant because they are 57 
generalised. Additionally, a null model analysis suggests this pattern is due to neutral 58 
processes: most patterns of species-level abundance and generalisation were well explained by 59 
a null model that assumed interaction neutrality. These results suggest that neutral processes 60 
play a key role in driving broad patterns of generalisation in animal pollinators across large 61 
spatial scales. 62 
 63 
Keywords: generalisation, hummingbirds, mutualism, mutualistic networks, plant-animal 64 
interactions, pollination, specialisation  65 
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Introduction 88 
 89 
Pollination and other mutualistic associations are crucial for the functioning and maintenance 90 
of ecological communities (Heithaus 1974, Rech et al. 2016, Ollerton 2017, Ratto et al. 2018). 91 
A common phenomenon in mutualistic communities is that more abundant species tend to have 92 
more generalised interaction niches, interacting with a greater number of partners than rare 93 
species (Dupont et al. 2003, Vázquez and Aizen 2003, Olesen et al. 2008). Thus, abundant 94 
species are often ‘ecological’ generalists (Ollerton et al. 2007). However, the direction of the 95 
relationship between abundance and generalisation has been described as a ‘chicken-and-egg’ 96 
dilemma as there are valid a priori explanations for both directions (Fort et al. 2016, Dormann 97 
et al. 2017). For example, high abundance could lead to high generalisation simply due to 98 
neutral effects: more abundant species have a higher likelihood of encountering a greater 99 
number of potential interaction partners than rarer species (Vázquez et al. 2007, 2009, Poisot 100 
et al. 2015). Additionally, pollinators have been observed to increase their generalisation when 101 
at high densities: in a given area, higher species abundance leads to greater conspecific 102 
competition for the available resources, resulting in increased generalization as predicted by 103 
optimal foraging theory (Fontaine et al. 2008, Tinoco et al. 2017). Conversely, high 104 
generalisation could lead to high abundance. For example, the wider diet breadth of generalist 105 
individuals could be advantageous in communities with high levels of variability or species 106 
turnover where flexibility is beneficial (Waser et al. 1996, CaraDonna et al. 2017). Such 107 
‘portfolio effects’ allow a mutualist to receive a more stable benefit over time despite having 108 
partners with asynchronous dynamics or different performance trade-offs (Batstone et al. 109 
2018). Generalisation can also provide a better nutrient balance (Tasei and Aupinel 2008, 110 
Behmer 2009, Vaudo et al. 2015), improve species’ pathogen resistance (Alaux et al. 2010, Di 111 
Pasquale et al. 2013) and afford functional redundancy that buffers against partner extinction 112 
(Biesmeijer et al. 2006). In a recent review by Batstone et al. (2018), the authors argue that 113 
generalisation in mutualisms can have a selective advantage over specialisation for many 114 
reasons. These include sampling effects, where generalisation increases the likelihood that a 115 
given mutualist will sample the most beneficial partner (for example, Albrecht et al. 2012), and 116 
complementarity, where a given mutualist benefits from having diverse partners that occupy 117 
different niches, but provide the same rewards via different mechanisms. Therefore, 118 
generalization may confer advantages to specific pollinators, resulting in higher abundances. 119 
 120 
Here we evaluate the direction of the abundance-generalisation relationship in plant-121 
hummingbird pollination networks and use a null model to assess the extent to which observed 122 
patterns of species-level generalisation can be explained by neutral effects. We focus on 123 
hummingbird species, rather than plants, as plants may have non-hummingbird mutualistic 124 
partners not included in our data that could result in misleading estimates of generalisation 125 
(Dalsgaard et al. 2008). Plant-hummingbird interactions are a particularly interesting model 126 
system to answer these questions as they involve species spanning the entire specialisation-127 
generalisation spectrum (Bleiweiss 1998, Martín González et al. 2015, Dalsgaard et al. 2018) 128 
and recent studies suggest that abundance has little influence on network structure compared 129 
to morphological trait matching (Maruyama et al. 2014, Vizentin-Bugoni et al. 2014, 2016, 130 
Weinstein and Graham 2017, though see Bergamo et al. 2017 and Dalsgaard et al. 2018). 131 
Understanding the processes governing specialisation and generalisation can also contribute to 132 
explaining the high diversity of sympatric hummingbird species as niche partitioning can play 133 
a role in species coexistence, thus it may also add to the explanation why there are so many 134 
species in the tropics (Dalsgaard et al. 2011). Additionally, pollination by vertebrates is 135 
important, especially in the tropics (Bawa 1990, Vizentin-Bugoni et al. 2018), and is on average 136 
responsible for 63% of fruit or seed production in vertebrate-pollinated plants (Ratto et al. 137 
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2018). Therefore, understanding the abundance-generalisation relationship in vertebrate 138 
pollinators such as hummingbirds has important implications for understanding the processes 139 
maintaining tropical plant and vertebrate communities. While previous attempts to resolve the 140 
abundance-generalisation chicken-and-egg dilemma have used species’ interaction frequency 141 
as a proxy for animal abundance (Fort et al. 2016), which can lead to biased conclusions 142 
(Vizentin-Bugoni et al. 2014), here we use independent animal abundance estimates. This is 143 
an important advance because all 35 pollination and seed dispersal networks analysed by Fort 144 
et al (2016) used estimates of animal abundance based on the interaction network data, and the 145 
authors had direct measures of plant abundance for only 29% of networks. By their own 146 
admission, “These animal abundance data are arguably limited, as they are not independent 147 
from the interactions; but these are the best data available to evaluate our question.” 148 
Conversely, ours is the first study where we have estimates of plant and animal abundance 149 
independent from the interaction observations for the majority of networks. This study also 150 
represents a significant methodological advance for resolving the chicken-and-egg dilemma. 151 
While Fort et al (2016) classified species’ abundance and generalisation using either strict 152 
thresholds or parametric fuzzy logic methods which assume linearity, our approach makes no 153 
such assumptions about the distributions of the data and uses the data’s full continuous range 154 
without the use of thresholds. We find evidence of a unidirectional relationship with 155 
hummingbird abundance driving hummingbird generalisation. Importantly, a null model 156 
assuming neutrality of interactions closely matched most empirical results. This suggests that 157 
neutral effects have an important role in structuring broad patterns of species-level 158 
generalisation, even in a system such as plant-hummingbird pollination networks where 159 
phenotypical matching has a strong influence on the occurrence of pairwise interactions among 160 
species. 161 
 162 
Material and Methods 163 
 164 
Dataset 165 
 166 
We assembled a database of plant-hummingbird pollination networks with complementary 167 
information on hummingbird and plant abundance. In total we gathered 19 quantitative 168 
networks, where link weights represent the number of observed hummingbird visits to plants. 169 
In total, the database contained 103 hummingbird species and 403 plant species. For each of 170 
the 19 networks, hummingbird abundances were quantified as the mean number of individuals 171 
per species either recorded along transect counts within the sampling plots or caught using mist 172 
nets (Appendix 1). For four networks where species were not recorded within the sampling 173 
plots during transect counts or mist netting, we used frequency of occurrence (the proportion 174 
of days of fieldwork in which a given species was recorded) as a proxy for relative abundances, 175 
as both measures are strongly correlated and frequency of occurrence is still independent from 176 
the network data (Vizentin-Bugoni et al. 2014). To test whether these four networks affected 177 
our results, we repeated all analyses excluding these data (Appendix 2). Plant abundances were 178 
quantified along transect counts or inside plots within the study areas and summarized as the 179 
number of flowers per species recorded over the sampling period. Species abundances and 180 
interactions were quantified several times (typically, monthly) over at least a complete annual 181 
cycle in each community. Further details of each network are given in Appendix 1. 182 
 183 
Measures of generalisation 184 
 185 
We calculated the level of generalisation of all hummingbird species in all networks. To assess 186 
the sensitivity of our results to the choice of generalisation metric, we measured generalisation 187 
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in three ways. First, species degree, which is simply the number of plant species a given 188 
hummingbird species interacts with. Second, normalised degree, which is equal to a species’ 189 
degree divided by the total number of possible partners. Third, a generalisation index g, based 190 
on a widely used species-level measure of specialization (d¢) that quantifies the extent to which 191 
a species deviates from a random sampling of its available interaction partners (Blüthgen et al. 192 
2006). We calculated d¢ using independent abundance data. To ensure that higher values of d¢ 193 
corresponded to higher levels of generalisation, we calculated the standardised generalisation 194 
index g, defined as 1-d¢/d¢max where d¢max is the maximum possible value of d¢ (Fort et al. 2016). 195 
d¢ and d¢max were calculated using the ‘dfun’ function in the ‘bipartite’ R package (Dormann et 196 
al. 2009). 197 
 198 
General approach 199 
 200 
First, we tested whether there was a relationship between hummingbirds’ abundance and their 201 
level of generalisation using three linear mixed effects models, one for each generalisation 202 
metric. The generalisation metric was the response variable, with log(abundance) as a fixed 203 
effect and species and network identity as random effects. A Poisson distribution was used for 204 
the model with degree as the response variable, a binomial distribution was used for the model 205 
with normalised degree as the response variable (with weights equal to the maximum degree 206 
of each species) and a Gaussian distribution was used for the model with g as the response 207 
variable. Mixed effects models were fitted using the ‘lme4’ R package (Bates et al. 2015) and 208 
the significance of fixed effects was calculated using Wald c2 tests available in the ‘Anova’ 209 
function of the ‘car’ R package (Fox and Weisberg 2002). We calculated both the marginal 210 
R2(G)LMM(m), which represents the variance explained by fixed effects, and the conditional 211 
R2(G)LMM(c), which represents the variance explained by both fixed and random effects 212 
(Nakagawa and Schielzeth 2013, Emer et al. 2016, Kaiser-Bunbury et al. 2017, Bartoń 2018). 213 
 214 
Having established that there is a relationship between abundance and generalisation, we used 215 
the approach of Fort et al. (2016) to determine whether abundance drives generalisation or 216 
generalisation drives abundance. This approach uses formal logic, specifically material 217 
implication, to derive expectations for broad species-level patterns of abundance and 218 
generalisation in ecological communities. To explain the approach, it is useful to consider a 219 
simple example. Consider the proposition, P, “if it is a dodo, it is extinct”. P is made up of two 220 
statements: (i) “it is a dodo” and (ii) “it is extinct”. Given that each of these statements can 221 
either be true or false, we can derive four possible outcomes, as shown in Table 1. Outcome A 222 
is a dodo that is extinct. Outcome B is a non-dodo that is not extinct, such as the hummingbird 223 
species Amazilia versicolor. Outcome C is a non-dodo that is extinct, such as the dinosaur 224 
species Tyrannosaurus rex. Finally, outcome D is a dodo that is not extinct. We can only refute 225 
the proposition “if it is a dodo, it is extinct” when we observe outcome D to be true; that is, if 226 
we observe a living dodo. Conversely, observing an extinct dodo, an extant Amazilia versicolor 227 
individual, or an extinct T. Rex specimen are all consistent with P.  228 
 229 
There are four possible outcomes when applying this to the abundance-generalisation chicken-230 
and-egg dilemma: abundant generalists, rare generalists, abundant specialists and rare 231 
specialists (Table 1). We can therefore derive two hypotheses: 232 
 233 

1. If abundance implies generalisation, there should be no species which are abundant and 234 
specialist (outcome D: living dodos); we would only expect to observe abundant 235 
generalists (outcome A: extinct dodos), rare specialists (outcome B: a living Amazilia 236 
versicolor) and rare generalists (outcome C: extinct T. Rex).  237 
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2. If generalisation implies abundance, there should be no generalist species that are rare; 238 
we would only expect to observe rare specialists, abundant specialists and abundant 239 
generalists.  240 

 241 
Therefore, by calculating the proportion of hummingbird species in each of the four abundance-242 
generalisation categories (rare specialists, abundant specialists, rare generalists and abundant 243 
generalists), it is possible to test these two hypotheses and determine whether the relationship 244 
between hummingbird abundance and generalisation is unidirectional (Fort et al. 2016). 245 
Particularly it is important to look at the proportion of rare generalists and abundant specialists: 246 
if hypothesis 1 is correct, there should be few abundant specialists; if hypothesis 2 is correct, 247 
there should be few rare generalists. 248 
 249 
Abundance and generalisation classification 250 
 251 
To calculate the proportion of hummingbird species in each abundance-generalisation 252 
category, we developed a novel methodology to classify each species in a community as either 253 
rare or abundant and as either specialist or generalist. As mentioned above, this improves on 254 
Fort et al’s (2016) methodology by making no assumptions about the distributions of the data 255 
and by using the data’s full continuous range without the use of thresholds. For each network, 256 
we first rescaled the abundance and generalisation values of all hummingbird species to range 257 
between 0 and 1 according to (x – xmin)/(xmax – xmin), where xmin and xmax are the minimum and 258 
maximum values of abundance or generalisation (Aizen et al. 2012). These values represent 259 
the probability with which a species would be classified as abundant or generalist. Next, we 260 
sampled a random value from a uniform distribution between 0 and 1. If a species’ rescaled 261 
abundance or generalisation was greater than or equal to this value, it was classified as 262 
abundant or generalist, respectively. If it was less than this value, it was classified as rare or 263 
specialist, respectively. Therefore, a species with a rescaled abundance of 0.2 would have a 264 
20% probability of being classified as abundant in a given iteration. Similarly, a species with 265 
a rescaled abundance of 0.8 would have an 80% probability of being classified as abundant. 266 
This was repeated 1000 times. The mean proportion of species in each of the four abundance-267 
generalisation categories was then calculated. This was repeated for each of the three 268 
generalisation metrics. 269 
 270 
Null model analysis 271 
 272 
To assess the extent to which our results could be explained purely by neutral effects, we used 273 
a null model to generate 1000 randomised versions of each empirical network. The null model 274 
assumed interaction neutrality by assigning interactions according to a probability matrix, A, 275 
where element aij was the relative abundance of hummingbird species i multiplied by the 276 
relative abundance of plant species j (Vázquez et al. 2007, Maruyama et al. 2014, Vizentin-277 
Bugoni et al. 2014, 2016). Therefore, the model assumes that two species with high abundance 278 
have a greater likelihood of interacting than two species with low abundance. The model 279 
constrained the number of links and ensured that each species had at least one interaction 280 
(Vázquez et al. 2007). We used independent plant and hummingbird abundance data to create 281 
the null networks, rather than relying on species marginal totals as a proxy for abundance. For 282 
each of the 1000 null versions of each of the 19 empirical networks, we repeated the 283 
permutational analysis described above (‘Abundance and generalisation classification’) to 284 
calculate the mean proportion of species in each of the four abundance-generalisation 285 
categories predicted by the neutral model. We then compared these proportions based on 286 
neutrality to the empirical proportions: if the empirical proportions were within the 95% 287 
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confidence intervals of the null model proportions then there were no significant differences 288 
between the null model and the observed values. 289 
 290 
Results 291 
 292 
We confirmed the positive relationship between abundance and generalisation in our dataset, 293 
finding a significant correlation between abundance and generalisation for degree (Wald test: 294 
c2 = 216.44; df = 1; P = < 0.001; R2GLMM(m) = 0.55; R2GLMM(c) = 0.79), normalised degree (Wald 295 
test: c2 = 232.1; df = 1; P = < 0.001; R2GLMM(m) = 0.26; R2GLMM(c) = 0.37) and the generalisation 296 
index g (Wald test: c2 = 10.7; df = 1; P = 0.001; R2LMM(m) = 0.06; R2LMM(c) = 0.44). 297 
 298 
Only a small proportion of species were abundant and specialist for all three generalisation 299 
metrics (Figure 1). Conversely, the proportion of species that were rare and generalist was 300 
consistently larger, particularly for the g generalisation metric. These differences were 301 
significant: the proportion of species that were rare and generalist was significantly higher than 302 
the proportion which were abundant and specialist for degree (t = 2.92, df = 18, p = 0.009), 303 
normalised degree (t = 2.91, df = 18, p = 0.009) and g (t = 10.34, df = 18, p = < 0.001) (Figure 304 
1). Overall, these findings support hypothesis 1, that abundance drives generalisation, and do 305 
not support hypothesis 2, that generalisation drives abundance. 306 
 307 
The proportion of species in each of the four abundance-generalisation categories predicted by 308 
the neutrality null model closely matched the empirical proportions, particularly for degree and 309 
normalised degree where there were no significant differences between observed and predicted 310 
proportions for the majority of networks (68–84% of networks; Figure 2). For g, the model 311 
correctly predicted the proportion of rare specialists and generalists for 79% of networks, but 312 
performed less well in predicting the proportion of abundant specialists and generalists, with 313 
predictions matching observed values for only 47% of networks (Figure 2). 314 
 315 
All results were qualitatively the same and conclusions identical after the exclusion of the four 316 
networks where we used frequency of occurrence (the proportion of days of fieldwork in which 317 
a given species was recorded) as a proxy for relative abundances (Appendix 2). 318 
 319 
Discussion 320 
 321 
Our analysis of numerous plant-hummingbird communities sampled widely across the 322 
Americas support the hypothesis that abundance drives species-level generalisation, and 323 
provide little evidence that generalisation drives species abundance. These results can be 324 
discussed in the context of sufficient and necessary conditions from formal logic. If we say that 325 
P is a necessary condition for Q, then in the absence of P there is also an absence of Q. For 326 
example, sitting the exam is a necessary condition for getting an A grade. If a student does not 327 
sit the exam, they will not get an A grade. Similarly, if a student is awarded an A grade, they 328 
must have sat the exam. However, if P is a sufficient condition for Q, then if we have P, Q must 329 
follow. For example, obtaining full marks on every exam question is a sufficient condition for 330 
getting an A grade in the exam. Therefore, if a student gets full marks on every question, they 331 
will get an A grade. However, getting full marks on every question is not a necessary condition 332 
for getting an A grade: it is possible to get an A without achieving full marks on all questions. 333 
Similarly, sitting the exam is not a sufficient condition for getting an A grade: it is possible to 334 
sit the exam and not get an A. Our results suggest abundance is a sufficient condition for 335 
generalisation as, if a species is abundant, it tends to also be a generalist. However, it is not a 336 
necessary condition as species can be generalist without being abundant. Conversely, our 337 
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results suggest generalisation is a necessary condition for abundance as, if a species is a 338 
specialist, it tends to be rare. However, it is not a sufficient condition for abundance as, if a 339 
species is a generalist, this does not mean it is abundant. Therefore, our results agree with those 340 
of Fort et al. (2016) using pollination and seed dispersal networks, suggesting that abundance 341 
driving generalisation may be a general phenomenon that can be observed in mutualistic 342 
systems. 343 
 344 
In all ecological studies it is worth asking whether sampling effort may impact the results. This 345 
is also the case for studies of species interaction networks, as sampling effects can influence 346 
the observed network structure (Fründ et al. 2016, Jordano 2016, Vizentin-Bugoni et al. 2016, 347 
Dalsgaard et al. 2017). Sampling is likely to result in missed detections of interactions for rare 348 
species, resulting in an underestimation of how generalised rare species are (Blüthgen 2010, 349 
Dorado et al. 2011). For this reason,  Dormann et al. (2017) described sampling rare species 350 
with high generalisation as “impossible”. This means that our results are unlikely to be a 351 
function of sampling effects, as the proportion of rare generalist species we observe is likely 352 
less than the true proportion: under theoretical perfect sampling, we would likely observe a 353 
larger proportion of species which are rare generalists, reinforcing our results (Dorado et al. 354 
2011). Furthermore, sampling effects are likely to overestimate the proportion of species that 355 
are rare specialists as, even when rare species are observed, they are unlikely to be observed 356 
on all the plants they visit. This suggests that sampling effects will cause the generalisation 357 
level of rare species to be underestimated, and that consequently some species classified as rare 358 
specialists may actually be rare generalists (Blüthgen 2010, Dorado et al. 2011). Sampling 359 
effects are therefore not likely to impact our conclusions, because with perfect sampling we 360 
would expect the proportion of rare generalists to increase and the proportion of rare specialists 361 
to decrease, further increasing support for hypothesis 1 (many rare generalists, few abundant 362 
specialists) and refuting hypothesis 2 (few rare generalists, many abundant specialists). 363 
Additionally, we would not expect sampling artefacts to explain the low proportion of species 364 
which were abundant specialists because sampling effects tend to come from missing links for 365 
rare species rather than abundant species (Blüthgen 2010, Dorado et al. 2011, Fort et al. 2016). 366 
 367 
A frequent interpretation of the abundance-generalisation relationship is that abundant species 368 
are more generalised due to neutral effects; that is, they are more likely to encounter a greater 369 
number of interaction partners than less abundant species by chance alone (Vázquez et al. 370 
2007). Our null model analysis supports this interpretation, particularly for degree and 371 
normalised degree: we found that the numbers of rare specialists, abundant specialists, rare 372 
generalists and abundant generalists were well predicted for the majority of networks by a null 373 
model that assumed interactions were formed entirely from neutral processes. This finding 374 
complements other recent studies of plant-hummingbird pollination networks showing the 375 
importance of morphological trait matching in predicting pairwise interactions at the network 376 
level (Maruyama et al. 2014, Vizentin-Bugoni et al. 2014, 2016, Weinstein and Graham 2017), 377 
while here we show that abundance predicts broad patterns of generalisation at the species 378 
level. Among Antillean hummingbirds, it was recently shown that local environmental 379 
conditions and floral richness, not hummingbirds’ morphological traits, determined species 380 
level nectar-feeding specialization (Dalsgaard et al. 2018). Combined with our findings, this 381 
might suggest a hierarchy of mechanisms structuring plant-hummingbird interactions, and 382 
more broadly whole pollination networks (Junker et al. 2013, Bartomeus et al. 2016, Vizentin-383 
Bugoni et al. 2018): neutrality and local conditions govern broad patterns of generalisation, 384 
such as the number of plant partners, while morphological matching operates at a lower level 385 
to determine the identity of these plant partners. For the generalisation index g, the null model 386 
performed less well, predicting the proportion of abundant specialists and abundant generalists 387 
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correctly in only 47% of networks. For the remaining 53% of networks, the model generally 388 
over predicted the number of abundant generalists and under predicted the number of abundant 389 
specialists. This may be due the nature of the g index itself: by accounting for the abundance 390 
of plants, g does not necessarily correlate with species degree (number of plant partners). For 391 
example, a hummingbird which visits one abundant plant could receive a higher value of g than 392 
a hummingbird that visits three rare plants. This means the null model may overestimate the 393 
number of abundant generalists and underestimate the number of abundant specialists as, in the 394 
model, an abundant hummingbird will have a higher probability of interacting with all plants, 395 
while in the empirical network it may be able to gain sufficient resources by only interacting 396 
with the most abundant plants. 397 
 398 
Taken together, our study confirms that abundance is a sufficient, but not necessary, condition 399 
for generalisation in plant-hummingbird pollination networks; it is the first study to test this 400 
hypothesis in animals using independent data on species abundance encompassing a wide array 401 
of communities. Remarkably, our result corroborates the findings of Fort et al. (2016), giving 402 
further support that this may be a general phenomenon in mutualistic systems. Further research 403 
should investigate whether the relationships found here hold for other types of ecological 404 
systems. We also find evidence that neutral effects are good predictors of coarse species-level 405 
patterns of generalisation, even in a system in which interactions are widely recognized to be 406 
constrained by species traits. This might suggest a hierarchy of mechanisms structuring plant-407 
hummingbird interactions, with neutral effects operating at a ‘high level’ to determine coarse 408 
patterns of generalisation, such as the number of partners, while niche-based processes act at a 409 
lower level to determine the identity of these partners.  410 
 411 
Data accessibility 412 
 413 
Data will be deposited in Data Dryad before we submit a revised version of the manuscript 414 
prior to acceptance. 415 
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Tables 534 
 535 
Table 1: Truth table listing all possible outcomes for the propositions “if it is a dodo, it is 536 
extinct” and “if it is abundant, it is generalist”. ‘T’ is ‘True’ and ‘F’ is ‘False’. 537 
Outcome Dodo/Abundant Extinct/Generalist 

A T T 
B F F 
C F T 
D T F 

 538 
 539 
Figures 540 
 541 

 542 
Figure 1: The mean proportion of hummingbird species classified as rare specialists (‘RS’), 543 
rare generalists (‘RG’), abundant specialists (‘AS’) and abundant generalists (‘AG’) across all 544 
networks, for three generalisation metrics: degree, normalised degree and g. The bold centre 545 
line in each box is the median; the lower and upper hinges are the first and third quartiles, 546 
respectively. The lower whisker indicates the smallest value no less than 1.5 times the inter-547 
quartile range; the upper whisker indicates the largest value no greater than 1.5 times the inter-548 
quartile range. Data outside the whiskers are outlying points plotted as solid black circles. 549 
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 550 
Figure 2: Comparisons between empirical networks (A-S) and null model networks in the 551 
proportions of species in each of the abundance-generalisation categories ‘RS’ (rare 552 
specialists), ‘RG’ (rare generalists), ‘AS’ (abundant specialists) and ‘AG’ (abundant 553 
generalists). Error bars represent the 95% confidence intervals of the mean proportion of 554 
hummingbird species in each abundance-generalisation category as predicted by 1000 null 555 
networks. Red circles show the empirically observed mean proportion of hummingbird species 556 
in each category. If the red circle is within the error bars, there were no significant differences 557 
between the observed proportions and the neutrality null model proportions. Percentages in the 558 
top left of each panel give the proportion of networks where empirical proportions were not 559 
significantly different from the null model proportions. Results are shown for each network 560 
(A-S) and for each generalisation metric (Degree, Normalised degree, g). 561 
 562 
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